
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports

Integrating core physics
and machine learning for improved
parameter prediction in boiling
water reactor operations
M. R. Oktavian 1,2*, J. Nistor 1,3, J. T. Gruenwald 1 & Y. Xu 2

This study introduces a novel method for enhancing Boiling Water Reactor (BWR) operation
simulations by integrating machine learning (ML) models with conventional simulation techniques.
The ML model is trained to identify and correct errors in low-fidelity simulation outputs, traditionally
derived from core physics computations. These corrections aim to align the low-fidelity results closely
with high-fidelity data. Precise predictions of nuclear reactor parameters like core eigenvalue and
power distribution are crucial for efficient fuel management and adherence to technical specifications.
Current high-fidelity transport calculations, while accurate, are impractical for real-time predictions
due to extensive computational demands. Our approach, therefore, utilizes the standard two-step
simulation process-assembly-level lattice physics calculations followed by whole-core nodal diffusion
computations-to generate initial results, which are then refined using the ML-based error correction
model. The methodology focuses on improving simulation accuracy in regular BWR operations rather
than developing a universal ML predictor for reactor physics. By training an advanced neural network
model on the difference in high-fidelity and low-fidelity simulations, the model can reduce the nodal
power error from low-fidelity simulations to around 1% on average and the core eigenvalue down
to under 100 pcm. This result is under the condition of the normal variations of control rod pattern
and core flow rate changes in standard BWR operations used in the training and evaluation of the
machine learning model. This work suggests a promising approach for achieving more accurate,
computationally feasible simulation solutions in nuclear reactor operation and management.

Keywords Nuclear reactor, Neural network, Neutron diffusion

Background
During power operation, nuclear reactors, especially BWRs, require dynamic and precise control of reactiv-
ity in order to maintain safe and efficient operation. Several strategies, including control rod adjustments and
core flow rate changes, are employed throughout the reactor’s cycle to regulate reactivity. The goal of reactivity
control is to maintain stable operations where reactivity is neutral (ρ = 0 or k = 1). The total reactivity balance
in a BWR can be expressed as:

where CR represents the control rods, FR represents the flow rate, FB represents feedback, and DP is the deple-
tion effect1.

Due to the complex mechanism of reactivity control and its importance, accurate parameter prediction during
BWR operations is crucial. Higher accuracy in predicting important nuclear reactor parameters, such as core
eigenvalue (or effective neutron multiplication factor, keff) and power distribution, among others, contributes
to more effective fuel planning, safe operation, and compliance with plant technical specifications. High-fidelity
neutron transport calculations, although accurate, are not practical for real-time core parameter prediction due

(1)ρ = ρCR + ρFR + ρFB + ρDP = 0

OPEN

1Blue Wave AI Labs, 1281 Win Hentschel Blvd, West Lafayette, IN 47906, USA. 2School of Nuclear Engineering,
Purdue University, 363 North Grant Street, #5281, West Lafayette, IN 47907, USA. 3Department of Physics
and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907, USA. *email: rizki@
bwailabs.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56388-5&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports/

to their extensive computational time. As a result, the conventional two-step approach-initially involving either
single or multi-assembly transport calculations, followed by a comprehensive core diffusion computation-remains
prevalent today2–4.

Generalized Perturbation Theory (GPT) has seen advancements in reactor physics but faces challenges in real-
time analysis and large-scale core design, primarily due to reduced accuracy for significant system changes and
high computational costs for higher-order methods5,6. Exact-to-Precision GPT (EpGPT) offers improvements in
complex reactor analyses, yet its applications are mainly limited to PWR assembly models7,8. The computational
demand for larger models, like full-core reactors, remains high. This has led to exploring alternatives, such as
Machine Learning, which provide significant accuracy improvements over lower fidelity methods without the
need for exact system representations, addressing both speed and accuracy concerns in reactor core simulations.

With this in mind, this work proposed a novel approach to simulating BWR operations using conventional
reactor simulation assisted by a machine learning-based correction model. The machine learning (ML) model
is trained to predict the error of the low-fidelity (LF) simulation results (which are the traditional core physics
approach) and then use the predicted error to further improve the solutions. The corrected solutions should
be close to the high-fidelity (HF) data used to train the machine learning model, which comes from prepared
high-resolution Monte Carlo simulations. This study is not meant to develop a multi-purpose ML prediction
model for reactor physics, but instead as a tool to improve simulation and parameter prediction accuracy in the
routine BWR operations.

