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Enhancing parasitic organism 
detection in microscopy 
images through deep learning 
and fine‑tuned optimizer
Yogesh Kumar 1, Pertik Garg 2, Manu Raj Moudgil 3, Rupinder Singh 4, Marcin Woźniak 5*, 
Jana Shafi 6 & Muhammad Fazal Ijaz 7*

Parasitic organisms pose a major global health threat, mainly in regions that lack advanced medical 
facilities. Early and accurate detection of parasitic organisms is vital to saving lives. Deep learning 
models have uplifted the medical sector by providing promising results in diagnosing, detecting, 
and classifying diseases. This paper explores the role of deep learning techniques in detecting and 
classifying various parasitic organisms. The research works on a dataset consisting of 34,298 samples 
of parasites such as Toxoplasma Gondii, Trypanosome, Plasmodium, Leishmania, Babesia, and 
Trichomonad along with host cells like red blood cells and white blood cells. These images are initially 
converted from RGB to grayscale followed by the computation of morphological features such as 
perimeter, height, area, and width. Later, Otsu thresholding and watershed techniques are applied 
to differentiate foreground from background and create markers on the images for the identification 
of regions of interest. Deep transfer learning models such as VGG19, InceptionV3, ResNet50V2, 
ResNet152V2, EfficientNetB3, EfficientNetB0, MobileNetV2, Xception, DenseNet169, and a hybrid 
model, InceptionResNetV2, are employed. The parameters of these models are fine‑tuned using three 
optimizers: SGD, RMSprop, and Adam. Experimental results reveal that when RMSprop is applied, 
VGG19, InceptionV3, and EfficientNetB0 achieve the highest accuracy of 99.1% with a loss of 0.09. 
Similarly, using the SGD optimizer, InceptionV3 performs exceptionally well, achieving the highest 
accuracy of 99.91% with a loss of 0.98. Finally, applying the Adam optimizer, InceptionResNetV2 
excels, achieving the highest accuracy of 99.96% with a loss of 0.13, outperforming other optimizers. 
The findings of this research signify that using deep learning models coupled with image processing 
methods generates a highly accurate and efficient way to detect and classify parasitic organisms.

Keywords Parasitic organisms, Segmentation, Watershed, Deep learning, Optimizers, Adam, InceptionV3, 
InceptionResNetV2

Parasites are the different groups of organisms that are present at every corner of our house. From the very early 
times, they have played a very important role in shaping the course of human history, biology, as well as our 
immune  system1. In fact, such complex interplay between humans and parasites has many implications that 
extend far beyond the mere infections caused by parasites. Parasites, from microscopic protozoa to complex 
multicellular helminths, have astonishing life strategies that challenge the understanding of the relationship 
between evolution and  biology2. Parasite diseases are caused by various organisms such as ectoparasites, protozoa, 
etc., and throw very detrimental as well as severe health issues on the human being as they are long-lasting and 
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often show consequences that are life-threatening if not treated at the right time. Parasite diseases affect mil-
lions of people at every nook of the globe and thereby it is categorized as a significant global health  challenge3.

Traditionally, diagnosing parasitic diseases is laborious and time-consuming as it includes serological tests, 
molecular techniques, and microscopy. No doubt these methods have proven to be effective but at the same time 
they also demand highly skilled and professional people who can understand and analyze the disease properly. 
Thereby, it is important to have an early detection of such infections which is crucial for timely intervention and 
effective  treatment4. In these years, the application of machine and deep learning models has shown exciting 
results in the medical sector by improving and enhancing the precision and efficiency of detecting and diagnosing 
multiple threatened diseases. Likewise, these techniques have also offered and exciting possibilities by improving 
the precision of detecting and classifying parasitic  diseases5.

Machine learning techniques such as support vector machine, random forest, decision trees, etc., and deep 
learning techniques like RNN, CNN, etc. are very much capable of recognizing the patterns and classifying 
the given data. These techniques have played an amazing role in analyzing medical data which includes tissue 
samples, blood smears, and diagnostic images which can work on the accuracy of detecting and classifying vari-
ous parasite  diseases6. In addition to this, the ML and Dl techniques are not restricted to the aforementioned 
traditional diagnostic methods. In fact, they can be also applied to the analysis of data from emerging technolo-
gies, such as genomic sequencing, rapid diagnostic tests, and mobile health applications, making the diagnostic 
process faster and more  accessible7.

Therefore, this study aims to investigate the usage of machine learning and deep learning methodologies in 
the identification and categorization of diverse parasitic diseases. By thoroughly examining existing research in 
this field, we will proceed to develop a system that incorporates multiple deep-learning models and fine-tune 
their parameters by using various optimization techniques to obtain the optimized results. The implementation 
of this approach is probable to introduce innovative concepts and improvements to the field of parasite detection.

The contribution made to conduct the research is hereby presented as follows:

• Exploring the work done by the researchers in the field of detecting and classifying various parasitic organ-
isms.

• Compilation of a diverse dataset containing 34,298 samples encompassing various parasitic organisms includ-
ing Plasmodium, Toxoplasma Gondii (T.gondii), Babesia, Leishmania, Trypanosome, and Trichomonad. 
Inclusion of host cells such as red blood cells and white blood cells, enhancing the dataset’s complexity and 
real-world relevance.

• Conversion of images from RGB to grayscale and extraction of morphological features, such as area, perim-
eter, height, and width, facilitating a detailed understanding of the image characteristics.

• Implementation of Otsu thresholding and watershed techniques to distinguish foreground from background, 
ensuring accurate identification of regions of interest.

• Using different deep transfer learning models including VGG19, InceptionV3, ResNet50V2, ResNet152V2, 
EfficientNetB3, EfficientNetB0, MobileNetV2, Xception, DenseNet169, and the hybrid model Inception-
ResNetV2.

• Fine-tuning of model parameters using three different optimizer techniques: RMSprop, SGD, and Adam.
• Thorough examination and comparison of these models on the basis of various performance metrics to 

demonstrate their efficacy in parasitic organism classification.

Related work
A lot of contributions have been made by researchers for the detection and classification of parasitic organisms. 
Zhang et al.8 explored the effectiveness of deep learning models in diagnosing infectious and parasitic diseases 
caused by protozoan parasites. They discussed the limitations of traditional microscopic examination methods 
and highlighted how deep learning models have shown exceptional performance in improving disease diag-
nosis. This research underscores the transformative potential of artificial intelligence in healthcare, especially 
in addressing infectious diseases, and suggests a promising future for deep learning in advancing global public 
health efforts. Alharbi et al.9 worked on the development of a model that could increase its robustness as well 
as precision so that it could effectively distinguish between the uninfected blood cells and parasitic cells. The 
work was carried out on the dataset of 13,750 parasitized and uninfected samples and was applied to the neural 
network, XGBoost and SVM model. During experimentation, it was found that the best accuracy to differentiate 
between parasite cells from healthy ones had been computed by the SVM model with 94% as compared to the 
other three models. Additionally, the XGBoost model also did well by obtaining 90% accuracy but the neural 
network lacked by obtaining only 80%. Researchers also applied the CNN model and it was found that the model 
boosted the accuracy level with 97% for the same sample. Wang et al.10 applied object detection techniques such 
as a Single shot multibox detector and an Incremental Improvement version of You Only Look Once to recognize 
leukocytes. The dataset of 14,700 annotated images was used and tested the model by using 1120 labeled images 
and 7868 labeled single object images to represent 11 types of peripheral leukocytes. The researchers conducted 
their work on NVIDIA GTX1080Ti GPU where the model obtained 90.09% accuracy by investing 53 ms in 
each image. Leng et al.11 mentioned a pure transformer based on an end-to-end object detection network which 
was based on DETR to identify leukocytes. The pyramid vision transformer and deformable attention module 
were added to the DETR model to boost the performance and convergence speed. Two types of the dataset were 
used by the researchers one was the Common Objects in Context dataset to obtain the pre-trained weights and 
another Raabin Leukocyte dataset which was used to train the transfer learning model. While execution it was 
found that the upgraded DETR performed quite well than the CNN and original DETR with the mean accuracy 
of 96.1%. Li et al.12 examined the performance of the deep learning model to automatically detect leukocytes. A 
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novel dataset was created by the researchers of 6273 images which included 8595 leukocytes and nine clinical 
interference variables. Six detection techniques were trained with this dataset and later were presented as a robust 
ensemble model. On examining the model with the test dataset, it was found that it computed 0.922 mean of 
average recall, 0.853 mean of average precision, and an accuracy of 98.84%. Furthermore, the authors examined 
the test results of several models and discovered multiple identical false detections of the models. They then 
made appropriate clinic recommendations. Gonçalves et al.13 detected VL in humans by applying deep learning 
algorithms to the slide images of the bone marrow that had been collected from parasitological examination. For 
this research, they used five deep learning algorithms as a classifier after preprocessing and data augmentation. 
Moreover, the layers of the applied deep learning models were fine-tuned to optimize the performance and it 
was found that the model computed accuracy, F1 score, and kappa of 98.7% each. As a result, they proved that 
by using trained deep learning models with microscopic slide imaging of bone marrow biological material, 
professionals could precisely detect VL in patients. Gonçalves et al.14 detected amastigotes using deep learning 
techniques in microscopy images. Their proposed method initially segmented the Leishmania parasites in the 
images and pointed to the position of amastigotes. Their model computed 99.1% accuracy, 80.4% dice, 81.5% 
precision, 99.6% specificity, 72.2% sensitivity, and 75.2% IoU to identify VL parasites. The researchers men-
tioned in their paper that their findings were great and demonstrated that deep learning models can be useful 
to assist specialists in detecting VL in humans after being trained with microscopic images. Rajasekar et al.15 
mentioned the usage of artificial intelligence for automating the identification of parasite eggs in the laboratory. 
They applied Detectron2, YOLOs, InceptionV3, and YOLOv8 models to detect parasite eggs and their results 
showcased that YOLOv8 on incorporating with SGD optimizer did well by computing the mean precision of 
0.92 and 98% of F1 score. Based on these results, the researchers said that it was an outstanding model that 
could be used for the identification of parasite eggs. Masud et al.16 examined the application of deep learning 
algorithms for the identification of malaria via mobile healthcare solutions. A convolutional neural network 
model was developed along with a cyclical stochastic gradient descent optimizer with an automatic rate finder 
for examining its performance. The researchers claimed that their proposed model very well classified infected 
and healthy cells with great precision and accuracy of 97.30%. In fact, their paper’s findings could help with the 
shift of malaria microscopy diagnosis to a mobile application, improving treatment reliability and addressing a 
shortage of medical knowledge in some areas.

