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Integrating core physics 
and machine learning for improved 
parameter prediction in boiling 
water reactor operations
M. R. Oktavian 1,2*, J. Nistor 1,3, J. T. Gruenwald 1 & Y. Xu 2

This study introduces a novel method for enhancing Boiling Water Reactor (BWR) operation 
simulations by integrating machine learning (ML) models with conventional simulation techniques. 
The ML model is trained to identify and correct errors in low-fidelity simulation outputs, traditionally 
derived from core physics computations. These corrections aim to align the low-fidelity results closely 
with high-fidelity data. Precise predictions of nuclear reactor parameters like core eigenvalue and 
power distribution are crucial for efficient fuel management and adherence to technical specifications. 
Current high-fidelity transport calculations, while accurate, are impractical for real-time predictions 
due to extensive computational demands. Our approach, therefore, utilizes the standard two-step 
simulation process-assembly-level lattice physics calculations followed by whole-core nodal diffusion 
computations-to generate initial results, which are then refined using the ML-based error correction 
model. The methodology focuses on improving simulation accuracy in regular BWR operations rather 
than developing a universal ML predictor for reactor physics. By training an advanced neural network 
model on the difference in high-fidelity and low-fidelity simulations, the model can reduce the nodal 
power error from low-fidelity simulations to around 1% on average and the core eigenvalue down 
to under 100 pcm. This result is under the condition of the normal variations of control rod pattern 
and core flow rate changes in standard BWR operations used in the training and evaluation of the 
machine learning model. This work suggests a promising approach for achieving more accurate, 
computationally feasible simulation solutions in nuclear reactor operation and management.
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Background
During power operation, nuclear reactors, especially BWRs, require dynamic and precise control of reactiv-
ity in order to maintain safe and efficient operation. Several strategies, including control rod adjustments and 
core flow rate changes, are employed throughout the reactor’s cycle to regulate reactivity. The goal of reactivity 
control is to maintain stable operations where reactivity is neutral ( ρ = 0 or k = 1 ). The total reactivity balance 
in a BWR can be expressed as:

where CR represents the control rods, FR represents the flow rate, FB represents feedback, and DP is the deple-
tion  effect1.

Due to the complex mechanism of reactivity control and its importance, accurate parameter prediction during 
BWR operations is crucial. Higher accuracy in predicting important nuclear reactor parameters, such as core 
eigenvalue (or effective neutron multiplication factor, keff  ) and power distribution, among others, contributes 
to more effective fuel planning, safe operation, and compliance with plant technical specifications. High-fidelity 
neutron transport calculations, although accurate, are not practical for real-time core parameter prediction due 

(1)ρ = ρCR + ρFR + ρFB + ρDP = 0
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to their extensive computational time. As a result, the conventional two-step approach-initially involving either 
single or multi-assembly transport calculations, followed by a comprehensive core diffusion computation-remains 
prevalent  today2–4.

Generalized Perturbation Theory (GPT) has seen advancements in reactor physics but faces challenges in real-
time analysis and large-scale core design, primarily due to reduced accuracy for significant system changes and 
high computational costs for higher-order  methods5,6. Exact-to-Precision GPT (EpGPT) offers improvements in 
complex reactor analyses, yet its applications are mainly limited to PWR assembly  models7,8. The computational 
demand for larger models, like full-core reactors, remains high. This has led to exploring alternatives, such as 
Machine Learning, which provide significant accuracy improvements over lower fidelity methods without the 
need for exact system representations, addressing both speed and accuracy concerns in reactor core simulations.

With this in mind, this work proposed a novel approach to simulating BWR operations using conventional 
reactor simulation assisted by a machine learning-based correction model. The machine learning (ML) model 
is trained to predict the error of the low-fidelity (LF) simulation results (which are the traditional core physics 
approach) and then use the predicted error to further improve the solutions. The corrected solutions should 
be close to the high-fidelity (HF) data used to train the machine learning model, which comes from prepared 
high-resolution Monte Carlo simulations. This study is not meant to develop a multi-purpose ML prediction 
model for reactor physics, but instead as a tool to improve simulation and parameter prediction accuracy in the 
routine BWR operations.