Simulations in reactor physics
This conventional method in reactor simulation unfolds in two main phases: the lattice physics calculation,
performed on the scale of an assembly, followed by a nodal diffusion calculation across the core. The lattice
physics calculation involves the use of high-fidelity transport calculation to solve for energy-dependent, spatially
detailed angular flux. The transport calculation solves the so-called Boltzmann Transport Equation9 as follows:

where �r , �� , and E represent the space, angle, and energy variables, respectively, ψ is the angular neutron flux, and
� is used for the macroscopic cross section and the subscripts t , f and s indicate the total, fission, and scattering,
χ is the normalized fission spectrum, and keff is the effective neutron multiplication factor.

Spatially homogenized and group-condensed macroscopic cross-sections can be generated from the standard
flux-weighted cross-section calculation process in lattice physics calculation10,11. These data (also called group
constants) are required to run any nodal diffusion calculation.

The next step in the reactor physics simulation is to utilize nodal diffusion equations to generate assembly-
wise flux solutions and the whole core eigenvalue (also called k or keff). The general form of the time-dependent
multigroup diffusion equation is given by the equation below12:

where the spatial dependence of each quantity is omitted for brevity, and

Dg = diffusion coefficient for the energy group g (cm)
φg = neutron scalar flux for the energy group g (particles/cm2 s)
�s,g ′→g = macroscopic scattering cross section from energy group g ′ to energy group g (cm−1)
χpg = prompt fission neutron yield in the energy group g
keff = effective neutron multiplication factor (core eigenvalue)
ν�f ,g = macroscopic fission neutron production cross section at energy g (cm−1)

The other approach to solving the neutron transport equation is through stochastic methods, like Monte Carlo
methods. Monte Carlo methods, in terms of simulation fidelity, are currently the gold standard for modeling
neutrons in nuclear reactors13. The methods are based on repeated random sampling to obtain numerical results.
Due to the nature of the statistical approach, the accuracy of this method depends on the number of samples (or
neutrons) and therefore drives up the computational cost to obtain accurate results14. Consequently, real-time,
high-resolution Monte Carlo simulations for an entire reactor are not currently viable.

Deep learning with neural networks
The machine learning model in this work utilizes Deep Neural Networks (DNNs) architecture, especially in
the category of Convolutional Neural Networks (CNNs). DNNs are multi-layered structures in artificial neural
networks, essential for deep learning and handling complex tasks like classification and regression15. A DNN
employs layers of neurons, each defined by weights (W) and biases (b), and utilizes activation functions like
sigmoid or ReLU. The network aims to minimize a loss function, such as Mean Squared Error (MSE) in typi-
cal regression applications. Training involves backpropagation for updating weights and biases, guided by the

(2)

�� · ∇ψ

(

�r, ��,E
)

+�t(�r,E)ψ
(

�r, ��,E
)

=
χ(E)

4πkeff

∫ ∞

0

ν�f

(

�r,E′
)

∫ 4π

0

ψ

(

�r, ��′,E′
)

d�′dE′

+

∫ ∞

0

∫ 4π

0

�s

(

�r, ��′ · ��,E′ → E
)

ψ

(

�r, ��′,E′
)

d�′dE′

(3)
1

ν

∂φg

∂t
−∇ · Dg∇φg +�t,gφg =

G
∑

g ′=1

�s,g ′→gφg ′ +
χpg (1− β)

keff

G
∑

g ′=1

ν�f ,g ′φg ′

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports/

gradients computed from the loss function. Despite their efficiency, DNNs are computationally demanding and
often criticized for their lack of interpretability.

Convolutional Neural Networks (CNNs) specialize in analyzing visual data16. They comprise convolutional,
pooling, and fully connected layers. Outside of image and visual applications, CNNs have shown significant
utility in various fields, including protein structure prediction17 and time series forecasting18. Additionally, the
encoder-decoder architecture is an important model in deep learning, particularly for tasks like sequence-to-
sequence predictions, machine translation, and image captioning. This architecture consists of two main parts: the
encoder, which processes the input data and compresses the information into a context vector, and the decoder,
which takes this vector to produce the output. In this work, CNNs are utilized to both capture patterns in spatial
data of BWR operations and decode the processed data into the regression output.

Results
Improvement on neutron multiplication factor
The initial metric discussed in this section is related to the performance of the model in the correction of the
core keff or eigenvalue for the full core BWR model. Achieving a precise keff is crucial as it governs the critical
condition of the reactor. Accurate values enable reactor operators to make well-informed decisions regarding
fuel management and overall safety.

