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PARSEG: a computationally 
efficient approach for statistical 
validation of botanical seeds’ 
images
Luca Frigau 1*, Claudio Conversano 1 & Jaromír Antoch 2,3

Human recognition and automated image validation are the most widely used approaches to validate 
the output of binary segmentation methods but, as the number of pixels in an image easily exceeds 
several million, they become highly demanding from both practical and computational standpoint. We 
propose a method, called PARSEG, which stands for PArtitioning, Random Selection, Estimation, and 
Generalization; being the basic steps within this procedure. Suggested method enables us to perform 
statistical validation of binary images by selecting the minimum number of pixels from the original 
image to be used for validation without deteriorating the effectiveness of the validation procedure. 
It utilizes binary classifiers to accomplish image validation and selects the optimal sample of pixels 
according to a specific objective function. As a result, the computational complexity of the validation 
experiment is substantially reduced. The procedure’s effectiveness is illustrated by considering images 
composed of approximately 13 million pixels from the field of seed recognition. PARSEG provides 
roughly the same precision of the validation process when extended to the entire image, but it utilizes 
only about 4% of the original number of pixels, thus reducing, by about 90%, the computing time 
required to validate a binary segmented image.

Keywords  Statistical image validation, Image segmentation, Background subtraction, Big data, 
Classification, CART​, STAPLE, Bootstrap

Images of biological objects, botanic seeds in our case, contain enormous amounts of information, which can 
be extracted and used as input for the subsequent analyses. To extract a piece of information from an image, 
it is necessary to preprocess it using the tools of image analysis1. The preprocessing consists of several phases, 
among which image segmentation is one of the most important as it involves splitting an image into the parts 
that are strongly associated with real objects of interest2,3. Process of image segmentation constitutes a never 
ending challenge. Unfortunately, any segmentation methods suffers some drawbacks, typically connected to 
limited accuracy, excessive complexity and exaggerated time and space requirements. One possible solution, in 
many situations considered as a golden standard, is the use of human raters. However, it is usually quite costly 
because it is not easy to train them and, what is worse, to maintain their high uniform level during the long time 
horizon. Moreover, we can meet both intra- and extra- variability due to their fatigue, especially when dealing 
with extensive data sets.

A specific case is binary image segmentation, where the image is divided into two parts, called foreground 
and background, which correspond to the parts we are and are not interested in. Despite the great progress in this 
field, binary segmentation is still one of the most challenging tasks in image processing, image understanding, 
artificial intelligence4 and big data5–7.

As segmentation algorithms may lack accuracy and precision, as well as ground truth is frequently missing, 
assessing their performance is a difficult task. This assessment is of key importance, especially when its output 
is later analyzed statistically, because the results of statistical analyses are, to a considerable degree, influenced 
by the quality of the input data. The method, or set of methods, to be used to compare segmentation approaches 
has not yet been clearly defined; several methods are used in practice. The most common method to assess 
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the quality of image segmentation is the interactive drawing of the image by experts. However, it cannot be 
considered reliable because, besides intra- and inter-expert variability, it is labour-intensive, subjective, and 
often suffers from inconsistencies and errors. Alternatively, computer-aided automatic methods can serve this 
purpose: although they should remove the variability of assessments, they are not always able to provide reliable 
results. The common problem in characterizing both human experts and automatic methods is that the true 
segmentation of the image is unknown, particularly in the case of medical images, in which the true segmented 
image might vary from case to case since the same pathology can appear from different forms or shapes.

One feasible alternative to human recognition is statistical validation of the performance of image 
segmentation algorithms. In statistics, validation is the task of confirming that the outputs of a statistical model 
are acceptable with respect to the real data-generating process. In image analysis, statistical validation is a 
process aimed at confirming that the output of an image segmentation method is accurate. If statistical validation 
provides reliable results, it is very likely that the considered image segmentation method is, with maximum 
reliability, able to reproduce the main features of the analyzed image. To account for the above-mentioned 
drawbacks derived from human recognition, an automatic and effective procedure has been proposed in8. It aims 
at the statistical validation of the outcomes provided by the binary segmentation of images based on statistical 
classification algorithms. Such a validation procedure is typically performed on very large data sets, inasmuch 
as the number of pixels in an image easily exceeds millions. The computational complexity of the validation 
experiment of segmented images is thus very high. To reduce this complexity, we present here a method called 
PARSEG, which comprises the following data-processing steps: PArtitioning, Random Selection, Estimation, and 
Generalization. PARSEG enables us to perform statistical validation of binary images by selecting the minimum 
number of pixels from the original image to be used for validation without deteriorating the effectiveness of 
the validation procedure. PARSEG overcomes the computational complexity of statistical image validation. 
The basic motivation supporting the use of PARSEG is derived from our empirical experiments: the results of 
statistical validation of binary segmentation methods, obtained by training a classifier on all pixels of the analyzed 
image, are consistent with those obtained using much smaller randomly selected samples of pixels of a specific 
size. This equivalence leads to a considerable decrease in the computational complexity of validation for binary 
segmentation of images comprising millions of pixels when using PARSEG.