Simulations in reactor physics
This conventional method in reactor simulation unfolds in two main phases: the lattice physics calculation, 
performed on the scale of an assembly, followed by a nodal diffusion calculation across the core. The lattice 
physics calculation involves the use of high-fidelity transport calculation to solve for energy-dependent, spatially 
detailed angular flux. The transport calculation solves the so-called Boltzmann Transport  Equation9 as follows:

where �r , �� , and E represent the space, angle, and energy variables, respectively, ψ is the angular neutron flux, and 
� is used for the macroscopic cross section and the subscripts t  , f  and s indicate the total, fission, and scattering, 
χ is the normalized fission spectrum, and keff  is the effective neutron multiplication factor.

Spatially homogenized and group-condensed macroscopic cross-sections can be generated from the standard 
flux-weighted cross-section calculation process in lattice physics  calculation10,11. These data (also called group 
constants) are required to run any nodal diffusion calculation.

The next step in the reactor physics simulation is to utilize nodal diffusion equations to generate assembly-
wise flux solutions and the whole core eigenvalue (also called k or keff  ). The general form of the time-dependent 
multigroup diffusion equation is given by the equation  below12:

where the spatial dependence of each quantity is omitted for brevity, and

Dg = diffusion coefficient for the energy group g (cm)
φg = neutron scalar flux for the energy group g (particles/cm2 s)
�s,g ′→g = macroscopic scattering cross section from energy group g ′ to energy group g (cm−1)
χpg = prompt fission neutron yield in the energy group g
keff  = effective neutron multiplication factor (core eigenvalue)
ν�f ,g = macroscopic fission neutron production cross section at energy g (cm−1)

The other approach to solving the neutron transport equation is through stochastic methods, like Monte Carlo 
methods. Monte Carlo methods, in terms of simulation fidelity, are currently the gold standard for modeling 
neutrons in nuclear  reactors13. The methods are based on repeated random sampling to obtain numerical results. 
Due to the nature of the statistical approach, the accuracy of this method depends on the number of samples (or 
neutrons) and therefore drives up the computational cost to obtain accurate  results14. Consequently, real-time, 
high-resolution Monte Carlo simulations for an entire reactor are not currently viable.

Deep learning with neural networks
The machine learning model in this work utilizes Deep Neural Networks (DNNs) architecture, especially in 
the category of Convolutional Neural Networks (CNNs). DNNs are multi-layered structures in artificial neural 
networks, essential for deep learning and handling complex tasks like classification and  regression15. A DNN 
employs layers of neurons, each defined by weights ( W ) and biases ( b ), and utilizes activation functions like 
sigmoid or ReLU. The network aims to minimize a loss function, such as Mean Squared Error (MSE) in typi-
cal regression applications. Training involves backpropagation for updating weights and biases, guided by the 
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gradients computed from the loss function. Despite their efficiency, DNNs are computationally demanding and 
often criticized for their lack of interpretability.

Convolutional Neural Networks (CNNs) specialize in analyzing visual  data16. They comprise convolutional, 
pooling, and fully connected layers. Outside of image and visual applications, CNNs have shown significant 
utility in various fields, including protein structure  prediction17 and time series  forecasting18. Additionally, the 
encoder-decoder architecture is an important model in deep learning, particularly for tasks like sequence-to-
sequence predictions, machine translation, and image captioning. This architecture consists of two main parts: the 
encoder, which processes the input data and compresses the information into a context vector, and the decoder, 
which takes this vector to produce the output. In this work, CNNs are utilized to both capture patterns in spatial 
data of BWR operations and decode the processed data into the regression output.

Results
Improvement on neutron multiplication factor
The initial metric discussed in this section is related to the performance of the model in the correction of the 
core keff  or eigenvalue for the full core BWR model. Achieving a precise keff  is crucial as it governs the critical 
condition of the reactor. Accurate values enable reactor operators to make well-informed decisions regarding 
fuel management and overall safety.