The model evaluation was executed on a test dataset, comprising 15% of the total dataset, isolated during the
initial stages of data preprocessing. This dataset, comprising 360 data points, was not used in any other phase of
this study. Therefore, the test data provide an unbiased performance metric for the ML model.

As illustrated in Fig. 1, the average keff error for all test data in the Hatch-1 Cycle 1 model is presented. The
figure includes errors from LF simulation, Direct ML, and our novel approach, LF + ML. Noticeably, the LF
errors fluctuate between 300 and 600 pcm. In contrast, both ML methods exhibit substantially lower errors,
underlining their superior performance.

The ML-based correction model shows a pronounced improvement in keff values, even when compared to the
well-validated LF simulator. The high accuracy of direct ML predictions for keff is attributed to the fact that keff
in typical BWR operations is very close to 1.0. This narrow target range enhances predictability. Table 1 reveals
that both ML methods produce errors of around 100 pcm in both Root Mean Squared Error (RMSE) or mean
absolute error, a considerable reduction from the LF errors. Interestingly, the LF + ML model outperforms Direct
ML, especially in terms of the maximum error observed. This can be attributed to the LF + ML approach initiat-
ing with a more accurate LF dataset, therefore, avoiding large, nonphysical errors in most scenarios that Direct
ML might exhibit. However, even with LF + ML, the predicted keff is still lack of maximum error improvement
due to the diversity in the error distribution between training and test data.

Figure 1. Comparison of averaged keff error for LF simulation, Direct ML prediction and the proposed
approach LF + ML model on the test dataset. Errors are calculated based on absolute discrepancies to high-
fidelity data. Note that 1 pcm = 1× 10−5�k . Image was generated using Python Matplotlib Library.

Table 1. keff Errors on test data for all cases. Note that 1 pcm = 1× 10
−5�k for the error term.

Methods RMSE (pcm) Avg. Err. (pcm) Max. Err. (pcm) Std. Dev. (pcm)

LF simulation 460.4 413.2 999.5 162.2

Direct ML prediction 137.8 117.1 826.9 106.4

LF simulation + ML correction 103.1 84.7 485.2 79.1

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports/

Improvement on nodal power distribution
The nodal power errors in Fig. 2 explain the advantages of leveraging the ML-based correction model for the
diffusion solver. Unlike the previous observations, the Direct ML method performs better than LF but still falls
short when compared to LF + ML. The average errors for the prediction of nodal power are around 4.2% for LF
simulation and 3.1% for the Direct ML method.

Predicting 3D variables like nodal power is quite a challenge for Direct ML methods. The larger data predic-
tion requirements, coupled with the limitation of available training data, make it difficult to achieve satisfac-
tory performance. This is particularly important given that high-fidelity data collection can be quite expensive,
especially for the large-size BWR core.

However, the integration of a low-cost diffusion solver as a starting point for ML models has proven to be
beneficial. The LF + ML model has managed to reduce the error to around 1.8% on average, displaying its effi-
cacy even when only a small amount of training data is available. This is important considering that collecting
high-fidelity data used as ground truth is resource-intensive.

The data in Table 2 emphasize that the proposed approach, LF + ML performs substantially better in terms of
average error, maximum error, and standard deviation compared to the other methods. This supports the idea
for the integration of machine learning techniques with conventional LF approaches to improve the accuracy
of nodal power prediction.

The subsequent plots in Figs. 3, 4 and 5 focus on the radial and axial power distribution for the BWR core
model during both the beginning of the cycle (BOC) and end of the cycle (EOC). Generally, at BOC, the material
gradients between fuel assemblies create larger errors in diffusion codes. This is particularly noticeable in fuel
assemblies containing significant amounts of burnable absorbers.

Figure 3 shows that the LF + ML model outperforms both Direct ML and LF simulation during the BOC.
The largest errors are usually localized near the reactor boundary, which is a common challenge in diffusion
solver models. In this case, the Direct ML model shows exaggerated errors near the reactor boundary. However,
LF + ML utilizes the better initial estimates from LF simulation and refines them, resulting in significantly
reduced errors.

Axial power distribution is another critical metric in BWR reactors. The presence of voids in the upper parts
of the reactor and the rod insertion in the lower regions of the reactor creates additional challenges to diffusion
solvers. Figure 4 reveals that the LF + ML model can effectively correct the errors in the axial power distribution
introduced by the LF physics model alone.