 The selection of the optimal sample of pixels is derived from a properly selected objective function, which 
must be minimized to reduce the computational complexity of the validation procedure (see Section “Objective 
function” for details). Operationally, PARSEG is based on a sampling scheme that allows us to select a reduced 
number of pixels and, at the same time, preserves a sufficient scope of information needed for the subsequent 
image validation (see Section “Data partitioning and random subset selection” for details). Firstly, the entire 
image is partitioned into subsets of pixels of approximately equal size. Secondly, the minimum sample size 
of pixels to be extracted at random from a single subset is identified. This optimal reduced size should, as 
much as coherence, preserve the same amount of information as the original (complete) data used in the image 
validation process. The optimal size is selected via the study of the (functional) relationship comprising variations 
of possible sample sizes and the predictive performance of an appropriate classifier, selected by the user (see 
Section “Consistency measure” for details). Next, during the generalization step, validation based on statistical 
classifiers is performed independently on the remaining subsets using solely a sample of pixels with the previously 
identified optimal size. Finally, the results obtained from all subsets are combined to assess the validation’s effect 
on the entire image (see Section “Selection of the optimal sample size” for details).

The effectiveness of PARSEG is demonstrated through examples from the biology of plants, namely, the 
classification of seeds from the genome bank. Recall that, in the two most recent decades, many specialists in 
the botanical taxonomy field testified to the growing importance of the biometric features obtained by computer 
vision techniques employed in the characterization and identification of plant species9–11, varieties12,13, or 
identification of ancient plants14,15. Within this framework, the main initial point of interest is to correctly 
separate the pixels into a foreground and a background. Since there is no single method that can be recommended 
as the preferable one for all types of images, it is necessary to compare different binary segmentation procedures, 
enabling one to select “the most suitable one”16. This uncertainty is considered in our experiments as the different 
segmentation methods are ranked w.r.t. their performance from the most to the least accurate (see Section 
“Giallo Bosa example”).

The paper is organized as follows. Binary thresholding and its statistical validation are concisely discussed 
in Section “Binary thresholding and assessing its quality via statistical validation”. PARSEG, its main features, 
objective function, and key procedures are explained in Section “PARSEG”. Section “Comparison between 
PARSEG and STAPLE” illustrates a comparison between PARSEG and the Simultaneous Truth and Performance 
Level Estimation algorithm (STAPLE), a similar approach presented in literature. Section  “Validating 
binary segmented seed images” illustrates the results of our approach applied to the analysis of real data 
(binary-segmented seed images), together with the discussion of the corresponding pros and cons. Finally, 
Section “Concluding remarks” provides the main conclusions of the paper and Section 7 plans for future work.

Binary thresholding and assessing its quality via statistical validation
In mathematics, an image can be modeled by a continuous function of two variables f(x, y), where (x, y) are 
the coordinates in the plane (usually pixel indices). If the image is in grayscale, then f (x, y) → [0, 1] is a scalar 
function, and it has three or four dimensions if the image is in a color mode. Depending on the combinations of 
the primary colors used, it is possible to decide between different color spaces, among which the most common 
are RGB and CMYK. In this paper, we deal with RGB images. Consequently, f : (x, y) → (Rx,y ,Gx,y ,Bx,y) , where 
(Rx,y ,Gx,y ,Bx,y) ∈ [0, 1]3 , and Rx,y ,Gx,y and Bx,y represent intensities of the red, green and blue color channels 
for a given pixel (x, y), respectively.
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The statistical validation method we propose here can be applied to any image segmentation method. 
However, for simplicity of our exposition, we focus on one of the most commonly used: grey level thresholding 
(see17 for an adaptive approach).

Recall that thresholding can be interpreted as a transformation of an image f into a binary image o, where

T(x, y) is the threshold value for pixel (x, y), o(x, y) = 1 stands for the foreground pixel, and o(x, y) = 0 for the 
background one1. The main critical task of this method is the selection of a correct threshold, which is essential 
for a successful segmentation and subsequent analysis. To this purpose, it is possible to use global or local infor-
mation and, consequently, to decide between global and local thresholding. Global thresholding consists of finding 
a single threshold T for the entire image, i.e., T(x, y) = T ∀x, y ; whereas, local thresholding utilizes a threshold 
value T(x, y) for each pixel separately based on the information about its neighbors.

Our approach to the validation of the output produced by any binary image segmentation method is based 
on statistical modeling; hence the term statistical validation is used 18. Some approaches to validation (like19) are 
aimed at defining membership functions based on image descriptors in an alternative to the classical histogram-
based image descriptors. Likewise, statistical validation is carried out using a classification experiment whose 
results are evaluated through a coherence index enabling us to check for the quality of the binary segmentation 
outcome8.