Methodology
This section describes the process that has been used to develop the deep learning-based system for the detection 
and classification of parasitic organisms, as shown in Fig. 1. The proposed system has several notable advantages 
when it comes to classifying parasitic organisms. The system is able to achieve higher accuracy in detection and 
classification by using a diverse dataset and advanced image processing techniques. Adding host cells like red 
and a white blood cell makes the dataset more realistic and relevant to real-life situations. Moreover, when we 
extract morphological features, we gain a more detailed understanding of the characteristics of the image. The 
Otsu thresholding and watershed techniques are used to accurately identify regions of interest, which helps to 
refine the system’s focus. By using a range of advanced deep transfer learning models, we can improve its adapt-
ability and overall performance. Moreover, the flexibility of the model is enhanced by fine-tuning its parameters 
using various optimizers. After carefully evaluating and comparing different factors, we can confidently say that 
the system is very effective for classifying parasitic organisms in medical imaging datasets.

Dataset description
In this study, a comprehensive data set comprising a total of 34,298 observations was gathered which include 
various parasites such as Plasmodium, Leishmania, Babesia, Toxoplasma Gondii (T.gondii), Trichomonad, and 
Trypanosome. Also, the data set includes host cells i.e. Red blood cells and Leukocytes, as shown in Fig. 2. All 
these images were created using either a 400× or 1000×  microscope17.

Specifically, it comprises 843 instances of Plasmodium, 3758 instances of T.gondii observed under a 400× 
microscope, and 2933 instances of T.gondii observed under a 1000× microscope. Additionally, the dataset con-
tains 1173 instances of Babesia, 2701 instances of Leishmania, 2385 instances of Trypanosome, and 10,134 
instances of Trichomonad, all of which were observed under a 1000× microscope. In addition, the aforemen-
tioned dataset comprises a total of 8995 red blood cells (RBCs) and 461 leukocytes observed under a magni-
fication of 1000×, as shown in Fig. 3. Furthermore, an additional 915 leukocytes were identified using a 400× 
microscope.

Data preprocessing
Preprocessing of images is a crucial step in image processing as it enables to improves the classification of a 
model. The first part of the methodology involves loading the original color image, which is represented in the 
RGB format, using the OpenCV library. Apart from this, the Python Imaging Library (PIL) is also used to handle 
numerous preprocessing tasks related to images, such as opening, processing, and saving. Later, the image was 
converted to a single-channel grayscale image whose values range from 0 to 255 using cv2.cvtColor () which 
specifies cv2.COLOR_RGC2GRAY, as presented in Fig. 4. The purpose of doing so is to reduce the computational 
complexity of the image data and improve the processing speed. Moreover, greyscale images retain essential 
features like edges and textures, making them suitable for tasks like object detection, image classification, and 
feature extraction.
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Figure 1.  Proposed system to detect and classify parasitic organisms using deep transfer learning.

Figure 2.  Image samples of parasites.
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Feature extraction
As we are aware that the dataset only contains images, we computed the morphological values as shown in 
Table 1a and b of all the features in the images using parameters such as area, diameter, aspect ratio, minimum 
and maximum location, etc. for extracting the feature. These values are computed by using the Eqs. (1) to (16)

(1)area = height ∗ width

(2)height = cv2.boundingRect(cnt)

(3)width = cv2.boundingRect(cnt)

(4)Aspect Ratio =
width

height

(5)Extent =
object area

bounding rectangle area

Figure 3.  Number of images per class.

Figure 4.  Preprocessing of original images.
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(6)Equivalent diameter =

√

4 ∗ contour area

π

(7)epsilon =

√

((x2 − x1)
2 + (y2 − y1)

2

(8)Minimum value = cv2.min()

(9)Maximum value = cv2.max()

(10)Minimum value Location = cv2.minMaxLo()

(11)Maximum value Location = cv2.minMaxLo()

(12)Mean Color = cv2.mean()

(13)Extreme Leftmost point = tuple(cnt(cnt[:, :, 0].argmin()[0])

Table 1.  Morphological values of the images.

(a) Parameter Babesia_1173
Leishmania_
2701

Leukocyte_
1000X_461

Leukocyte_
400X_915

Plasmodium_
843

Area 5.5 0.0 21.0 5.5 2.0

Perimeter 9.07 4.82 29.79 15.414 5.65

Epsilon 0.907 0.482 2.97 1.5414 0.565

Width 4 3 12 2 3

Height 4 2 9 8 3

Aspect ratio 1.0 1.5 1.33 0.25 1.0

Extent 0.34 0.0 0.19 0.343 0.22

Diameter 2.64 0.0 5.17 2.646 1.59

Min value 126.0 129.0 128.0 133.0 127.0

Max value 129.0 130.0 160.0 182.0 133.0

Min value loc 87,196 296,94 36,76 75,78 87,168

Max value loc 87,196 295,93 41,80 75,82 88,168

Mean color 127.80 129.66 137.75 157.92 129.4

Extreme leftmost 85,196 295,93 35,76 74,80 86,168

Extreme rightmost 88,196 297,94 46,82 75,78 88,168

Extreme topmost 87,194 295,93 36,75 75,78 87,167

Extreme bottommost 87,197 296,94 44,83 74,85 87,169

(b) Parameter RBCs_8995
Toxoplasma_
1000X_2933

Toxoplasma_
400X_3758

Trichomonad_
10,134

Trypanosome_
2385

Area 4.0 74.0 66.5 0.0 7.0

Perimeter 7.65 34.62 85.21 0.0 9.65

Epsilon 0.76 3.46 8.521 0.0 0.96

Width 4 12 16 1 4

Height 3 12 11 1 4

Aspect ratio 1.33 1.0 1.45 1.0 1.0

Extent 0.33 0.513 0.377 0.0 0.4375

Diameter 2.25 9.706 9.201 0.0 2.98

Min value 127.0 34.0 128.0 128.0 126.0

Max value 133.0 155.0 228.0 128.0 129.0

Min value Loc 88,184 10,10 7,1 63,135 199,262

Max value Loc 87,184 5,11 14,0 63,135 198,261

Mean color 129.375 107.95 168.33 128.0 128.08

Extreme leftmost 87,184 5,14 0,0 63,135 197,262

Extreme rightmost 90,184 16,7 15,10 63,135 200,262

Extreme topmost 88,183 10,5 0,0 63,135 198,261

Extreme bottommost 89,185 9,16 0,10 63,135 199,264
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Data segmentation
Image segmentation is an important task and incorporating thresholding with the watershed technique is the 
most used technique to segment objects or regions of interest within an image, as shown in Fig. 5. Initially, 
thresholding of image has been done using the Otsu thresholding technique which automatically determines 
an optimal threshold for segmenting the images by minimizing the inter-class  variance18. Mathematically it is 
represented by the Eqs. (17, 18):

Let’s P(i) be the probability of a pixel with intensity i in the image and to calculate total probability Pt

where L is the number of possible intensity levels. The mean intensity ( µt) of the pixels in the foreground is 
given by

And to calculate the between class variance σ 2
B(t) , the equation (xix) is:

where µtotal is the mean intensity of the entire image and µtotal =
∑L−1

i=0 i.P(i) . Additionally, the aim of Otsu 
method is to maximize σ 2

B(t) by finding the threshold t that satisfies (equation xx):

The optimal threshold tOtsu obtained from this maximization process is then used for binary thresholding to 
separate the image into foreground and background based on pixel intensities.