In the EOC, LF simulation results still exhibit some errors, especially in the periphery, where there are fuel-
reflector interfaces. Figure 5 indicate that the proposed LF + ML model continues to offer superior performance
in the power distribution.

Figure 2. Comparison of averaged nodal power error on the test dataset. Errors are calculated based on the
absolute discrepancies to the high-fidelity simulations. Image was generated using Python Matplotlib Library.

Table 2. Nodal power errors on test dataset.

Methods RMSE (%) Avg. Err. (%) Max. Err. (%) Std. Dev. (%)

LF simulation 5.9 4.2 34.1 4.6

Direct ML prediction 4.5 3.1 132.0 5.0

LF simulation + ML correction 2.2 1.8 31.8 2.4

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports/

Computational time
Table 3 presents a comparison of compute time for simulating the Hatch-1 BWR case using four different meth-
ods: HF, LF, Direct ML, and a hybrid approach of LF + ML. Among these methods, Direct ML stands out for
its efficiency, requiring less than 0.1 seconds for this case. On the other hand, HF data collection requires 176
CPUs and takes considerably longer.

Table 4 outlines the parameters used for simulations in LF and HF data collection. Both methods ran a total
of 200 cycles. LF simulation operated on a single CPU, taking a total of 10 hours, which amounts to 10 CPU
hours. In contrast, HF data collection required 176 CPUs and had a running time of 50 days, resulting in a total

Figure 3. Colormap of the beginning of cycle radial power errors for Hatch-1 Cycle 1 Full core. Images were
generated using Python Matplotlib Library.

Figure 4. Comparison of the beginning of cycle axial power and errors for the BWR core model. Images were
generated using Python Matplotlib Library.

Figure 5. Colormap of the end of cycle radial power errors for the BWR core model. Images were generated
using Python Matplotlib Library.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports/

of 211,200 CPU hours. This difference in resource usage and time emphasizes the trade-offs between computa-
tional efficiency and simulation fidelity.

Collecting accurate HF data poses challenges due to significant computational needs. Even without tight
multiphysics coupling, Monte Carlo neutron transport runs still take a considerable amount of resources to fin-
ish. In this case, there is a tens of thousands of times difference in the compute resources required for running
HF simulations compared to LF simulations.

Discussion
One of the key observations from the results is the inferior performance of the Direct ML model compared
to the LF + ML approach. This difference in performance is attributed to the complexities of full-core reactor
simulation, which necessitates a comprehensive grasp of neutron transport described in Eq. 2 as well as thermal
hydraulics and material behavior. Being data-driven, Direct ML methods typically fall short of encapsulating
the fundamental physics that traditional simulation techniques inherently include.

Reactor physics models often rely on interconnected differential equations to describe neutron behavior,
including the diffusion equation in Eq. 3. These equations are solved in conjunction with thermal-hydraulic
models to obtain a self-consistent solution for reactor variables such as nodal power distribution and keff . The
Direct ML model, as an entirely empirical approach, might overlook the nuances of these interrelated equations.
This oversight is apparent in the significant errors noted, particularly near areas with steep material variations
or intricate geometries, like the reactor boundaries and control rod locations.

The LF + ML model takes advantage of the initial estimates provided by LF simulations to refine the pre-
dictions. This hybrid approach allows for a more physically informed ML model that starts from a reasonable
approximation rather than making predictions from random weights. As a result, the LF + ML model effectively
leverages the strengths of both paradigms: the physical rigor of traditional simulation methods and the flexibility
and computational efficiency of machine learning. This makes it better suited for complex, full-core simulations
where understanding the fundamental physics is crucial for accurate and reliable predictions.

In the proposed approach, a possible source of error and uncertainty is the training data. With only 200 cycle
runs available, the quantity of data is limited, which can impact the ML model’s ability to generalize and accu-
rately predict reactor behavior. This is because the neural network may not have enough examples to learn the
complex relationships between input parameters and reactor variables. As a result, despite the LF + ML model’s
superior performance compared to the Direct ML approach, it is not immune to inaccuracies. However, acquir-
ing additional data through more HF simulations comes with significant costs, emphasizing the importance of
conducting a cost-benefit analysis.

Future research should concentrate on answering problems regarding cost-benefit analysis, the use of meas-
urement data, and model generalization. Considering the substantial costs associated with acquiring high-fidelity
data from Monte Carlo simulations is essential in applying these methods to reactor core design and operations.
Ideally, if the actual reactor’s measurement data are available, the data can be easily used as the ground truth for
the ML-based correction model. However, such measurement data often contain noise, and it may not be feasible
to obtain data for every parameter of interest.