The main features of a statistical validation experiment in the case of grey-level thresholding segmentation 
(these features characterize any image segmentation method) are: 

1.	 The labels assigned by a specific binary image segmentation method, either foreground or background, are 
used as binary response variables for a statistical classifier. This means that pixels are re-classified into one 
of the two categories on the basis of the corresponding RGB intensities to derive the “validated labels”.

2.	 As for the assessment of the classifier’s performance, it is possible to use a metric that compares pixel-wise 
observed labels with the predicted ones. This metric might be, in a specific case, that of accuracy, sensitivity, 
specificity, positive predictive value, or Area Under the ROC Curve (see20,21 for a discussion).

3.	 The selected metric is then used to evaluate the quality of the validation experiment by ranking the alternative 
image segmentation algorithms. The higher the accuracy level of the classifier, or the higher the correspond-
ence between labels obtained from the image segmentation algorithm and label predicted by the classifier, the 
higher the image segmentation algorithm is ranked. If this is the case, the validation experiment produces 
satisfactory results and the image segmentation method is considered reliable for the assignment of the 
“validated” label (background or foreground) to each pixel.

PARSEG
We provide a step-by-step description of PARSEG illustrating every single step and the main issues character-
izing the resulting validation experiment.

Objective function
We denote by rs a sample of pixels of size s randomly drawn from the entire image, and by S =

{
s1, s2, . . . , stot

}
 

a pre-specified set of sample sizes ( si ∈ N such that si < sj if i < j ) with stot indicating the total number of pixels 
in a given image. Let ψs be the index measuring the difference in terms of consistency (i.e., numerical coherence, 
to be explained in detail in Section “Consistency measure”) between the validation results obtained on rs and on 
rtot ; ψs decreases when s increases, and

is the function describing the relationship between s and ψs ; from an empirical study based on our data it emerged 
that h tends to be monotonically decreasing since ψs monotonically decreases on average when s increases.

The search of the “optimal” minimum sample size, say s∗ , is aimed at compensating for the relative increase 
in complexity observed when moving from si to si+1 with the relative decrease in the difference 

∣∣ψsi+1 − ψsi

∣∣ . 
Thus, s∗ is defined as

where h′ denotes a derivative of h. In practice, given a set of samples 
{
rsi
}
i
 , the optimal point 

(
s∗,ψs∗

)
 corresponds 

to that point for which h′ ≈ −1.

Data partitioning and random subset selection
To combine the original RGB image f with the corresponding binary image o: 

1.	 the N pixels of f are organized into a set x = {x1, . . . , xN } : each xi contains the three values representing RGB 
color channel intensities of the pixel i;

2.	 identical pixels of o are arranged in y =
(
y1, . . . , yN

)
;

3.	 x and y are joined to create a new set D =
{(

x1, y1
)
, . . . , (xN , yN )

}
.

(1)o(x, y) =

{
0, f (x, y) < T(x, y),
1, f (x, y) ≥ T(x, y),

h : s → ψs , ∀s ∈ S ,

(2)s∗ = argmin
s∈S

∣∣ h′(s)+ 1
∣∣,
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D is a collection of N pairs containing the information about both the original pixels of f (the input) and o (the 
output). Next, D is partitioned into M mutually disjoint subsets D1, . . . ,DM ( 

⋃M
j=1 Dj = D ) using a random 

sample stratified by y . Consequently, the M subsets (of cardinality n ≈ N/M ) are characterized by a similar 
distribution of the categories of y and an unknown function that maps x to y.

Validation
To validate a binary segmentation method, one subset Dj ∈ {D1, . . . ,DM} is randomly selected and next vali-
dated. To reduce computational complexity, a subsample rjs of size s, s ∈ S , is drawn from Dj , and the pixels in 
rjs are randomly partitioned into a learning set tjs of cardinality |tjs| and a validation set |vjs| of cardinality vjs , such 
that rjs = tjs ∪ vjs , tjs ∩ vjs = ∅ , and π = |tjs|/|vjs| is the ratio between the two cardinalities.