As thresholding would not have been sufficient hence to refine it watershed technique has been applied where 
the image is treated as topographic map. The watershed algorithm can be mathematically represented using the 
gradient of the image (∇f ) . The gradient magnitude of an image is calculated using derivatives in the x and y 
directions ( ∂f

∂x and
∂f
∂y ) . The watershed transformation is usually defined in Eq. (21):

(14)Extreme Rightmost point = tuple(cnt(cnt[:, :, 0].argmin()[0])

(15)Extreme Topmost point = tuple(cnt(cnt[:, :, 1].argmin()[0])

(16)Extreme Bottommost point = tuple(cnt(cnt[:, :, 1].argmin()[0])

(17)Pt =

L−1
∑

i=0

P(i),

(18)µt =

L−1
∑

i=0

i.P(i)

(19)σ 2
B(t) = P(t).(1− P(t)).(µtotal .P(t)− µt)

2

(20)tOtsu = argmaxtσ
2
B(t)

Figure 5.  Segmentation of images.
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Here, ∇f (x) = 0 corresponds to the points where the gradient is zero, indicating flat regions in the image. 
These points are the markers for the watershed segmentation process. Watershed segmentation considers these 
markers and the gradient of the image to delineate the regions accurately.

Such a combination of Otsu thresholding followed by the watershed technique is a versatile method for seg-
menting the images. Otsu Thresholding provides an initial separation between object and background, while 
the watershed step refines the boundaries based on local image characteristics.

Applied models
The usage of advanced deep learning models, whose layers are either fine-tuned or employed as feature extrac-
tors, enhances the prediction capabilities in visual recognition tasks. Likewise, in the realm of parasitic organism 
detection and classification, various specialized neural network architectures have been developed and briefly 
 explained19.

The use of VGG19, a convolutional neural network architecture well-known for its depth as well as hier-
archical feature learning capabilities, has proven to be of huge value in the task of discriminating complicated 
patterns within parasitic images. By leveraging its abundant layers, VGG19 enables the accurate classification of 
these parasites, thereby enhancing the precision of  identification20. Applying the various filter sizes in Inception 
V3 allows for the comprehensive capture of a broad range of features, which is essential in the precise detection 
of various parasitic  organisms21. The architecture of EfficientNetB3 is designed to achieve stability between 
accuracy as well as computational efficiency. This makes it well-suited to analyze large and diverse datasets that 
are usually encountered in the field of analyzing parasitic  organisms22.

The ResNet152V2 and ResNet50V2 architectures have been designed to deal with the vanishing gradi-
ent problem which is generally encountered during training deep neural networks. These models include skip 
connections and residual blocks to deal with mitigating the issue. By applying these architectural components, 
the models can maintain stable training even when dealing with complex parasitic  images23,24. MobileNetV2 
is a convolutional neural network architecture that aims to reduce computational costs to maintain high accu-
racy. This makes it particularly suitable for environments with limited  resources25. The dense connections 
in DenseNet169 enable a comprehensive analysis of parasitic images, allowing for a detailed examination of 
various  aspects26. On the other hand, EfficientNetB0’s systematic scaling strategy guarantees superior perfor-
mance while minimizing computational requirements. This characteristic is particularly advantageous in real-
time applications for detecting parasitic diseases, where efficiency and accuracy are crucial  factors27.

On the other hand, Xception is another convolutional neural network architecture that incorporates unique 
convolutional layers and skip connections. These architectural choices are designed to improve the flow of gra-
dients during training, which in turn helps in the detection of subtle parasitic  features28. InceptionResNetV2, a 
novel deep neural network architecture, combines the advantageous characteristics of Inception and ResNet 
models. By incorporating Inception’s multiscalar feature capturing capability and ResNet’s depth, ResNetV2 
demonstrates exceptional performance in intricate parasitic image recognition tasks, such as object detection 
and segmentation. The detection and classification of parasitic diseases present a range of challenges that are 
addressed by various architectural approaches. Each architecture offers distinct advantages that collectively con-
tribute to the overall effectiveness of the detection and classification  process29. The general layered architecture 
of all these applied models has been shown in Table 2.

There are also some additional details about the rest of the architectural features which have been mentioned 
in the aforementioned table:

• Batch normalization: This technique is useful for the normalization of inputs for each layer of a neural network 
in order to improvise the performance and stability of the network.

• Squeeze and excitation: This technique compresses and excites the feature maps which has been produced by 
each layer and thereby improves the efficiency of neural network

(21)Watershed
(

f
)

=
{

x ∈ Image
∣

∣∇f (x) = 0 and x is a local minimum}

Table 2.  Layered architecture of applied deep learning models.

Models Convolutional layer Pooling layer Dense Layer Other architectural features Parameters

VGG19 16 5 3 None 143 M

Inception V3 48 8 3 Batch normalization 23 M

EfficientNetB3 9 7 2 Squeeze-and-excitation 6.8 M

ResNet152V2 152 39 3 Residual connections 60.2 M

ResNet50V2 50 13 3 Residual connections 25.6 M

MobileNetV2 18 6 2 Inverted residual connections 3.5 M

Xception 36 11 3 Depthwise separable convolutions 22.9 M

Densenet169 169 5 3 Dense connections 14.3 M

EfficientNetB0 5 4 2 Squeeze-and-excitation 5.3 M

InceptionResNetV2 164 41 3 Batch normalization 55 M
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• Residual connections: This also helps to improve the performance of the network by working on the vanishing 
gradient issue and is also used as shortcut layers of a neural network.

• Inverted residual connections: These connections more efficient and better than the traditional residual con-
nections.

• Dense connections: These techniques are used for connecting each layer of a neural network with all its pre-
ceding layers so that each of these layers can learn from the previous layers and improve the performance of 
the network.

Performance metrics
In the context of deep learning models, there are various metrics which can be used to examine their performance 
which are described as  following20–36:

Accuracy
It is a very fundamental metric which is the ratio of correctly predicted classes of total classes in the dataset 
(Eq. 22). It is used to inform us how well the model is performing for the particular dataset but on the contrary, 
this metric does not work well when the data is imbalanced.

Loss
Like accuracy, loss is also an important metric to examine the performance of the model. It works exactly the 
opposite to as it computes the error by generating the difference between the predicted and actual target values 
(Eq. 23). If the value of loss is high that means the model has not been trained well and if it is low, it means the 
model has been trained well and will predict the output correctly.

Root mean square error (RMSE)
This metric is also calculated by taking the difference of predicted and actual value but it quantifies the average 
magnitude of the value or error generated (Eq. 24).

Precision and recall
These two metrics work particularly in those scenarios where the dataset is imbalanced. Precision measures the 
accuracy of the classes that have been predicted positively and is calculated as the ratio of true positive prediction 
to the total positive prediction (Eq. 25). On the other hand, recall measures the ability of the model to identify 
all the relevant classes and is calculated as the ratio of true positives to actual positives (Eq. 26).

F1 score
It is a combination or a harmonic mean of precision as well as recall which considers both false negative and false 
positive as well as provides a balanced assessment of any model’s performance (Eq. 27).

Results
In this section, we conduct a full analysis of the models based on a set of parameters outlined in "Performance 
metrics" section. We have evaluated the performance of the models after applying three different optimizer 
techniques which include RMSprop, SGD, and Adam optimizer. These optimizers optimize the parameters or 
variables in the form of weights and biases of the layers of deep transfer learning techniques which determine 
the mapping between input features and output  predictions37. Our assessment encompasses both the training 
and validation datasets, allowing us to compare the models for whole and various classes of datasets.

(22)Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative

(23)Loss =
(Actual Value − Predicted Value)2

Number of observations

(24)RMSE =

√

(Actual Value − Predicted Value)2

Number of observations

(25)Precision =
True Positive

True Positive + False Positive

(26)Recall =
True Positive

True Positive + False Negative

(27)F1score = 2
Precision ∗ Recall

Recall + Precision
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RMSprop
Initially, the applied deep learning models are optimized by using RMSprop optimizer and are examined during 
both training and validation phases, as shown in Table 3.

On analyzing the models, it can be seen that all models did quite well but during the training period, it has 
been found that InceptionResNetV2, VGG19, and InceptionV3 performed well by computing 99.99%, 99.89%, 
and 99.83% accuracies respectively along with the lowest loss and RMSE values as compared to the others. On 
the contrary, it has been found that VGG19, InceptionV3, and EfficientNetB0 worked well for the validation 
dataset by obtaining an accuracy of 99.91% each. As far as loss and RMSE values are concerned, only VGG19 
and EfficientNetB0 stood at the best place with 0.09 each.

In addition to this, the models are examined based on their learning curves of accuracy and loss during both 
training and validation periods as shown in Fig. 6.