Methods
Low-fidelity and high-fidelity data
The LF model was made in the US NRC codes, Purdue Advanced Reactor Core Simulator (PARCS)19. This model
consists of three different fuel bundles labeled each with varying uranium enrichment and gadolinia concentra-
tion. The model includes 560 fuel bundles encircled by reflectors. Along with the radial setup, there are 26 axial
planes made up of 24 fuel nodes, plus a node of reflectors at the top and bottom planes.

Table 3. Running time comparison.

Method Processing units Running time

HF simulation 176 CPUs 6 hours

LF simulation 1 CPU 3 minutes

Direct ML inference 1 GPU < 0.1 seconds

LF simulation + ML inference 1 CPU + 1 GPU 3 minutes

Table 4. Compute requirements for data collection.

Parameters Low-fidelity simulation High-fidelity simulation

Total cycle runs 200 200

Processing units 1 CPU 176 CPUs

Total running time 10 hours 50 days

Total CPU time 10 CPU-hours 211,200 CPU-hours

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports/

In this work, the model was made in quarter symmetry to save computational time and further reduce the data
 complexity20. The symmetry was conducted in the radial direction only. The axial discretization was explicitly
modeled from bottom to top of the reactor, from reflector to reflector. This is because BWR’s axial variation is
not symmetrical axially, so it is required to model it in sufficient detail. Based on this description, the boundary
condition was set to be reflective in the west and north of the radial core and vacuum (zero incoming neutron
currents) for the other directions.

For developing the ML model, the depletion steps were reduced to 12 steps, from the typical 30–40 deple-
tion steps. The PARCS cross-section library was generated using CASMO-4 for fuel lattices and reflectors. The
library includes group constants from eight lattice simulations over control rod positions, coolant density, and
fuel temperature. Lattices were simulated at 23 kW/g of heavy metal power density to a burnup of 50 GWd/MT
of initial heavy metal.

The HF data were collected using Serpent21 Monte Carlo simulations. The model was created to reproduce
PARCS solutions on the same core conditions but with higher resolutions and using the state-of-the-art simula-
tion approach. This means no diffusion approximation and continuous energy neutron transport was modeled
in detailed geometry structures. Each Serpent calculation was run on 500,000 particles, 500 active cycles, and
100 inactive cycles. The other simulation settings were also optimized for depletion calculations.

Reactor model
The reactor model used in this work is based on cycle 1 of the Edwin Hatch Unit 1 nuclear power plant. The
power plant, located near Baxley, Georgia, is a boiling water reactor of the BWR-4 design, developed by General
Electric, with a net electrical output of approximately 876 MWe and 2436 MWth of thermal output. Since its
commissioning in 1975, Unit 1 has operated with a core design containing uranium dioxide fuel assemblies,
utilizing a direct cycle where water boils within the reactor vessel to generate steam that drives turbines.

The specification of cycle 1 of Hatch reactor unit 1 is presented in Table 5. While it is a commercial, large
power plant, Hatch 1 is not as large as a typical 1,000 GWe LWR. Some BWR designs also have about 700-800
assemblies. Nevertheless, due to the availability of the core design for this work, it is generally viable to use this
model as a test case.

There are 560 fuel bundles the size of a 7 × 7 GE lattice in the Hatch 1 Cycle 1 model. Out of the number of
fuel bundles in the cycle 1 core, there are three different types of fuels with varying enrichments and burnable
absorbers. Using the procedures in running the Serpent model, high-resolution simulations were obtained as
shown in the geometry representation in Fig. 6. In the figure, different colors represent different material defini-
tions in Serpent. Because of how the materials were defined individually, the color scheme shown also varied from
pin to pin and assembly to assembly. The individual material definition in the pin level was required to capture
the isotopic concentration and instantaneous state variables at different fuel exposures and core conditions.

Data processing
There are 2400 data points collected as samples for this work with various combinations of control blade patterns
and core flow rates and 12 different burnup steps. These data points are translated from 200 independent cycle
runs for both PARCS and Serpent to provide LF and HF simulation data, respectively. The collected data were
processed into a single HDF5 file.