The model evaluation was executed on a test dataset, comprising 15% of the total dataset, isolated during the 
initial stages of data preprocessing. This dataset, comprising 360 data points, was not used in any other phase of 
this study. Therefore, the test data provide an unbiased performance metric for the ML model.

As illustrated in Fig. 1, the average keff  error for all test data in the Hatch-1 Cycle 1 model is presented. The 
figure includes errors from LF simulation, Direct ML, and our novel approach, LF + ML. Noticeably, the LF 
errors fluctuate between 300 and 600 pcm. In contrast, both ML methods exhibit substantially lower errors, 
underlining their superior performance.

The ML-based correction model shows a pronounced improvement in keff values, even when compared to the 
well-validated LF simulator. The high accuracy of direct ML predictions for keff  is attributed to the fact that keff  
in typical BWR operations is very close to 1.0. This narrow target range enhances predictability. Table 1 reveals 
that both ML methods produce errors of around 100 pcm in both Root Mean Squared Error (RMSE) or mean 
absolute error, a considerable reduction from the LF errors. Interestingly, the LF + ML model outperforms Direct 
ML, especially in terms of the maximum error observed. This can be attributed to the LF + ML approach initiat-
ing with a more accurate LF dataset, therefore, avoiding large, nonphysical errors in most scenarios that Direct 
ML might exhibit. However, even with LF + ML, the predicted keff  is still lack of maximum error improvement 
due to the diversity in the error distribution between training and test data.

Figure 1.  Comparison of averaged keff error for LF simulation, Direct ML prediction and the proposed 
approach LF + ML model on the test dataset. Errors are calculated based on absolute discrepancies to high-
fidelity data. Note that 1 pcm = 1× 10−5�k . Image was generated using Python Matplotlib Library.

Table 1.  keff  Errors on test data for all cases. Note that 1 pcm = 1× 10
−5�k for the error term.

Methods RMSE (pcm) Avg. Err. (pcm) Max. Err. (pcm) Std. Dev. (pcm)

LF simulation 460.4 413.2 999.5 162.2

Direct ML prediction 137.8 117.1 826.9 106.4

LF simulation + ML correction 103.1 84.7 485.2 79.1
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Improvement on nodal power distribution
The nodal power errors in Fig. 2 explain the advantages of leveraging the ML-based correction model for the 
diffusion solver. Unlike the previous observations, the Direct ML method performs better than LF but still falls 
short when compared to LF + ML. The average errors for the prediction of nodal power are around 4.2% for LF 
simulation and 3.1% for the Direct ML method.

Predicting 3D variables like nodal power is quite a challenge for Direct ML methods. The larger data predic-
tion requirements, coupled with the limitation of available training data, make it difficult to achieve satisfac-
tory performance. This is particularly important given that high-fidelity data collection can be quite expensive, 
especially for the large-size BWR core.

However, the integration of a low-cost diffusion solver as a starting point for ML models has proven to be 
beneficial. The LF + ML model has managed to reduce the error to around 1.8% on average, displaying its effi-
cacy even when only a small amount of training data is available. This is important considering that collecting 
high-fidelity data used as ground truth is resource-intensive.

The data in Table 2 emphasize that the proposed approach, LF + ML performs substantially better in terms of 
average error, maximum error, and standard deviation compared to the other methods. This supports the idea 
for the integration of machine learning techniques with conventional LF approaches to improve the accuracy 
of nodal power prediction.

The subsequent plots in Figs. 3, 4 and 5 focus on the radial and axial power distribution for the BWR core 
model during both the beginning of the cycle (BOC) and end of the cycle (EOC). Generally, at BOC, the material 
gradients between fuel assemblies create larger errors in diffusion codes. This is particularly noticeable in fuel 
assemblies containing significant amounts of burnable absorbers.