All models underwent a rigorous 10-epoch iteration process, during which they consistently demonstrated 
their optimal performance either at the 10th epoch or between the 8th and 10th epochs. This observation holds 
true for both accuracy and loss metrics. However, it’s noteworthy that certain models exhibited significant dis-
parities in their performance. These disparities raise a red flag, suggesting a potential issue with overfitting in 
those models. Overfitting occurs when a model learns the training data too well, including its noise and outliers, 
leading to poor generalization on unseen or validation data. Identifying and addressing this overfitting concern 
is crucial for enhancing the overall robustness and reliability of the models. Other than this, the models are also 
evaluated for another set of parameters i.e. precision, recall, and F1 score whose results are shown in Table 4.

VGG19 and Inception V3 have high precision, recall, and F1 scores, indicating that they perform very well 
in the classification task, achieving near-perfect accuracy and completeness. EfficientNet B3, ResNet152 V2, 
DenseNet 169, and EfficientNet B0 also have high precision and F1 scores but slightly lower F1 score compared 
to VGG19 and Inception V3. ResNet50 V2 and MobileNet V2 have slightly lower precision compared to the 
top-performing models but still achieve high recall and F1 scores. Xception has the lowest precision, recall, and 
F1 score among the listed models, indicating that it may have more false positives and false negatives compared 
to the other models.

After examining the performance of the models for the classification of various parasitic organisms, confusion 
matrices of 10 × 10 have been generated which is a crucial tool for assessing the performance of multi-class clas-
sification models, as shown in Fig. 7. Based on these matrices, true positive, true negative, false positive, and false 
negative values are being taken to examine the performance of models for different classes, as shown in Table 5.

In the comprehensive analysis of various models across multiple datasets, InceptionResNetV2 consist-
ently emerges as the top performer, exhibiting exceptional accuracy and low loss across most datasets, 
including Babesia_1173, Leishmania_2701, Leukocyte_400X_915, RBCs_8995, Toxoplasma_400X_3758, 
Leukocyte_1000X_461, and Plasmodium_843. Notably, ResNet50V2 and Xception did not perform well in 
Trypanosome_2385 and Toxoplasma_1000X_2933 as they computed 62.46% and 64.29% accuracy respectively 
whereas MobileNetV2 excels in Trichomonad_10134 with 99.59% accuracy. These variations highlight the 
nuanced performance of different models across diverse datasets. Additionally, the overall dominance of Incep-
tionResNetV2 signifies its robustness and reliability, making it the preferred choice for most classes of datasets, 
while other models demonstrate specialized efficacy in specific contexts, emphasizing the need for a tailored 
approach based on the dataset under consideration.

Besides this, these models are also examined for other performance metrics for different classes of the dataset 
whose results are shown graphically in Fig. 8.

SGD
The applied deep learning models are also optimized by using SGD optimizer and are examined during both 
training and validation phases, as shown in Table 6.

The table shows the performance of 9 different models on a dataset of training and validation records. The 
metrics used to evaluate the performance of the models are accuracy, loss, and RMSE value. Overall, the models 

Table 3.  Evaluation of models during training and validation phases after applying RMSprop.

Models

Training records Validation records

Accuracy Loss RMSE value Accuracy Loss RMSE value

VGG19 99.89 0.11 0.33 99.91 0.09 0.31

Inception V3 99.83 0.12 0.34 99.88 0.10 0.31

EfficientNet B3 99.70 0.13 0.36 99.91 0.12 0.34

ResNet152 V2 99.64 0.14 0.37 99.41 0.12 0.34

ResNet50 V2 99.63 0.13 0.36 98.13 0.16 0.40

MobileNet V2 99.26 0.23 0.47 98.95 0.19 0.43

Xception 99.17 0.31 0.55 96.26 0.29 0.53

DenseNet 169 99.61 0.13 0.36 99.50 0.11 0.33

EfficientNet B0 99.49 0.14 0.37 99.91 0.09 0.30

InceptionResNetV2 99.99 0.12 0.34 99.44 0.11 0.33
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perform very well, with all accuracies above 99%. However, there are some small differences in performance 
between the models. InceptionResNetV2 has the highest accuracy on both the training dataset with 99.90% 
accuracy followed by Inception V3 with 99.81% accuracy. However, ResNet152 V2, ResNet50 V2, and MobileNet 
V2 also perform well with training accuracies above 99% but they have slightly lower accuracies on the valida-
tion dataset. On the contrary, Xception and VGG19 have the lowest accuracy on the training dataset, but they 
perform well on the validation dataset. Overall, InceptionV3 and InceptionResNetV2 are the best-performing 
models on this dataset. However, the other models also perform very well but the highest validation accuracy 
has been computed by InceptionV3 with 99.91% on a loss of 0.98.

Figure 6.  Learning curves of applied models after applying RMSprop.
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In addition to this, the models are examined based on their learning curves of accuracy and loss during both 
training and validation periods as shown in Fig. 9.

The models went through a thorough process of 10 iterations, where they consistently showed their best 
performance either at the 10th iteration or between the 8th and 10th iterations. This observation applies to both 
accuracy and loss metrics. On the contrary, the learning accuracy curve of the models such as InceptionresNetV2, 
Xception, ResNet50V2, MobileNetV2, EfficientNetB3, ResNet152V2, and InceptionV3 have shown good fit 

Table 4.  Analysis of models for different parameters after applying RMSprop.

Models Precision Recall F1 score

VGG19 0.99 1.00 1.00

Inception V3 0.99 1.00 1.00

EfficientNet B3 0.99 0.99 0.99

ResNet152 V2 0.99 0.99 0.99

ResNet50 V2 0.98 1.00 0.99

MobileNet V2 0.98 0.99 0.98

Xception 0.94 0.96 0.95

DenseNet 169 0.99 1.00 0.99

EfficientNet B0 0.99 1.00 0.99

InceptionResNetV2 0.99 0.99 0.99

Figure 7.  Confusion matrix of applied models after applying RMSprop.
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Classes Models