The data processing parts are performed through data split procedures and data normalization. The data is
separated into different sets, with a training-validation-test ratio of 70:15:15. The training data is used to teach
the network, the validation data to tune hyperparameters and prevent overfitting, and the test data to evaluate
the model’s generalization performance on unseen data. From the 2400 data points (200 cycles), the dataset was
separated into:

1. Train Dataset: 140 runs or 1680 data points
2. Validation Dataset: 30 runs or 360 data points
3. Test Dataset: 30 runs or 360 data points

The data splitting process was not conducted randomly, but based on the average control blade position in a cycle
run. Figure 7 presents the distribution of the average control rod inserted in the reactor. The maximum number
of steps is 48 for fully withdrawn blades. In the plot, it can be inferred that the test data have the lowest average

Table 5. Edwin Hatch Unit 1, cycle 1 specifications.

Specification Value

Core size 26 × 26

Core diameter 4.27 meters

Core height 3.96 meters

Number of fuel bundles 560

Number of control blades 137

Thermal power 2436 MWth

Electric power 876 MWe

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports/

CR position (largest insertion), followed by the validation set, and the train data have the highest average CR
position (smallest insertion).

The CR-based splitting for the dataset has the purpose of demonstrating the generalization of the model on
out-of-sample CR position data. On the other hand, random splitting is not preferred for small datasets, like
this problem as the ML model tends to overfit (or imitate) the data. The fixed (CR-based) splitting process used
here ensures that the model can perform well on data with a different distribution than the training dataset.

After splitting the data, normalization of the data is important for the ML model to ensure data integrity
and avoid anomalies. In this context, the data processing employs Min-Max scaling, a common normalization
technique, to rescale the features to a range [0, 1]. This is achieved by subtracting the minimum value of each
feature and then dividing by the range of that feature. The scaling is conducted to fit the training data using the
MinMaxScaler class from the scikit-learn package then apply the same scaling to the validation and testing data.

Figure 6. Geometry representation of the full-size BWR core modeled in Serpent. Images were generated by
the Serpent geometry plotter.

Figure 7. Train-validation-test data split based on average control blade position in the BWR core. Image was
generated using Python Matplotlib Library.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports/

Machine learning model
The target parameters used here are the core eigenvalue (or keff) and power distribution. The ML model will
provide the correction (via predicted errors) of the target parameters that can be used to obtain the predicted HF
parameters of interest. The perturbed variables are the parameters that are varied and govern the data collection
process and in ML modeling. In this case, the perturbed variables are summarized in Table 6.

In this work, a neural network architecture, called BWR-ComodoNet (Boiling Water Reactor—Correction
Model for Diffusion Solver—Network) is built which is based on the 3D–2D convolutional neural network
(CNN) architecture. This means that the spatial data in the input and output are processed according to their
actual dimensions, which are 3D and 2D arrays. The scalar data are still processed using standard dense layers
of neural networks.

The architecture of the BWR-ComodoNet is presented in Fig. 8. The three input features: core flow rate,
control rod pattern, and nodal exposure enter three different channels of the network. The scalar parameter
goes directly into the dense layer in the encoding process, while the 2D and 3D parameters enter the 2D and 3D
CNN layers, respectively. The encoding processes end in the step where all channels are concatenated into one
array and connected to dense layers.

The decoding process follows the shape of the target data. In this case, the output will be both keff error (sca-
lar) and the 3D nodal power error. Since the quarter symmetry is used in the calculation, the 3D nodal power
has the shape of (14,14,26) in the x,y, and z dimensions, respectively. BWR-ComodoNet outputs the predicted
errors, so there is an additional post-processing step to add the LF data with the predicted error to obtain the
predicted HF data.

The output parameters from the neural network model comprise errors in the effective neutron multiplication
factor, keff , and the errors in nodal power, which is quantified as:

Here, ek denotes the error in keff and �eP represents the nodal power error vector. The subscripts H and L indicate
high-fidelity and low-fidelity data, respectively. According to the equation, the predicted high-fidelity data can
be determined by adding the error predictions from the machine learning model to the low-fidelity solutions22.

Given the predicted errors, êk and �̂eP , the predicted high-fidelity data, kH and �PH is defined as:

(4)
ek = kH − kL
�eP = �PH − �PL

Table 6. List of perturbed variables for BWR core model.