Figure 3 shows that the LF + ML model outperforms both Direct ML and LF simulation during the BOC. 
The largest errors are usually localized near the reactor boundary, which is a common challenge in diffusion 
solver models. In this case, the Direct ML model shows exaggerated errors near the reactor boundary. However, 
LF + ML utilizes the better initial estimates from LF simulation and refines them, resulting in significantly 
reduced errors.

Axial power distribution is another critical metric in BWR reactors. The presence of voids in the upper parts 
of the reactor and the rod insertion in the lower regions of the reactor creates additional challenges to diffusion 
solvers. Figure 4 reveals that the LF + ML model can effectively correct the errors in the axial power distribution 
introduced by the LF physics model alone.

In the EOC, LF simulation results still exhibit some errors, especially in the periphery, where there are fuel-
reflector interfaces. Figure 5 indicate that the proposed LF + ML model continues to offer superior performance 
in the power distribution.

Figure 2.  Comparison of averaged nodal power error on the test dataset. Errors are calculated based on the 
absolute discrepancies to the high-fidelity simulations. Image was generated using Python Matplotlib Library.

Table 2.  Nodal power errors on test dataset.

Methods RMSE (%) Avg. Err. (%) Max. Err. (%) Std. Dev. (%)

LF simulation 5.9 4.2 34.1 4.6

Direct ML prediction 4.5 3.1 132.0 5.0

LF simulation + ML correction 2.2 1.8 31.8 2.4
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Computational time
Table 3 presents a comparison of compute time for simulating the Hatch-1 BWR case using four different meth-
ods: HF, LF, Direct ML, and a hybrid approach of LF + ML. Among these methods, Direct ML stands out for 
its efficiency, requiring less than 0.1 seconds for this case. On the other hand, HF data collection requires 176 
CPUs and takes considerably longer.

Table 4 outlines the parameters used for simulations in LF and HF data collection. Both methods ran a total 
of 200 cycles. LF simulation operated on a single CPU, taking a total of 10 hours, which amounts to 10 CPU 
hours. In contrast, HF data collection required 176 CPUs and had a running time of 50 days, resulting in a total 

Figure 3.  Colormap of the beginning of cycle radial power errors for Hatch-1 Cycle 1 Full core. Images were 
generated using Python Matplotlib Library.

Figure 4.  Comparison of the beginning of cycle axial power and errors for the BWR core model. Images were 
generated using Python Matplotlib Library.

Figure 5.  Colormap of the end of cycle radial power errors for the BWR core model. Images were generated 
using Python Matplotlib Library.
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of 211,200 CPU hours. This difference in resource usage and time emphasizes the trade-offs between computa-
tional efficiency and simulation fidelity.

Collecting accurate HF data poses challenges due to significant computational needs. Even without tight 
multiphysics coupling, Monte Carlo neutron transport runs still take a considerable amount of resources to fin-
ish. In this case, there is a tens of thousands of times difference in the compute resources required for running 
HF simulations compared to LF simulations.

Discussion
One of the key observations from the results is the inferior performance of the Direct ML model compared 
to the LF + ML approach. This difference in performance is attributed to the complexities of full-core reactor 
simulation, which necessitates a comprehensive grasp of neutron transport described in Eq. 2 as well as thermal 
hydraulics and material behavior. Being data-driven, Direct ML methods typically fall short of encapsulating 
the fundamental physics that traditional simulation techniques inherently include.

Reactor physics models often rely on interconnected differential equations to describe neutron behavior, 
including the diffusion equation in Eq. 3. These equations are solved in conjunction with thermal-hydraulic 
models to obtain a self-consistent solution for reactor variables such as nodal power distribution and keff  . The 
Direct ML model, as an entirely empirical approach, might overlook the nuances of these interrelated equations. 
This oversight is apparent in the significant errors noted, particularly near areas with steep material variations 
or intricate geometries, like the reactor boundaries and control rod locations.