Training records Validation records

Accuracy Loss RMSE Accuracy Loss RMSE

Babesia_1173

VGG19 98.92 0.20 0.44 99.43 0.24 0.48

Inception V3 98.85 0.28 0.52 99.19 0.26 0.50

EfficientNet B3 98.98 0.49 0.70 99.49 0.25 0.50

ResNet152 V2 99.49 0.29 0.53 99.46 0.28 0.52

ResNet50 V2 99.46 0.49 0.70 99.49 0.32 0.56

MobileNet V2 99.9 0.59 0.76 99.59 0.31 0.55

Xception 98.49 0.34 0.58 99.29 0.36 0.60

DenseNet 169 99.46 0.24 0.48 99.19 0.26 0.51

EfficientNet B0 99.46 0.29 0.53 99.19 0.34 0.58

InceptionResNetV2 99.89 0.15 0.38 99.76 0.23 0.47

Leishmania_2701

VGG19 91.31 4.9 2.21 99.05 0.28 0.52

Inception V3 95.82 1.79 1.33 99.36 0.086 0.29

EfficientNet B3 98.23 0.359 0.59 98.38 0.316 0.56

ResNet152 V2 96.36 1.022 1.01 64.63 149.33 12.22

ResNet50 V2 54.21 343.04 18.52 95.63 3.09 1.75

MobileNet V2 88.67 2.36 1.53 99.63 0.89 0.94

Xception 98.59 0.49 0.70 99.67 0.138 0.37

DenseNet 169 96.36 2.89 1.70 99.05 0.28 0.52

EfficientNet B0 99.59 2.16 1.49 99.88 1.14 0.89

InceptionResNetV2 99.99 1.12 1.59 99.96 0.53 0.49

Leukocyte_400X_915

VGG19 98.59 0.359 0.59 99.85 0.14 0.56

Inception V3 99.56 0.246 0.49 99 0.16 0.59

EfficientNet B3 99.76 0.049 0.22 98.4 0.39 0.62

ResNet152 V2 98.49 0.376 0.61 99.29 0.28 0.52

ResNet50 V2 54.21 343.04 18.52 98.46 0.02 0.14

MobileNet V2 88.67 2.36 1.53 97.31 0.34 0.59

Xception 98.59 0.49 0.70 62.63 159.46 12.62

DenseNet 169 96.36 2.89 1.70 94.59 3.50 1.87

EfficientNet B0 98.59 0.359 0.59 96.49 0.89 0.94

InceptionResNetV2 99.99 0.12 1.29 99.94 0.15 0.39

RBCs_8995

VGG19 99.92 0.16 0.85 99.85 0.14 0.59

Inception V3 99.85 0.18 0.59 99.49 0.16 0.67

EfficientNet B3 98.59 0.35 0.59 98.59 0.35 0.59

ResNet152 V2 97.56 0.24 0.49 99.56 0.24 0.49

ResNet50 V2 98.76 0.05 0.24 99.76 0.04 0.22

MobileNet V2 96.49 0.34 0.58 98.49 0.37 0.61

Xception 62.29 149.59 12.23 64.29 149.35 12.22

DenseNet 169 94.46 3.04 1.74 95.46 3.04 1.74

EfficientNet B0 98.76 0.84 0.92 99.76 0.85 0.92

InceptionResNetV2 99.49 0.14 0.38 99.94 0.17 0.41

Toxoplasma_400X_3758

VGG19 99.92 0.16 0.46 91.49 4.949 2.22

Inception V3 97.45 0.349 0.59 95.46 1.776 1.33

EfficientNet B3 94.05 0.276 0.52 98.19 0.316 0.56

ResNet152 V2 99.36 0.046 0.21 96.46 1 1

ResNet50 V2 94.38 0.319 0.56 54.76 300.94 17.34

MobileNet V2 66.63 149.73 12.23 88.59 2.29 1.51

Xception 98.63 3.049 1.74 98.22 0.489 0.69

DenseNet 169 97.63 0.876 0.93 96.76 2.846 1.68

EfficientNet B0 96.67 0.129 0.35 91.49 4.949 2.22

InceptionResNetV2 99.99 0.12 0.26 99.97 0.18 0.24

Continued
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Classes Models

Training records Validation records

Accuracy Loss RMSE Accuracy Loss RMSE

Trypanosome_2385

VGG19 99.92 0.16 0.59 98.52 0.349 0.59

Inception V3 90.31 3.9 1.97 99.29 0.76 0.87

EfficientNet B3 94.49 2.79 1.67 98.76 0.492 0.70

ResNet152 V2 97.26 0.359 0.59 97.19 0.355 0.59

ResNet50 V2 98.59 4.022 2.01 62.46 159.4 12.62

MobileNet V2 56.21 43.04 6.56 94.49 3 1.73

Xception 87.67 2.59 1.61 96.55 0.89 0.94

DenseNet 169 96.59 0.86 0.92 99.29 0.109 0.33

EfficientNet B0 98.36 2.59 1.61 98.52 0.349 0.59

InceptionResNetV2 90.31 3.9 1.97 99.90 0.33 0.65

Leukocyte_1000X_461

VGG19 98.52 0.34 0.59 99.3 0.44 0.66

Inception V3 99.29 0.76 0.87 99.15 0.88 0.93

EfficientNet B3 98.76 0.49 0.70 97.72 0.35 0.59

ResNet152 V2 97.19 0.35 0.59 97.75 1.42 1.19

ResNet50 V2 62.46 159.4 12.62 97.3 0.53 0.72

MobileNet V2 94.49 3 1.73 94.63 1.39 1.17

Xception 96.55 0.89 0.94 98.72 1.27 1.12

DenseNet 169 99.29 0.11 0.33 99.15 1.55 1.24

EfficientNet B0 98.52 0.34 0.59 99.3 0.44 0.66

InceptionResNetV2 99.29 0.76 0.87 99.32 0.88 0.93

Plasmodium_843

VGG19 99.92 0.36 0.66 99.85 0.44 0.89

Inception V3 99.92 0.16 0.46 91.49 4.94 2.22

EfficientNet B3 97.45 0.34 0.59 95.46 1.77 1.33

ResNet152 V2 94.05 0.27 0.52 98.19 0.31 0.56

ResNet50 V2 99.36 0.04 0.21 96.46 1 1

MobileNet V2 94.38 0.31 0.56 54.76 300.94 17.34

Xception 66.63 149.73 12.23 88.59 2.29 1.51

DenseNet 169 98.63 3.04 1.74 98.22 0.48 0.69

EfficientNet B0 99.92 0.16 0.46 91.49 4.94 2.22

InceptionResNetV2 99.99 0.12 0.26 99.96 0.13 0.26

Toxoplasma_1000X_2933

VGG19 99.92 0.16 0.85 99.85 0.14 0.59

Inception V3 99.85 0.18 0.59 99.94 0.16 0.67

EfficientNet B3 98.59 0.35 0.59 98.59 0.35 0.59

ResNet152 V2 97.56 0.24 0.49 99.56 0.24 0.49

ResNet50 V2 98.76 0.05 0.24 99.76 0.04 0.22

MobileNet V2 96.49 0.34 0.58 98.49 0.37 0.61

Xception 62.29 149.59 12.23 64.29 149.35 12.22

DenseNet 169 94.46 3.04 1.74 95.46 3.04 1.74

EfficientNet B0 98.76 0.84 0.92 99.76 0.85 0.92

(InceptionResNetV2) 99.49 0.14 0.38 99.49 0.17 0.41

Trichomonad_10134

VGG19 98.92 0.20 0.44 99.43 0.24 0.48

Inception V3 98.85 0.28 0.52 99.19 0.26 0.51

EfficientNet B3 98.98 0.49 0.70 99.49 0.25 0.50

ResNet152 V2 99.49 0.29 0.53 99.46 0.28 0.52

ResNet50 V2 99.46 0.49 0.70 99.79 0.32 0.56

MobileNet V2 99.9 0.59 0.76 99.59 0.31 0.55

Xception 98.49 0.34 0.58 99.29 0.36 0.60

DenseNet 169 99.46 0.24 0.48 99.19 0.26 0.51

EfficientNet B0 99.46 0.29 0.53 99.19 0.34 0.58

InceptionResNetV2 99.89 0.15 0.38 99.46 0.23 0.47

Table 5.  Evaluation of models during training and validation phases for different classes after applying 
RMSprop.
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learning curves which means the learning of the model exist between overfit and underfit model. In addition to 
that, the models are also assessed for another set of parameters: precision, recall, and F1 score. The results for 
these parameters are displayed in Table 7.

All of the models in the table perform very well, with precision, recall, and F1 scores above 99%. This indicates 
that the models are accurately identifying both negative and positive cases in the dataset. InceptionResNetV2 
has the highest precision, recall, and F1 scores, followed by Inception V3 and EfficientNet B3. ResNet152 V2, 

Figure 8.  Graphical analysis of models after applying RMSprop optimizer.
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Xception, MobileNet V2, DenseNet 169, ResNet50 V2, and EfficientNet B0 also perform very well, with precision, 
recall, and F1 scores above 99%. Overall, all of the models perform very well on this dataset.

We have generated confusion matrices of size 10 × 10 for evaluating the performance of different models to 
classify parasitic organisms, as shown in Fig. 10. These matrices are mainly to assess how well the models are 
performing multi-class classification by using these to examine the performance, as shown in Table 8.

The table analyses the performance of 10 different deep learning models on 10 different classes of datasets 
based on their accuracy, loss, and RMSE. InceptionResNetV2 performs very well on the Leishmania, Babesia, and 
Leukocyte datasets, but it does not perform well on the Trypanosome dataset. EfficientNet B3 and Resnet50V2 
perform well on most of the datasets except the Plasmodium and Toxoplasma datasets respectively. Overall, 
InceptionResNetV2 is the best-performing model on most of the datasets. MobileNet V2 computed the lowest 
accuracy on the Trypanosome dataset but achieved the highest one on the Trichomonad dataset. This signifies 
that MobileNet V2 is a good choice for tasks where the dataset is small or complex. Xception has the lowest 
accuracy on the Trypanosome dataset and the Toxoplasma dataset, but it has the highest accuracy on the Plasmo-
dium dataset. Likewise, DenseNet 169 as well as InceptionV3 have the lowest accuracies on most of the datasets.

Besides this, the performance of the models has been also analyzed by using different performance metrics 
such as precision, recall, and F1 score for different classes of parasites as shown in Fig. 11.

Adam
This subsection defines the performance of the models for different performance metrics on fine tuning their 
parameters by using ADAM optimizer.

On analyzing the models, it can be seen that all models did quite well during training as well as the validation 
period, as shown in Table 9. It has been found that InceptionResNetV2, EfficientNetB3, and VGG19 performed 
well by computing 99.99%, 99.98%, and 99.92% training accuracies along with the lowest loss and RMSE values 
of 0.12 (0.34), 0.17 (0.41), and 0.16 (0.40) respectively as compared to the others. On the contrary, it has been 
found that for the validation phase, InceptionResNetV2computed the highest accuracy of 99.96% followed by 
InceptionV3 and EfficientNetB3 obtained an accuracy of 99.94% and 99.91% respectively while the best loss 
and RMSE values have been obtained by InceptionResNetV2 with 0.13(0.36) followed by EfficientNetB0 and 
VGG19 with 0.14(0.37) each.

In addition to this, the models are examined based on their learning curves of accuracy and loss during both 
training and validation periods as shown in Fig. 12.

The layers of all the models have been iterated for 10 epochs and it can be found that they have obtained 
their best value or score either at the 10th epoch or in between the 8th to 10th epoch for both accuracy and loss. 
Besides this, here also large gaps have been seen in the performance of a few models such as MobileNetV2 and 
ResNet50V2 which directs us toward the overfitting error of the model.