Perturbed variables Data shape Value range

Control blade position 1D or 2D array of integers 0–48 steps

Core flow Scalar (continues) 40–100%

Figure 8. Architecture of BWR-ComodoNet using 3D-2D CNN-based encoder-decoder neural networks.
Image was generated using draw.io diagram application.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports/

where Nk(θ , x) and NP(θ , x) are the neural networks for keff and power with optimized weights θ and input
features x . Although Eq. 5 appears to represent a linear combination of low-fidelity parameters and predicted
errors, it is important to note that the neural network responsible for predicting the errors is inherently non-
linear. As a result, the predicted error is expected to encapsulate the non-linear discrepancies between the low-
fidelity and high-fidelity data.

The machine learning architecture for predicting reactor parameters is constructed using the TensorFlow
Python library. The optimization of the model is performed through Bayesian Optimization, a technique that
models the objective function, which in this case is to minimize validation loss, using a Gaussian Process (GP).
This surrogate model is then used to efficiently optimize the function23. Hyperparameter tuning was conducted
over 500 trials to determine the optimal configuration, including the number of layers and nodes, dropout
values, and learning rates.

The activation function employed for all layers is the Rectified Linear Unit (ReLU), chosen for its effectiveness
in introducing non-linearity without significant computational cost. The output layer utilizes a linear activation
function to directly predict the target data.

Regularization is implemented through dropout layers to prevent overfitting and improve model generaliz-
ability. Additionally, early stopping is employed with a patience of 96 epochs, based on monitoring validation
loss, to halt training if no improvement is observed. A learning rate schedule is also applied, reducing the learn-
ing rate by a factor of 0.1 every 100 epochs, starting with an initial rate. The training process is conducted with
a maximum of 512 epochs and a batch size of 64, allowing for sufficient iterations to optimize the model while
managing computational resources.

It is important to note that the direct ML model mentioned in the results, which directly outputs keff and
nodal power, follows a different architecture and is independently optimized with distinct hyperparameters
compared to the LF + ML model. This differentiation allows for tailored optimization to suit the specific objec-
tives of each model.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon
reasonable request.

Received: 21 November 2023; Accepted: 6 March 2024

References
 1. Kerlin, T. W. & Upadhyaya, B. R. Boiling water reactors. In Dynamics and Control of Nuclear Reactors 167–189 (Elsevier, 2019).

https:// doi. org/ 10. 1016/ B978-0- 12- 815261- 4. 00013-5.
 2. Choe, J. et al. Verification and validation of STREAM/RAST-K for PWR analysis. Nucl. Eng. Technol. 51, 356–368. https:// doi. org/

10. 1016/j. net. 2018. 10. 004 (2019).
 3. Nguyen, X. H., Kim, C. H. & Kim, Y. An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-

shielded burnable absorber. Nucl. Eng. Technol. 51, 369–376. https:// doi. org/ 10. 1016/J. NET. 2018. 10. 016 (2019).
 4. Pandya, T. M., Bostelmann, F., Jessee, M. & Ortensi, J. Two-step neutronics calculations with Shift and Griffin for advanced reactor

systems. Ann. Nucl. Energy 173, 109131. https:// doi. org/ 10. 1016/J. ANUCE NE. 2022. 109131 (2022).
 5. Gandini, A. Generalized Perturbation Theory (GPT) Methods. A Heuristic Approach. In Advances in Nuclear Science and Technol-

ogy: Festschrift in Honor of Eugene P. Wigner 205–380 (1987). https:// doi. org/ 10. 1007/ 978-1- 4684- 5299-0_4.
 6. Cacuci, D. G. Handbook of Nuclear Engineering (Springer, 2010).
 7. Wang, C. & Abdel-Khalik, H. S. Exact-to-precision generalized perturbation theory for source-driven systems. Nucl. Eng. Des.

241, 5104–5112. https:// doi. org/ 10. 1016/j. nucen gdes. 2011. 09. 009 (2011).
 8. Wang, C. & Abdel-Khalik, H. S. Exact-to-precision generalized perturbation theory for neutron transport calculation. Nucl. Eng.

Des. 295, 651–660. https:// doi. org/ 10. 1016/j. nucen gdes. 2015. 07. 024 (2015).
 9. Ott, K. O. & Bezella, W. A. Introductory Nuclear Reactor Statics (American Nuclear Society, 1989).
 10. Cullen, D. E. Application of the probability table method to multigroup calculations of neutron transport application of the prob-

ability table method to multigroup calculations of neutron transport. Nucl. Sci. Eng. 55, 387–400. https:// doi. org/ 10. 13182/ NSE74-3
(1974).