Next, the yvjs pixels of the validation set vjs are validated by computing predicted outcome ŷvjs = C (tjs, vjs|κ) 
using an appropriate classifier κ . The function C utilizes the observations of the learning set tjs to train κ and 
estimates ŷvjs for the observations in the validation set vjs . In our experiments, although it is possible to consider 
any alternative metric, sensitivity (sometimes also called the true positive rate, recall, or probability of detection) 
is used as the reference classifier performance metric since it has been empirically confirmed as a reliable metric 
in statistical validation experiments. It is defined as

φjs is computed for each possible sample size s ∈ S of the randomly selected subset Dj . Moreover, to take into 
account model instability, the influence of outliers, and possible variable selection bias, the function C (·) in 
PARSEG is estimated B times for each size s ∈ S , each time with a different random partition of rjs(b) into tjs(b) 
and vjs(b) . In view of that, for a sample rjs drawn from the partition Dj , the performance of C (·) is evaluated in 
terms of the average sensitivity

Consistency measure
The basic idea supporting PARSEG is the selection of the “optimal” size s∗ as the smallest size s ∈ S that ensures 
for φ̄js to be consistent with φ̄jn (where n is the total number of elements of Dj ). To measure the difference in 
terms of consistency between φ̄js and φ̄jn , we consider the index

where

represent, respectively, the standard deviations of the values φjs(b) and φjn(b) , b = 1, . . . ,B . Eq. (5) is made up 
of two terms: |φ̄js − φ̄jn| evaluates how much the sensitivity obtained for rjs differs from that obtained for Dj , 
which is the highest one. The second term, |σφjs − σφjn | , weighs the first term with respect to the higher estima-
tion uncertainty derived from the use of a sub-sample rjs in place of the entire set of observations Dj . For any 
φ̄js > 0.5 , an increase in the sample size s is likely to cause the classifier C to be more accurate; it means that it 
will decrease the value of ψjs.

Selection of the optimal sample size
The search for s∗j  through objective function (Eq. 2) should be carried out after estimating ψ̂js for each reduced 
sample rjs , s ∈ S . To further reduce computational complexity, we consider the efficient approach summarized 
in Algorithm 1. It requires two user-defined input parameters, l and γ . The first is the minimum number of 
sample sizes in which to search for the optimal one in the first iteration, that is, (l + 1) . In iteration i, the optimal 
sample size s∗j  is searched for in a subset of possible sample sizes ξi = {s1, s2, . . . , sl , s(l+i), n} composed of the 
first (l + i) elements of S plus the maximum size (n); it stops when the same (optimal) sample size is found for 
γ consecutive iterations.

Next, the index ψjs is computed for each sample size belonging to ξi and the function h describing the relation-
ship between the standardized values of the sample sizes, i.e., δ(ξi) , and the standardized values of the ψjs index, 
i.e., δ(�i) , is fitted. The optimal sample size is found by applying the objective function (Eq. 2). If the number of 
times α in which the last optimal sample size is equal to the optimal sample sizes found in the previous γ itera-
tions, the algorithm stops, otherwise it keeps running.

(3)φjs =
(ŷvjs)

⊤ŷvjs

(yvjs)
⊤yvjs

;

(4)φ̄js = B−1
∑B

b=1
φjs(b).

(5)ψjs = |φ̄js − φ̄jn| · |σφjs − σφjn |,

(6)
σφjs =

√
1

B−1

∑B

j=1

(
φjs(b) − φ̄js

)2
,

σφjn =

√
1

B−1

∑B

j=1

(
φjn(b) − φ̄jn

)2
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Algorithm 1.   Selection of the optimal sample size

Once s∗j  is defined for a given subset Dj , it can be used as the reference sample size for the other M − 1 subsets 
because, due to the stratified sampling scheme described in Section “Data partitioning and random subset selec-
tion”, the response classes and the RGB intensities have the same distribution as that prevailing in the entire 
image. In particular, the same distribution of the response classes in the M subsets is guaranteed because the 
subsets are created by randomly partitioning all pixels with the constraint of having the same proportions of 
foreground pixels (and consequently also of background ones) as in the entire image. The same distribution of 
RGB intensities in the M subsets, instead, is deduced from the randomness that regulates the process of assigning 
the pixels to each subset inasmuch we assume that the pattern describing the relationship between the response 
classes and the RGB intensities is identical everywhere in the image. Consequently, M − 1 samples rms∗j

 
( m = 1, . . . ,M, m �= j ) are drawn from the subsets D1, . . . ,DM and the metric φjs (Eq. 3) is computed in each 
subset Dj . Next, φjs is extended for the entire image D by averaging its values over the M subsets

In the next Section, we apply PARSEG to the images of botanic seeds. PARSEG provides roughly the same preci-
sion of the validation process extended to the entire image composed of N pixels but, importantly, it consistently 
reduces the computational complexity from O(N) to O(M · s∗j ) with M · s∗j ≪ N.

It is important to note that the segmentation method to be evaluated has to be carried out at the beginning 
of the process only. At each step, PARSEG uses solely pixels from the set D , which contains the pixel intensities 
and their corresponding binary outputs defined by the underlying segmentation method.