Other than this, the models are also evaluated for another set of parameters i.e. precision, recall, and F1 score 
whose results are shown in Table 10.

It can be assayed from the table that the best performance has been showcased by VGG19, EffcieintNetB3, and 
ResNet152V2 with 0.99, 1.00, and 1.00 as precision, recall, and F1 score respectively followed by InceptionV3, 
ResNet50V2, MobileNetV2, and Xception. The performance of these models indicates that they perform very 
well in the classification task, achieving near-perfect accuracy and completeness. On the contrary, DenseNet169 
has the lowest precision, recall, and F1 score among the listed models, indicating that it may have more false 
positives and false negatives compared to the other models. The models other than the mentioned ones also tried 
their best to perform well for these metrics.

After examining the performance of the models for the classification of various parasites, confusion matrices 
of 10 × 10 have been generated which is a crucial tool for assessing the performance of multi-class classification 
models, as shown in Fig. 13. Based on these matrices, true positive, true negative, false positive, and false nega-
tive values are being taken to examine the performance of models for different classes, as shown in Table 11.

Table 6.  Evaluation of models during training and validation phases using SGD optimizer.

Models

Training records Validation records

Accuracy Loss RMSE Value Accuracy Loss RMSE value

VGG19 99.27 1.12 1.05 99.85 0.99 0.99

Inception V3 99.81 1.24 1.11 99.91 0.98 0.98

EfficientNet B3 99.65 1.16 1.07 99.73 1.02 1.00

ResNet152 V2 99.65 1.09 1.04 99.24 0.98 0.98

ResNet50 V2 99.72 1.15 1.07 99.62 1.02 1.00

MobileNet V2 99.69 1.16 1.07 99.65 1.02 1.00

Xception 99.47 0.96 0.97 99.59 0.86 0.92

DenseNet 169 99.61 1.17 1.08 99.65 1.03 1.01

EfficientNet B0 99.51 1.14 1.06 99.85 1.00 1

Hybrid (InceptionResNetV2) 99.90 0.90 0.94 99.90 1.00 1
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In the case of Babesia_1173, we can observe that InceptionResNetV2 and EfficientNetB0 achieved impres-
sively high training accuracies of 99.76% and 99.56%, respectively. However, Xception experienced a noticeable 
drop in validation accuracy to 54.21%, indicating some level of overfitting from 96.49% accuracy during the 
training phase. EfficientNet B3 showed consistency between training and validation with accuracies of 98.46% 
and 98.59%, respectively, suggesting its stability. In contrast, ResNet50 V2 exhibited lower training accuracy 
(62.63%) but excelled on the validation set with 99.76% accuracy, indicating the potential for generalization 
despite challenges in the training phase. Moving to Leishmania_2701, we observe VGG19 and Inception V3 

Figure 9.  Learning curves of applied models after using SGD optimizer.
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performing well in training with accuracies of 98.59% and 97.56%, respectively. However, Inception V3 and 
Xception struggled to generalize, achieving only 62.29% and 56.21% accuracy respectively on validation. Effi-
cientNet B3 showcased consistency with training and validation accuracies of 98.76% and 90.31%, respectively. 
ResNet50 V2’s training accuracy was lower (62.29%), but its validation performance was strong at 97.26%. 
In the case of RBCs_8995, VGG19, and xception had a noticeable gap between training (97.63%) and valida-
tion (88.59%) accuracy and training (98.73) as well as validation (54.76%) accuracy respectively, suggesting 

Table 7.  Analysis of models for different parameters using SGD optimizer.

Models Precision Recall F1 score

VGG19 0.99 1.00 0.99

Inception V3 0.99 1.00 0.99

EfficientNet B3 0.99 1.00 0.99

ResNet152 V2 0.98 0.99 0.99

ResNet50 V2 0.99 1.00 0.99

MobileNet V2 0.99 1.00 0.99

Xception 0.99 1.00 0.99

DenseNet 169 0.99 1.00 0.99

EfficientNet B0 0.99 1.00 1.00

InceptionResNetV2 0.99 0.99 0.99

Figure 10.  Confusion matrix of applied models of SGD optimizer.
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Classes Models