 11. Cullen, D. E. Nuclear data preparation. In Handbook of Nuclear Engineering 279–425 (Taylor &Francis, 2010).
 12. Lamarsh, J. R. Introduction to Nuclear Reactor Theory 2nd edn. (Addison-Wesley, 1983).
 13. Martelli, F., Tommasi, F., Sassaroli, A., Fini, L. & Cavalieri, S. Verification method of Monte Carlo codes for transport processes

with arbitrary accuracy. Sci. Rep. 11, 1–12. https:// doi. org/ 10. 1038/ s41598- 021- 98429-3 (2021).
 14. Vitali, V. et al. Comparison of Monte Carlo methods for adjoint neutron transport. Eur. Phys. J. Plus 133, 317. https:// doi. org/ 10.

1140/ EPJP/ I2018- 12132-9 (2018).
 15. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521(7553), 436–444. https:// doi. org/ 10. 1038/ natur e14539 (2015).
 16. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324.

https:// doi. org/ 10. 1109/5. 726791 (1998).
 17. Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: Learning the regulatory code of the accessible genome with deep convolutional neural

networks. Genome Res. 26, 990–999. https:// doi. org/ 10. 1101/ gr. 200535. 115 (2016).
 18. Bai, S., Kolter, J. Z. & Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling

(2018).
 19. Downar, T., Xu, Y. & Seker, V. PARCS v3.0 U.S. NRC core neutronics simulator user manual (2010).
 20. Oktavian, M. R., Mertyurek, U. & Xu, Y. Transition core modeling for extended-enrichment accident-tolerant fuels in light water

reactors using PARCS/Polaris. Nucl. Sci. Eng. 197, 2072–2085. https:// doi. org/ 10. 1080/ 00295 639. 2022. 21627 90 (2023).
 21. Leppänen, J., Pusa, M., Viitanen, T., Valtavirta, V. & Kaltiaisenaho, T. The Serpent Monte Carlo code: Status, development and

applications in 2013. Ann. Nucl. Energy 82, 142–150. https:// doi. org/ 10. 1016/j. anuce ne. 2014. 08. 024 (2015).

(5)
kH = kL + êk = kL +Nk(θ , x)

�PH = �PL + �̂eP = �PL +NP(θ , x)

https://doi.org/10.1016/B978-0-12-815261-4.00013-5
https://doi.org/10.1016/j.net.2018.10.004
https://doi.org/10.1016/j.net.2018.10.004
https://doi.org/10.1016/J.NET.2018.10.016
https://doi.org/10.1016/J.ANUCENE.2022.109131
https://doi.org/10.1007/978-1-4684-5299-0_4
https://doi.org/10.1016/j.nucengdes.2011.09.009
https://doi.org/10.1016/j.nucengdes.2015.07.024
https://doi.org/10.13182/NSE74-3
https://doi.org/10.1038/s41598-021-98429-3
https://doi.org/10.1140/EPJP/I2018-12132-9
https://doi.org/10.1140/EPJP/I2018-12132-9
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1101/gr.200535.115
https://doi.org/10.1080/00295639.2022.2162790
https://doi.org/10.1016/j.anucene.2014.08.024

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:5835 | https://doi.org/10.1038/s41598-024-56388-5

www.nature.com/scientificreports/

 22. Oktavian, M. R., Nistor, J., Gruenwald, J. T. & Xu, Y. Preliminary development of machine learning-based error correction model
for low-fidelity reactor physics simulation. Ann. Nucl. Energy 187, 109788. https:// doi. org/ 10. 1016/J. ANUCE NE. 2023. 109788
(2023).

 23. Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms. In NIPS 1–9 (2012).

Acknowledgements
This research was funded as a research partnership between Purdue University and Blue Wave AI Labs, with
funding under contract number COEUS 23024433. The authors would like to express their appreciation to the
team at Blue Wave AI Labs for their assistance in the development of this work.

Author contributions
M.R.O. handled concept, methodology, software, investigation, visualization, and initial draft. J.N. contributed to
the conception, supervision, and editing. J.T.G. contributed to conception, supervision, project management, and
funding. Y.X. supplied resources, project management, and funding. All authors reviewed the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.R.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1016/J.ANUCENE.2023.109788
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Integrating core physics and machine learning for improved parameter prediction in boiling water reactor operations
	Background
	Simulations in reactor physics
	Deep learning with neural networks
	Results
	Improvement on neutron multiplication factor
	Improvement on nodal power distribution
	Computational time

	Discussion
	Methods
	Low-fidelity and high-fidelity data
	Reactor model
	Data processing
	Machine learning model

	References
	Acknowledgements