Comparison between PARSEG and STAPLE
Despite of PARSEG is more concentrated on the computational part of the statistical validation of images with 
the aim of selecting the best segmentation between those considered, its final goal is to provide a segmentation to 
be used as the best one. Consequently, in this Section we provide a comparison between the output obtained by 
PARSEG and that obtained by another method accepted in literature22–25. As evident from the citation report in 
both Web of Science and Google Scholar, the STAPLE algorithm22 is a widely accepted method for the statistical 
validation of image segmentation due to its sound theory and ease of use. STAPLE quantifies the performance 
of image segmentation raters (human or algorithmic) without knowing the true foreground, and is considered 
particularly useful in cases in which it is difficult to obtain or estimate a known true segmentation. It consid-
ers a set of segmentation outputs of an image, and estimates, for each of them, the probability of being the true 
segmentation. The latter is estimated to create an optimal combination of the segmentation options by weighing 
them according to their estimated performance level and by incorporating a prior model that considers the spatial 
distribution of the segmented structures and the spatial homogeneity constraints.

Both STAPLE and PARSEG pursue the goal of finding the best segmentation without knowing the true one: 
the former by generating a new segmentation from the optimal combination of the original ones, the latter by 
finding the best segmentation among those available. Furthermore, both methods define a relative performance 
measure of the original segmentation options according to their proximity to the best one. But, they operate in a 
different manner: STAPLE identifies the best segmentation by comparing the original segmentation options and 
the prior information available (if any); PARSEG searches for the patterns that link the original images (i.e., the 
color channel intensities) to the segmentation options, without referring its analysis to any comparison. Conse-
quently, STAPLE performance could suffer if the segmentation set contains many wrong segmentation outputs 
and few correct ones. Instead, since PARSEG is not based on a comparison among the segmentation outputs, its 
performance is not influenced by the presence of a wrong segmentation. However, if the initial segmentations are 
wrong, neither PARSEG nor STAPLE can improve as is well known not only in statistics, but also in computing 
and other fields. Incorrect or poor-quality input will produce faulty output (garbage-in, garbage-out).

Concerning the computational requirements, we have assessed that both are linear in the number of segmen-
tation outputs to be evaluated. Moreover, PARSEG is linear in the optimal size times the number of partitions, 
that is, M · s∗j  , whereas STAPLE is linear in the number of pixels N. Being M · s∗j ≪ N  , PARSEG allows for 
important computational savings.

(7)φ̄D = M−1
∑M

m=1
φ̄ms∗j

.
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Validating binary segmented seed images
We present detailed results obtained by applying PARSEG on the images of the seeds of species Giallo Bosa and 
summarize more concisely the results obtained for a set of sixteen different images of different seed species, 
including Giallo Bosa. We used data collected in previous studies10,26. The seeds were gathered by the authors 
of these studies10,26 from 16 traditional Sardinian cultivars from the CNR-ISPA field catalogue (Nuraxinieddu, 
Sardinia, Italy) (Table 1) and stored at the Banca del Germoplasma Sardo (BG-SAR) of the University of Cagliari. 
The mature fruits were collected randomly in order to obtain representative samples while reducing the impact 
of intra-specific variations in seed shapes and sizes caused by fruit position on the plant and seed position within 
the fruit.

This data was collected with the goal to develop a suitable methodology allowing us to discriminate between 
seeds as well as possible. This is an important task from a quality control standpoint: one of the most important 
ways to enhance food quality is to guarantee the origin of different food products by traceability, which is able 
to identify responsibilities, optimize the supply chain, and ensure consumer food safety. Simply relying on docu-
mentation does not guarantee the truthfulness of the product’s origin. Thus, it is essential to develop instruments 
that give us a higher degree of reliability. Since seeds are among the most important raw materials in the agri-food 
market, discrimination among them is crucial to understand their origins.

Giallo Bosa example
The RGB images of the seeds Giallo Bosa are captured twice using a black background and a white background, 
in both cases without changing the position of the seeds, with a resolution of 4 251× 2 994 ( N = 12 727 494 ) 
pixels. Next, the background subtraction approach is applied, resulting in a new image, serving as an input for 
binary segmentation algorithms. Recall that background subtraction is a method widely used for detecting 
moving objects from a video, which has been adapted and modified for image segmentation in8. It combines 
local and global thresholding techniques to take advantage of the computational efficiency of the former and the 
accuracy of the latter, provides good results in segmentation, and allows for automating the process when the 
foreground color of images is not constant. Moreover, it is able to speed up computations quite significantly. All 
the algorithms listed in Table 2 are applied to separate the foreground, i.e., the seeds, from the background. Since 
all these algorithms require one-dimensional input, the input image provided by the background subtraction 
approach is first converted from the RGB to the grey scale (see Fig. 1). Finally, the morphological operators 
erosion and dilation (described in27) are used to enhance the binary segmentation output’s quality.