The LF + ML model takes advantage of the initial estimates provided by LF simulations to refine the pre-
dictions. This hybrid approach allows for a more physically informed ML model that starts from a reasonable 
approximation rather than making predictions from random weights. As a result, the LF + ML model effectively 
leverages the strengths of both paradigms: the physical rigor of traditional simulation methods and the flexibility 
and computational efficiency of machine learning. This makes it better suited for complex, full-core simulations 
where understanding the fundamental physics is crucial for accurate and reliable predictions.

In the proposed approach, a possible source of error and uncertainty is the training data. With only 200 cycle 
runs available, the quantity of data is limited, which can impact the ML model’s ability to generalize and accu-
rately predict reactor behavior. This is because the neural network may not have enough examples to learn the 
complex relationships between input parameters and reactor variables. As a result, despite the LF + ML model’s 
superior performance compared to the Direct ML approach, it is not immune to inaccuracies. However, acquir-
ing additional data through more HF simulations comes with significant costs, emphasizing the importance of 
conducting a cost-benefit analysis.

Future research should concentrate on answering problems regarding cost-benefit analysis, the use of meas-
urement data, and model generalization. Considering the substantial costs associated with acquiring high-fidelity 
data from Monte Carlo simulations is essential in applying these methods to reactor core design and operations. 
Ideally, if the actual reactor’s measurement data are available, the data can be easily used as the ground truth for 
the ML-based correction model. However, such measurement data often contain noise, and it may not be feasible 
to obtain data for every parameter of interest.

Methods
Low-fidelity and high-fidelity data
The LF model was made in the US NRC codes, Purdue Advanced Reactor Core Simulator (PARCS)19. This model 
consists of three different fuel bundles labeled each with varying uranium enrichment and gadolinia concentra-
tion. The model includes 560 fuel bundles encircled by reflectors. Along with the radial setup, there are 26 axial 
planes made up of 24 fuel nodes, plus a node of reflectors at the top and bottom planes.

Table 3.  Running time comparison.

Method Processing units Running time

HF simulation 176 CPUs 6 hours

LF simulation 1 CPU 3 minutes

Direct ML inference 1 GPU < 0.1 seconds

LF simulation + ML inference 1 CPU + 1 GPU 3 minutes

Table 4.  Compute requirements for data collection.

Parameters Low-fidelity simulation High-fidelity simulation

Total cycle runs 200 200

Processing units 1 CPU 176 CPUs

Total running time 10 hours 50 days

Total CPU time 10 CPU-hours 211,200 CPU-hours
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In this work, the model was made in quarter symmetry to save computational time and further reduce the data 
 complexity20. The symmetry was conducted in the radial direction only. The axial discretization was explicitly 
modeled from bottom to top of the reactor, from reflector to reflector. This is because BWR’s axial variation is 
not symmetrical axially, so it is required to model it in sufficient detail. Based on this description, the boundary 
condition was set to be reflective in the west and north of the radial core and vacuum (zero incoming neutron 
currents) for the other directions.

For developing the ML model, the depletion steps were reduced to 12 steps, from the typical 30–40 deple-
tion steps. The PARCS cross-section library was generated using CASMO-4 for fuel lattices and reflectors. The 
library includes group constants from eight lattice simulations over control rod positions, coolant density, and 
fuel temperature. Lattices were simulated at 23 kW/g of heavy metal power density to a burnup of 50 GWd/MT 
of initial heavy metal.

The HF data were collected using  Serpent21 Monte Carlo simulations. The model was created to reproduce 
PARCS solutions on the same core conditions but with higher resolutions and using the state-of-the-art simula-
tion approach. This means no diffusion approximation and continuous energy neutron transport was modeled 
in detailed geometry structures. Each Serpent calculation was run on 500,000 particles, 500 active cycles, and 
100 inactive cycles. The other simulation settings were also optimized for depletion calculations.

Reactor model
The reactor model used in this work is based on cycle 1 of the Edwin Hatch Unit 1 nuclear power plant. The 
power plant, located near Baxley, Georgia, is a boiling water reactor of the BWR-4 design, developed by General 
Electric, with a net electrical output of approximately 876 MWe and 2436 MWth of thermal output. Since its 
commissioning in 1975, Unit 1 has operated with a core design containing uranium dioxide fuel assemblies, 
utilizing a direct cycle where water boils within the reactor vessel to generate steam that drives turbines.