Training records Validation records

Accuracy Loss RMSE Accuracy Loss RMSE

Babesia_1173

VGG19 95.84 0.59 0.77 95.84 0.59 0.77

Inception V3 94.76 0.57 0.76 94.76 0.57 0.76

EfficientNet B3 92.14 0.46 0.68 98.59 0.08 0.29

ResNet152 V2 91.33 0.49 0.70 93.75 0.45 0.67

ResNet50 V2 96.35 0.46 0.68 98.56 0.08 0.29

MobileNet V2 94.28 0.59 0.76 98.56 0.75 0.87

Xception 99.86 0.49 0.70 97.86 0.85 0.92

DenseNet 169 91.61 0.56 0.75 94.26 0.09 0.30

EfficientNet B0 92.20 0.49 0.70 95.5 0.59 0.77

InceptionResNetV2 96.84 0.26 0.51 98.78 0.57 0.76

Leishmania_2701

VGG19 98.59 0.03 0.18 75.28 1.30 1.14

Inception V3 95.26 0.06 0.25 59.40 2.14 1.46

EfficientNet B3 99.59 0.02 0.16 98.88 0.05 0.22

ResNet152 V2 94.59 0.05 0.23 86.32 0.12 0.35

ResNet50 V2 99.49 0.05 0.23 97.88 0.23 0.48

MobileNet V2 66.16 0.60 0.77 97.6 0.08 0.29

Xception 72.46 0.59 0.77 98.16 0.04 0.20

DenseNet 169 83.49 0.46 0.67 97.46 0.04 0.20

EfficientNet B0 95.25 0.59 0.77 98.59 0.05 0.22

InceptionResNetV2 99.29 0.79 0.89 99.59 0.01 0.11

Leukocyte_400X_915

VGG19 98.59 0.03 0.17 76.28 1.49 1.22

Inception V3 97.26 0.06 0.24 54.40 2.15 1.46

EfficientNet B3 99.46 0.02 0.14 96.88 0.59 0.76

ResNet152 V2 98.49 0.05 0.22 86.32 0.59 0.77

ResNet50 V2 98.59 0.05 0.22 96.88 0.59 0.76

MobileNet V2 67.26 0.60 0.77 96.6 0.49 0.70

Xception 72.79 0.59 0.76 99.16 0.26 0.51

DenseNet 169 83.49 0.46 0.67 94.46 0.56 0.74

EfficientNet B0 95.21 0.59 0.76 96.59 0.59 0.77

InceptionResNetV2 99.29 0.79 0.88 99.59 0.59 0.76

RBCs_8995

VGG19 95.84 0.05 0.24 75.26 1.35 1.16

Inception V3 96.76 0.04 0.21 59.59 2.12 1.45

EfficientNet B3 97.14 0.05 0.24 98.49 0.04 0.21

ResNet152 V2 99.33 0.06 0.25 86.59 0.15 0.39

ResNet50 V2 94.35 0.05 0.24 97.26 0.25 0.50

MobileNet V2 66.56 0.65 0.80 97.66 0.04 0.21

Xception 75.76 0.59 0.76 98.15 0.04 0.22

DenseNet 169 89.58 0.34 0.58 97.59 0.03 0.17

EfficientNet B0 94.14 0.19 0.43 99.26 0.46 0.68

InceptionResNetV2 99.38 0.89 0.94 98.49 0.04 0.22

Toxoplasma_400X_3758

VGG19 98.84 0.03 0.19 95.75 0.95 0.97

Inception V3 97.76 0.06 0.26 94.59 0.34 0.58

EfficientNet B3 99.14 0.02 0.16 99.59 0.22 0.47

ResNet152 V2 98.33 0.05 0.22 93.48 0.25 0.50

ResNet50 V2 98.35 0.05 0.23 98.58 0.24 0.49

MobileNet V2 67.56 0.60 0.77 94.68 0.25 0.50

Xception 72.76 0.55 0.74 95.75 0.94 0.97

DenseNet 169 83.58 0.37 0.60 98.54 0.26 0.50

EfficientNet B0 95.14 0.10 0.31 99.56 0.49 0.70

InceptionResNetV2 99.38 0.01 0.1 95.46 0.55 0.74

Continued
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Classes Models

Training records Validation records

Accuracy Loss RMSE Accuracy Loss RMSE

Trypanosome_2385

VGG19 80.40 0.57 0.75 98.84 0.73 0.85

Inception V3 99.24 0.02 0.15 99.76 0.80 0.89

EfficientNet B3 99.32 0.02 0.16 91.14 0.83 0.91

ResNet152 V2 99.45 0.02 0.14 96.33 0.14 0.37

ResNet50 V2 99.91 0.003 0.05 98.35 0.47 0.68

MobileNet V2 99.59 0.95 0.97 71.56 0.40 0.63

Xception 94.46 0.34 0.58 75.76 0.35 0.59

DenseNet 169 99.59 0.25 0.50 87.58 0.17 0.41

EfficientNet B0 93.76 0.24 0.49 99.14 0.04 0.2

InceptionResNetV2 91.29 0.22 0.47 94.38 0.01 0.1

Leukocyte_1000X_461

VGG19 98.84 0.73 0.85 99.75 0.95 0.97

Inception V3 94.76 0.80 0.89 94.59 0.35 0.59

EfficientNet B3 91.14 0.83 0.91 99.56 0.25 0.50

ResNet152 V2 95.45 0.59 0.77 93.86 0.47 0.69

ResNet50 V2 95.75 0.75 0.86 95.45 0.29 0.54

MobileNet V2 96.91 0.53 0.73 95.85 0.17 0.41

Xception 96.45 0.59 0.76 97.94 0.24 0.49

DenseNet 169 91.35 0.75 0.87 90.45 0.18 0.43

EfficientNet B0 99.75 0.59 0.76 95.56 0.17 0.41

InceptionResNetV2 98.84 0.73 0.85 99.75 0.95 0.97

Plasmodium_843

VGG19 98.84 0.73 0.85 98.84 0.73 0.85

Inception V3 94.76 0.80 0.89 94.76 0.80 0.89

EfficientNet B3 91.14 0.83 0.91 80.61 0.59 0.76

ResNet152 V2 96.33 0.14 0.37 99.73 0.008 0.08

ResNet50 V2 98.35 0.47 0.68 99.52 0.02 0.15

MobileNet V2 98.75 0.86 0.92 99.73 0.008 0.08

Xception 94.95 0.59 0.77 99.95 0.001 0.03

DenseNet 169 97.85 0.75 0.86 80.61 0.59 0.76

EfficientNet B0 96.34 0.58 0.76 98.22 0.59 0.76

InceptionResNetV2 91.49 0.86 0.92 94.46 0.46 0.67

Toxoplasma_1000X_2933

VGG19 86.28 0.59 0.77 99.75 0.95 0.97

Inception V3 98.40 0.57 0.75 94.59 0.35 0.59

EfficientNet B3 97.88 0.56 0.74 99.56 0.25 0.50

ResNet152 V2 91.32 0.46 0.68 93.48 0.25 0.50

ResNet50 V2 90.88 0.48 0.69 99.58 0.20 0.44

MobileNet V2 90.86 0.86 0.93 99.68 0.23 0.48

Xception 98.84 0.73 0.85 91.75 0.95 0.97

DenseNet 169 94.76 0.80 0.89 98.54 0.29 0.53

EfficientNet B0 91.14 0.83 0.91 94.59 0.46 0.67

InceptionResNetV2 96.33 0.14 0.37 91.46 0.59 0.76

Trichomonad_10134

VGG19 99.78 0.10 0.31 98.97 0.12 0.35

Inception V3 85.62 505.75 22.48 98.49 0.10 0.31

EfficientNet B3 94.84 7.25 2.69 98.89 0.84 0.92

ResNet152 V2 99.50 0.09 0.30 78.27 975.80 31.2

ResNet50 V2 95.13 13.96 3.73 93.88 10.18 3.19

MobileNet V2 98.97 0.12 0.35 99.97 0.26 0.51

Xception 99.49 0.10 0.31 92.01 23.63 4.86

DenseNet 169 93.38 39.62 6.29 97.31 0.52 0.72

EfficientNet B0 97.31 0.52 0.72 99.01 0.22 0.47

InceptionResNetV2 99.01 0.22 0.47 94.53 36.62 6.05

Table 8.  Evaluation of models during training and validation phases for different classes of SGD optimizer.
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Figure 11.  Examining the performance of models for different classes using SGD.
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overfitting. In contrast, Inception V3 exhibited strong performance with 97.45% training and 98.22% validation 
accuracy. EfficientNet B3 and DesneNet169 faced challenges with 94.05% and 97.63% training and 91.49% and 
88.59% validation accuracy respectively. ResNet152 V2 showcased robustness with 99.36% training and 95.46% 
validation accuracy, while ResNet50 V2 demonstrated consistent performance with 94.38% training and 98.19% 
validation accuracy. Lastly, for Toxoplasma_400X_3758, InceptionresNetV2 achieved a high training accuracy 
of 99.67% and VGG19 as well as EfficientNetB0 obtained a lower validation accuracy of 91.31%. EfficientNet 
B3 exhibited consistency with training (98.45%) and validation (98.23%) accuracy. ResNet152 V2 excelled with 
99.05% training and 96.36% validation accuracy, while Xception faced challenges with 64.63% accuracy and 
149.33 loss training but performed well on the validation dataset with 98.59% accuracy. Similarly, ResNet50V2 
performed well for the training dataset with 99.36% accuracy and showed the lowest performance at the valida-
tion phase with 54.21% and 343 loss.

In the same way, the performance of models for the other set of classes is also being examined and the results 
are mentioned in the aforementioned table. Besides this, the performance of the models has been also examined 
graphically for precision, recall, and F1 score on being trained with a different class of dataset as shown in Fig. 14.

Computational time
While training the deep learning with the dataset, the computational time varies with various factors as well as 
the choice of optimizers which plays an important role in this regard. In Table 12, training times of the applied 
models with different optimizers i.e. RMSprop, SGD, and Adam have shown some interesting behaviours.

It has been found that on incorporating the RMSprop optimizer, the Xception model did the training of the 
dataset within 2 h 50 min while the maximum time was taken by InceptionResNetV2 with 16 h 20 min. Like-
wise, on using SGD optimizer to fine-tune the parameter of deep learning models, the minimum time to train 
the dataset was taken by ResNet152V2 with 1 h and the maximum was taken by ResNet50V2 with 14 h 15 min. 
In the end, fine-tuning the parameters of deep learning with ADAM optimizer, the model which computed the 
least time is VGG19 with 4 h 5 min and the max was taken by DenseNet169 15 h 49 min.

RMSprop and SGD appear to be the fastest optimizer for most of the models, with shorter training times 
compared to Adam. This suggests that RMSprop and SGD are efficient at converging to good model weights 
quickly. However, it’s essential to consider that the performance of the optimizer may vary depending on the 
specific problem, dataset, and hyperparameters. On the other hand, Adam, a popular optimizer known for its 
adaptive learning rates, often falls between RMSprop and SGD in terms of training times.

Conclusion
This study represents a significant advancement in the field of parasitic disease detection and classification. 
Harnessing the capabilities of deep learning models, coupled with meticulous image processing techniques, 
this research has demonstrated exceptional accuracy and efficiency in identifying and categorizing various 
parasitic organisms. The integration of deep learning models, including VGG19, InceptionV3, EfficientNetB3, 
Xception, MobileNetV2, ResNet50V2, ResNet152V2, DenseNet169, EfficientNetB0, and InceptionResNetV2, 
along with strategic optimization using RMSprop, SGD, and Adam, has yielded remarkable results. Incorporat-
ing these optimizers significantly enhanced the performance of the models, with InceptionResNetV2 achieving 
the highest accuracy.

Furthermore, the applied models were evaluated based on precision, recall, and F1 score, consistently achiev-
ing values around 0.99. This research not only demonstrates the effectiveness of artificial intelligence in parasi-
tology but also underscores the importance of interdisciplinary approaches in scientific research. Despite these 
achievements, certain challenges were encountered, such as overfitting due to large iteration gaps and extended 
computational time required for training with the dataset. Addressing these challenges in future research is 
crucial, and diversifying the training dataset with a broader range of parasitic organisms is recommended to 
enhance the model’s robustness and applicability in real-world scenarios.

Table 9.  Evaluation of models during training and validation phases using Adam optimizer.

Models

Training records Validation records

Accuracy Loss RMSE Value Accuracy Loss rmse value

VGG19 99.92 0.16 0.4 99.85 0.14 0.37

Inception V3 99.85 0.18 0.42 99.94 0.16 0.4

EfficientNet B3 99.98 0.17 0.41 99.91 0.15 0.38

ResNet152 V2 99.79 0.20 0.44 99.59 0.18 0.42

ResNet50 V2 99.45 0.23 0.47 99.35 0.22 0.46

MobileNet V2 99.73 0.24 0.48 99.85 0.21 0.45

Xception 98.60 0.27 0.51 99.25 0.26 0.51

DenseNet 169 99.80 0.19 0.43 99.79 0.16 0.4

EfficientNet B0 99.87 0.16 0.4 99.88 0.14 0.37

Hybrid (InceptionResNetV2) 99.99 0.12 0.34 99.96 0.13 0.36
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Figure 12.  Learning curves of applied models using Adam optimizer.
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Table 10.  Analysis of models for different parameters using Adam optimizer.