To validate the output of the different binary segmentation algorithms with PARSEG, the input parameters 
are set as follows:

•	 The number of subsets M into which the complete set of pixels is partitioned is set to 40. Concerning M, 
it is evident that the final sub-images (needed for the analysis) cannot be too small, otherwise they do not 
contain enough of information. On the other hand, they should not be unnecessarily too large otherwise the 
procedure becomes computationally too costly. Our numerical experiments show that the size of sub-images 
0.3-0.4 MP is suitable for our goals, leading to M ≈ 40 . Evidently, changing the value of M can influence the 
results but it should be set (tuned) carefully. On the other hand, if once reasonably set for a class of specific 
images, it appears that it is not necessary to change it from one image to another.

Table 1.   General information about seeds gathering. *Stands for commercial species.

Species Sampling location Number

1 Cariadoggia Alghero 80

2 Cariasina Medio Campidano 39

3 Coru Laconi 55

4 Coru e Columbu Laconi 80

5 Croccorighedda Laconi 30

6 Fara Bonarcado 30

7 Giallo Bosa Bosa 30

8 Laconi A Laconi 87

9 Melone Gonnosfanadiga 77

10 Mirabolano Giallo * 90

11 Mirabolano Rosso * 75

12 Nero Sardo Bosa 99

13 San Giovanni Oristano 39

14 Sanguigna I Bosa Bosa 85

15 Shiro * 94

16 Sighera Gonnosfanadiga 88
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•	 The number of possible sample sizes is set to 28. Thus, the different sizes range from 100 to 318 187 (= N/M) 
pixels. The set of sample sizes S is composed of 

{⋃5
i=1 10

2
· i,

⋃5
i=1 10

3
· i,

⋃5
i=1 10

4
· i,

⋃6
i=1

(
4 · 104

·i + 6 · 104
)
,
⋃4

i=2 7 · 10
i ,
⋃3

i=1 15 · 10
i , 318 187

}
.

•	 For each sample size rms∗j
 , m ∈ (1, . . . ,M) , the function C (·) is estimated B = 100 times.

•	 The ratio π between the cardinalities of the learning set and validation set is set to 4.
•	 Classification And Regression Trees (CART​39) are used as the reference classifier κ in the validation experi-

ment Note that, in principle, any binary classifier might be used within PARSEG. We use CART as it is flex-
ible, capable of dealing with collinearity effects, detecting complex interaction effects, and processing high 
dimensional data sets. At the same time, it rarely induces overfitting problems and it is well known for its 
good predictive capabilities.

The output of the procedure described in Section “PARSEG” aimed at determining the optimal sample 
size for the image validation experiment is shown in Fig. 2. For each segmentation algorithm, the optimal size 
is selected according to Eq. (2), and the quality of the validation experiment is measured by computing the 
average sensitivity metric introduced in Eq. (7). Table 3 provides evidence about the reduction of the execution 
times induced by the proposed method. The total number of pixels used in the analysis (sampling size) ranges 
from 2.67% to 3.16% of the total number of pixels composing the entire image, the value depending on the 
segmentation algorithm. The proposed approach allows us to save from 85% to 93% of the time required to 
perform statistical validation on the entire segmented image. The time saved is indicated by � and computed 
as follows

(8)� =
(Ti −Ts)

Ti
· 100%

Table 2.   The most widespread and the most frequently used binary segmentation algorithms.

Segmentation algorithm References Label

Adaptive document image binarization 28 Sauvola

Alternative implementation of Huang’s method 29 Huang2

Huang’s fuzzy thresholding method 30 Huang

Intermodes 31 Intermodes

Mean of gray levels 32 Mean

Means of image thresholding 33 Shanbhag

Minimum 31 Minimum

Otsu’s threshold 34 Otsu

Renyi’s entropy threshold 35 RenyiEntropy

Similarity-invariant pattern recognition 36 Percentile

Triangle method 37 Triangle

Tsai’s method 38 Moments

Figure 1.   Image of the Giallo Bosa seeds captured using : (a) black background; (b) white background; (c) 
image resulting from background subtraction described in8.
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Figure 2.   For each segmentation algorithm, the projection of the points of Dj identified by the standardized 
sample sizes δ(ξ) (x-axis), where ξ is the subset of sample sizes needed to find the optimal sample size s∗ , and the 
standardized consistency measures δ(�) (y-axis). The dashed line represents the cubic spline that estimates their 
relationship. The solid line identifies the tangent of the cubic spline, i.e, the point where its derivative equals −1 , 
while the red point has coordinates (s∗

j
, ψ̂s

∗
j
) : it corresponds to the point closest to the tangent line.
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where Ti is the time required to validate the results of the binary segmentation carried out on the entire image 
and Ts is the time required to validate the results of the binary segmentation through PARSEG. The difference in 
the computational time among segmentation algorithms in our case is due solely to the time needed to estimate 
the optimal sample size. In particular, the time for estimating the optimal sample size depends on how close the 
segmentation output obtained by the segmentation algorithm is to the pattern expressed by the color channels. 
More precisely, if the segmentation output differs substantially from the pattern expressed by the color channels 
(i.e., the original image), PARSEG needs more time to reach its stopping criterion in the optimal sample size 
estimation.