The specification of cycle 1 of Hatch reactor unit 1 is presented in Table 5. While it is a commercial, large 
power plant, Hatch 1 is not as large as a typical 1,000 GWe LWR. Some BWR designs also have about 700-800 
assemblies. Nevertheless, due to the availability of the core design for this work, it is generally viable to use this 
model as a test case.

There are 560 fuel bundles the size of a 7 × 7 GE lattice in the Hatch 1 Cycle 1 model. Out of the number of 
fuel bundles in the cycle 1 core, there are three different types of fuels with varying enrichments and burnable 
absorbers. Using the procedures in running the Serpent model, high-resolution simulations were obtained as 
shown in the geometry representation in Fig. 6. In the figure, different colors represent different material defini-
tions in Serpent. Because of how the materials were defined individually, the color scheme shown also varied from 
pin to pin and assembly to assembly. The individual material definition in the pin level was required to capture 
the isotopic concentration and instantaneous state variables at different fuel exposures and core conditions.

Data processing
There are 2400 data points collected as samples for this work with various combinations of control blade patterns 
and core flow rates and 12 different burnup steps. These data points are translated from 200 independent cycle 
runs for both PARCS and Serpent to provide LF and HF simulation data, respectively. The collected data were 
processed into a single HDF5 file.

The data processing parts are performed through data split procedures and data normalization. The data is 
separated into different sets, with a training-validation-test ratio of 70:15:15. The training data is used to teach 
the network, the validation data to tune hyperparameters and prevent overfitting, and the test data to evaluate 
the model’s generalization performance on unseen data. From the 2400 data points (200 cycles), the dataset was 
separated into: 

1. Train Dataset: 140 runs or 1680 data points
2. Validation Dataset: 30 runs or 360 data points
3. Test Dataset: 30 runs or 360 data points

The data splitting process was not conducted randomly, but based on the average control blade position in a cycle 
run. Figure 7 presents the distribution of the average control rod inserted in the reactor. The maximum number 
of steps is 48 for fully withdrawn blades. In the plot, it can be inferred that the test data have the lowest average 

Table 5.  Edwin Hatch Unit 1, cycle 1 specifications.

Specification Value

Core size 26 × 26

Core diameter 4.27 meters

Core height 3.96 meters

Number of fuel bundles 560

Number of control blades 137

Thermal power 2436 MWth

Electric power 876 MWe
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CR position (largest insertion), followed by the validation set, and the train data have the highest average CR 
position (smallest insertion).

The CR-based splitting for the dataset has the purpose of demonstrating the generalization of the model on 
out-of-sample CR position data. On the other hand, random splitting is not preferred for small datasets, like 
this problem as the ML model tends to overfit (or imitate) the data. The fixed (CR-based) splitting process used 
here ensures that the model can perform well on data with a different distribution than the training dataset.

After splitting the data, normalization of the data is important for the ML model to ensure data integrity 
and avoid anomalies. In this context, the data processing employs Min-Max scaling, a common normalization 
technique, to rescale the features to a range [0, 1]. This is achieved by subtracting the minimum value of each 
feature and then dividing by the range of that feature. The scaling is conducted to fit the training data using the 
MinMaxScaler class from the scikit-learn package then apply the same scaling to the validation and testing data.

Figure 6.  Geometry representation of the full-size BWR core modeled in Serpent. Images were generated by 
the Serpent geometry plotter.

Figure 7.  Train-validation-test data split based on average control blade position in the BWR core. Image was 
generated using Python Matplotlib Library.
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Machine learning model
The target parameters used here are the core eigenvalue (or keff  ) and power distribution. The ML model will 
provide the correction (via predicted errors) of the target parameters that can be used to obtain the predicted HF 
parameters of interest. The perturbed variables are the parameters that are varied and govern the data collection 
process and in ML modeling. In this case, the perturbed variables are summarized in Table 6.