Models Precision Recall F1 score

VGG19 0.99 1.00 1.00

Inception V3 0.99 1.00 0.99

EfficientNet B3 0.99 1.00 1.00

ResNet152 V2 0.99 1.00 1.00

ResNet50 V2 0.99 1.00 0.99

MobileNet V2 0.99 1.00 0.99

Xception 0.99 1.00 0.99

DenseNet 169 0.97 0.98 0.97

EfficientNet B0 0.99 0.99 0.99

InceptionResNetV2 0.98 0.99 0.98

Figure 13.  Confusion matrix of applied models uaing Adam optimizer.
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Classes Models

Training Records Validation Records

Accuracy Loss RMSE Accuracy Loss RMSE

Babesia_1173

VGG19 98.40 0.39 0.62 94.59 3.50 1.87

Inception V3 99.29 0.28 0.52 96.49 0.89 0.94

EfficientNet B3 98.46 0.02 0.14 98.59 0.35 0.59

ResNet152 V2 97.31 0.34 0.59 99.56 0.24 0.49

ResNet50 V2 62.63 159.46 12.6 99.76 0.04 0.22

MobileNet V2 94.59 3.50 1.87 98.49 0.37 0.61

Xception 96.49 0.89 0.94 54.21 343.04 18.5

DenseNet 169 99.00 0.15 0.39 88.67 2.36 1.53

EfficientNet B0 99.56 0.24 0.49 98.59 0.49 0.7

InceptionResNetV2 99.76 0.04 0.22 96.36 2.89 1.7

Leishmania_2701

VGG19 98.59 0.35 0.59 96.49 0.34 0.58

Inception V3 97.56 0.24 0.49 62.29 149.59 12.2

EfficientNet B3 98.76 0.05 0.24 90.31 3.90 1.97

ResNet152 V2 96.49 0.34 0.58 94.49 2.79 1.67

ResNet50 V2 62.29 149.59 12.2 97.26 0.35 0.59

MobileNet V2 94.46 3.04 1.74 98.59 4.022 2.00

Xception 98.76 0.84 0.92 56.21 043.04 6.56

DenseNet 169 99.49 0.14 0.38 87.67 2.59 1.60

EfficientNet B0 87.67 2.59 1.60 96.59 0.86 0.92

InceptionResNetV2 96.59 0.86 0.92 98.36 2.59 1.60

Leukocyte_400X_915

VGG19 95.46 3.04 1.74 94.49 3.00 1.73

Inception V3 99.76 0.85 0.92 96.55 0.89 0.94

EfficientNet B3 98.59 0.35 0.59 98.52 0.34 0.59

ResNet152 V2 99.56 0.24 0.49 99.29 0.76 0.87

ResNet50 V2 99.76 0.04 0.22 98.76 0.49 0.70

MobileNet V2 98.49 0.37 0.61 97.19 0.35 0.59

Xception 64.29 149.35 12.2 62.46 159.40 12.6

DenseNet 169 95.46 3.04 1.74 94.49 3.00 1.73

EfficientNet B0 99.76 0.85 0.92 96.55 0.89 0.94

InceptionResNetV2 99.49 0.17 0.41 99.29 0.11 0.33

RBCs_8995

VGG19 97.63 0.87 0.93 88.59 2.29 1.51

Inception V3 97.45 0.34 0.59 98.22 0.48 0.69

EfficientNet B3 94.05 0.27 0.52 91.49 4.94 2.22

ResNet152 V2 99.36 0.04 0.21 95.46 1.77 1.33

ResNet50 V2 94.38 0.31 0.56 98.19 0.31 0.56

MobileNet V2 66.63 149.73 12.2 96.46 1.00 1

Xception 98.63 3.04 1.74 54.76 300.94 17.3

DenseNet 169 97.63 0.87 0.93 88.59 2.29 1.51

EfficientNet B0 96.67 0.12 0.35 98.22 0.48 0.69

InceptionResNetV2 98.63 3.04 1.74 96.76 2.84 1.68

Toxoplasma_400X_3758

VGG19 98.59 0.49 0.7 91.31 4.90 2.21

Inception V3 96.36 2.89 1.7 95.82 1.79 1.33

EfficientNet B3 98.45 0.39 0.62 98.23 0.35 0.59

ResNet152 V2 99.05 0.28 0.52 96.36 1.02 1.01

ResNet50 V2 99.36 0.08 0.29 54.21 343.04 18.5

MobileNet V2 98.38 0.31 0.56 88.67 2.36 1.53

Xception 64.63 149.33 12.2 98.59 0.49 0.7

DenseNet 169 95.63 3.09 1.75 96.36 2.89 1.7

EfficientNet B0 99.63 0.89 0.94 91.31 4.90 2.21

InceptionResNetV2 99.67 0.13 0.37 95.82 1.79 1.33

Continued
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Classes Models

Training Records Validation Records

Accuracy Loss RMSE Accuracy Loss RMSE

Trypanosome_2385

VGG19 99.49 0.15 0.39 98.89 0.84 0.92

Inception V3 85.56 500.45 22.3 78.27 975.80 31.2

EfficientNet B3 94.29 6.24 2.49 93.88 10.18 3.19

ResNet152 V2 99.76 0.04 0.21 98.97 0.26 0.51

ResNet50 V2 95.00 11.79 3.43 92.01 23.63 4.86

MobileNet V2 98.49 1.12 1.06 97.31 0.52 0.72

Xception 99.49 1.10 1.04 99.01 0.22 0.47

DenseNet 169 93.59 35.62 5.96 94.53 36.62 6.05

EfficientNet B0 99.49 0.15 0.39 98.89 0.84 0.92

InceptionResNetV2 85.56 500.45 22.30 78.27 975.80 31.2

Leukocyte_1000X_461

VGG19 99.49 0.15 0.39 98.73 0.49 0.70

Inception V3 85.56 505.46 22.42 94.59 12.79 3.57

EfficientNet B3 94.29 7.27 2.69 98.49 0.86 0.92

ResNet152 V2 99.76 0.05 0.23 84.49 500.49 22.3

ResNet50 V2 95.00 13.76 3.71 93.52 6.67 2.58

MobileNet V2 98.49 0.15 0.39 98.73 0.49 0.70

Xception 99.49 0.50 0.70 94.59 12.79 3.57

DenseNet 169 93.59 39.00 6.24 97.46 0.34 0.58

EfficientNet B0 98.49 0.15 0.39 98.90 0.20 0.44

InceptionResNetV2 99.49 0.50 0.70 92.34 38.66 6.21

Plasmodium_843

VGG19 99.78 0.11 0.33 99.49 0.20 0.44

Inception V3 85.62 500.75 22.3 99.46 0.15 0.39

EfficientNet B3 94.84 6.25 2.50 85.76 505.46 22.4

ResNet152 V2 99.50 0.19 0.44 94.00 7.27 2.69

ResNet50 V2 95.13 12.96 3.60 99.49 0.05 0.23

MobileNet V2 98.97 0.22 0.47 95.76 13.76 3.71

Xception 99.49 0.20 0.44 98.59 0.15 0.39

DenseNet 169 93.38 38.62 6.21 99.76 0.50 0.70

EfficientNet B0 99.78 0.11 0.33 93.59 39.00 6.24

InceptionResNetV2 99.76 0.50 0.70 99.46 0.15 0.39

Toxoplasma_1000X_2933

VGG19 95.89 0.84 0.92 92.31 0.52 0.72

Inception V3 75.49 975.80 31.2 95.01 0.22 0.47

EfficientNet B3 90.76 10.18 3.19 99.49 0.15 0.39

ResNet152 V2 96.59 0.26 0.51 85.46 505.49 22.4

ResNet50 V2 90.46 23.63 4.86 94.28 7.27 2.69

MobileNet V2 92.31 0.52 0.72 99.55 0.05 0.23

Xception 95.01 0.22 0.47 95.76 13.49 3.67

DenseNet 169 90.53 36.62 6.05 98.26 0.17 0.42

EfficientNet B0 95.01 0.22 0.47 99.76 0.15 0.39

InceptionResNetV2 99.49 0.15 0.39 93.00 39.46 6.28

Trichomonad_10134

VGG19 98.49 0.86 0.92 90.76 10.14 3.18

Inception V3 84.49 500.49 22.3 96.59 0.25 0.50

EfficientNet B3 93.52 6.67 2.58 95.89 0.84 0.92

ResNet152 V2 98.73 0.49 0.70 75.49 975.49 31.2

ResNet50 V2 94.59 12.79 3.57 90.76 10.14 3.18

MobileNet V2 97.46 0.34 0.58 96.59 0.25 0.50

Xception 98.90 0.20 0.44 90.46 23.46 4.84

DenseNet 169 92.34 38.66 6.21 92.31 0.55 0.74

EfficientNet B0 97.46 0.34 0.58 95.01 0.22 0.47

InceptionResNetV2 98.90 0.20 0.44 90.53 36.62 6.05

Table 11.  Evaluation of models during training and validation phases for different classes using Adam 
optimizer.
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Figure 14.  Performance of the models for different classes using Adam optimizer.
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Data availability
The dataset used in the study is publically available at the below link: https:// data. mende ley. com/ datas ets/ 38jtn 
4nzs6/2.
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