To demonstrate the effectiveness of PARSEG, its performance is compared to that obtained without applying 
it. To carry out this comparison, the segmentation outcomes of all twelve binary segmentation algorithms are 
validated using the total number of pixels N. The main results are summarized in Table 4. For both approaches 
to the validation, the global average sensitivity of the segmentation outputs stemming from the use of different 
algorithms is sorted in decreasing order. Note that the average sensitivity substantially preserves the same ranking 
of the segmentation outputs if validation is performed on the entire image or the optimal size is used. Next, the 
similarity between the two rankings is measured with the rank correlation coefficient τX40, an extended version 
of Kendall’s τ41, where ‘X’ stands for extended. The coefficient τX takes on values in [−1,+1] : τX = +1 if the two 

Table 3.   Sizes used to perform the proposed approach for each segmentation algorithm and the 
corresponding computational time obtained for the Giallo Bosa image. The second and third columns report 
the numbers of pixels used and the percentages of pixels of the complete image, respectively. The last three 
columns show the times (in minutes) needed to carry the analyses out using the proposed approach (sample), 
on the entire image (whole) and the savings using the proposed approach ( � ). Concerning the proposed 
approach in brackets the decomposition of the time into its two components: the time needed to selected the 
optimal sample size (opt. size) and that to carry out the analysis in the remaining M − 1 samples.

Segmentation algorithm Sampling size Sampling size as % of entire image

Computational time

Sample (opt. size + M − 1 samples) Whole �

Minimum 339 737 2.67% 32 (9 + 23) 217 85%

Intermodes 339 737 2.67% 32 (9 + 23) 218 85%

Otsu 339 737 2.67% 32 (9 + 23) 218 85%

Huang2 339 737 2.67% 32 (9 + 23) 217 85%

Moments 339 737 2.67% 33 (10 + 23) 216 85%

Sauvola 339 737 2.67% 33 (10 + 23) 237 86%

RenyiEntropy 339 737 2.67% 38 (15 + 23) 493 92%

Shanbhag 339 737 2.67% 36 (13 + 23) 373 90%

Triangle 347 537 2.73% 38 (15 + 23) 489 92%

Mean 359 337 2.82% 39 (16 + 23) 486 92%

Huang 402 537 3.16% 41 (18 + 23) 462 91%

Percentile 359 337 2.82% 41 (18 + 23) 578 93%

Table 4.   Giallo Bosa image: Comparison of the validation of all twelve segmentation outcomes performed on 
the optimal sample selected by the proposed approach (sample) or on the entire image (whole). The average 
sensitivities and their ranks (in parenthesis) are reported together with their normalized values obtained by 
rescaling average sensitivities to [0, 1].

Segmentation φ̄ (Rank) Normalized φ̄

algorithm Whole Sample Whole Sample

Minimum 0.999  95 (1) 0.999 93 (1) 1.000 00 1.000 00

Intermodes 0.999 94 (3) 0.999 90 (2) 0.999 71 0.998 96

Otsu 0.999 94 (2) 0.999 90 (3) 0.999 72 0.998 87

Huang2 0.999 57 (4) 0.999 26 (4) 0.982 35 0.978 60

Moments 0.999 53 (5) 0.999 19 (5) 0.980 82 0.976 53

Sauvola 0.998 19 (6) 0.998 16 (6) 0.918 44 0.943 62

RenyiEntropy 0.998 15 (7) 0.996 24 (7) 0.916 91 0.882 83

Shanbhag 0.997 69 (8) 0.995 12 (8) 0.895 40 0.847 18

Triangle 0.995 56 (10) 0.993 46 (9) 0.796 72 0.794 63

Mean 0.997 37 (9) 0.991 77 (10) 0.880 77 0.741 07

Huang 0.991 74 (11) 0.984 06 (11) 0.620 15 0.496 40

Percentile 0.978 34 (12) 0.968 42 (12) 0.000 00 0.000 00
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rankings are identical; τX = −1 if they are perfectly opposed. If no correlation exists between the two rankings, 
then τX = 0 . In our case, τX = 0.939 confirms the high similarity between the two rankings. The performance 
of the two approaches is further described in relative terms (the columns Normalized φ̄ in Table 4) to simplify 
their comparison. It is evident that the two approaches can be considered equivalent with respect to the overall 
quality of the validation experiment. The use of a Spearman correlation coefficient gives very similar results.

For the sake of completeness, Fig. 3 shows the output obtained from the binary segmentation methods 
used. The green points correspond to the pixels that have been recognized as the foreground by the specific 
segmentation algorithm. The images are ordered according to the quality (sensitivity) of the validation 
experiment. It is worth noticing that, consistent with the results reported in Table 4, the first four segmentation 
settings provide valuable outputs if compared with the other ones.