In this work, a neural network architecture, called BWR-ComodoNet (Boiling Water Reactor—Correction 
Model for Diffusion Solver—Network) is built which is based on the 3D–2D convolutional neural network 
(CNN) architecture. This means that the spatial data in the input and output are processed according to their 
actual dimensions, which are 3D and 2D arrays. The scalar data are still processed using standard dense layers 
of neural networks.

The architecture of the BWR-ComodoNet is presented in Fig. 8. The three input features: core flow rate, 
control rod pattern, and nodal exposure enter three different channels of the network. The scalar parameter 
goes directly into the dense layer in the encoding process, while the 2D and 3D parameters enter the 2D and 3D 
CNN layers, respectively. The encoding processes end in the step where all channels are concatenated into one 
array and connected to dense layers.

The decoding process follows the shape of the target data. In this case, the output will be both keff  error (sca-
lar) and the 3D nodal power error. Since the quarter symmetry is used in the calculation, the 3D nodal power 
has the shape of (14,14,26) in the x,y, and z dimensions, respectively. BWR-ComodoNet outputs the predicted 
errors, so there is an additional post-processing step to add the LF data with the predicted error to obtain the 
predicted HF data.

The output parameters from the neural network model comprise errors in the effective neutron multiplication 
factor, keff  , and the errors in nodal power, which is quantified as:

Here, ek denotes the error in keff  and �eP represents the nodal power error vector. The subscripts H and L indicate 
high-fidelity and low-fidelity data, respectively. According to the equation, the predicted high-fidelity data can 
be determined by adding the error predictions from the machine learning model to the low-fidelity  solutions22.

Given the predicted errors, êk and �̂eP , the predicted high-fidelity data, kH and �PH is defined as:

(4)
ek = kH − kL
�eP = �PH − �PL

Table 6.  List of perturbed variables for BWR core model.

Perturbed variables Data shape Value range

Control blade position 1D or 2D array of integers 0–48 steps

Core flow Scalar (continues) 40–100%

Figure 8.  Architecture of BWR-ComodoNet using 3D-2D CNN-based encoder-decoder neural networks. 
Image was generated using draw.io diagram application.
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where Nk(θ , x) and NP(θ , x) are the neural networks for keff  and power with optimized weights θ and input 
features x . Although Eq. 5 appears to represent a linear combination of low-fidelity parameters and predicted 
errors, it is important to note that the neural network responsible for predicting the errors is inherently non-
linear. As a result, the predicted error is expected to encapsulate the non-linear discrepancies between the low-
fidelity and high-fidelity data.

The machine learning architecture for predicting reactor parameters is constructed using the TensorFlow 
Python library. The optimization of the model is performed through Bayesian Optimization, a technique that 
models the objective function, which in this case is to minimize validation loss, using a Gaussian Process (GP). 
This surrogate model is then used to efficiently optimize the  function23. Hyperparameter tuning was conducted 
over 500 trials to determine the optimal configuration, including the number of layers and nodes, dropout 
values, and learning rates.

The activation function employed for all layers is the Rectified Linear Unit (ReLU), chosen for its effectiveness 
in introducing non-linearity without significant computational cost. The output layer utilizes a linear activation 
function to directly predict the target data.

Regularization is implemented through dropout layers to prevent overfitting and improve model generaliz-
ability. Additionally, early stopping is employed with a patience of 96 epochs, based on monitoring validation 
loss, to halt training if no improvement is observed. A learning rate schedule is also applied, reducing the learn-
ing rate by a factor of 0.1 every 100 epochs, starting with an initial rate. The training process is conducted with 
a maximum of 512 epochs and a batch size of 64, allowing for sufficient iterations to optimize the model while 
managing computational resources.

It is important to note that the direct ML model mentioned in the results, which directly outputs keff  and 
nodal power, follows a different architecture and is independently optimized with distinct hyperparameters 
compared to the LF + ML model. This differentiation allows for tailored optimization to suit the specific objec-
tives of each model.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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