Finally, the performances of PARSEG and STAPLE are compared in Fig. 4, where the best segmentation 
obtained by the segmentation algorithms for the former and the segmentation output estimated by the latter 
are shown. Since the true segmentation is unknown, it is impossible to assess which the best method is with no 
uncertainty, but it appears that the result obtained by PARSEG is clearly better than that obtained by STAPLE.

We think PARSEG could not work properly in two cases. Firstly, the idea of the statistical validation of image 
segmentation algorithms behind PARSEG concerns the capability of the statistical classifier to recognize the 
pattern of separation between background and foreground inside the original image. Consequently, the choice 
of the statistical classifier is very important and crucial for obtaining satisfying results. Secondly, the operation 
of PARSEG is regulated by the partition of the data into M subsets characterized by a similar distribution of the 
categories of y and an unknown function that maps x to y . If the number of pixels is high (as in most cases) we 
expect with a high level of confidence that stratified random sampling will enforce this condition. If the number 
of pixels was low, however, the degree of confidence could drop. It is important to note that the former is handled 
by the researcher, whilst the latter is not.

Results for different types of seeds
The same experiment presented in Section “Giallo Bosa example” is repeated for the other 15 images of different 
seed species. Table 5 reports the results obtained on all 16 images. It has turned out that the average of the sam-
pling size considering the segmentation algorithms, i.e., the entire set of pixels, ranges from 314 737 to 474 332, 
reducing the computational complexity induced by PARSEG on average below 4% of the total number of pixels 
composing the entire image. Specifically, PARSEG allows us to save from 86% to 92% of the time compared to the 
time required when performing validation using all pixels. The appropriateness of PARSEG is further confirmed 
by the high values of the τX coefficient, which range from 0.818 to 0.970.

Figures 5, 6 and 7 compare the best segmentations obtained by PARSEG and STAPLE for the 15 additional 
images. PARSEG obtained a better segmentation 11 times over 15 (73%), whilst no important differences in 
results are observed the remaining four times.

Concluding remarks
To reduce the computational complexity of statistical validation for binary segmented images, PARSEG has been 
introduced as a novel statistical technique. The suggested approach preserves the performance of the system 
validation experiment and considerably reduces computational complexity. Its main features are the use of a 
classifier and related performance metric enabling one to validate the output of binary segmentation algorithms. 
Although sensitivity has been used as the metric for classifier performance as a viable default choice, it is pos-
sible to use different metrics as well. Ability to perform statistical validation on a reduced sample of pixels while 
providing the same results as when the validation is carried out using all available pixels, the use of smoothing 
splines to select the reduced optimal sample and the consistent reduction of the computational complexity belong 
among its main advantages.

We applied PARSEG in a relatively simple framework (the segmentation of seed images). When validating 
images composed of about 13 million pixels in total, PARSEG used a sample size below 4% of the full image size 
(on average) to obtain validation results that were fully comparable to those obtained when all pixels were used 
for validation. As a result, the computing time required to perform image validation using all pixels was reduced 
by approximately 90%. The advantages of using PARSEG are greater when analyzing images of the same type.

Future work
In this paper we concentrate especially on binary images. In the future, we plan to study in detail two points. The 
first one is how the suggested approach behaves when segmentation algorithms partition the image into multiple 
parts and not in a binary way, and what and how should be appropriately modified. The second is to study in 
detail the influence of different metrics when PARSEG is applied to different types of images.
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Figure 3.   Output of considered segmentation methods obtained for the Giallo Bosa image. Pixels plotted in 
green correspond to those recognized as foreground by the given segmentation algorithm.
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Figure 4.   Best segmentation obtained by PARSEG and STAPLE methods for the Giallo Bosa image. Pixels 
plotted in green correspond to those recognized as foreground by the given segmentation algorithm.

Table 5.   Results obtained for the images of all sixteen of the analyzed seed species. The first column reports 
the seed species, the second column the numbers of pixels that compose the images, and the third and forth 
columns indicate the average values of, respectively, the sampling size and the percentage of pixels used from 
the entire image considering the twelve segmentation algorithms. The fifth to the seventh columns show the 
average times (in minutes) needed to carry out the analyses using the proposed approach (sample), the entire 
image (whole) and the percentage decrease in computing time obtained when using the proposed approach 
( � ). The last column reports the τX coefficients computed considering the rankings obtained using the 
proposed approach and those using all pixels.

Seed species N Average sample size Average % whole image

Average comput. time

τXSample image Whole image �

Cariadoggia 12 477 201 347 922 2.79% 36.25 435.0 92% 0.879

Cariasina 11 569 761 329 669 2.85% 33.17 318.5 90% 0.970

Coru 12 491 721 385 793 3.09% 36.33 336.8 89% 0.970

Coru e Columbu 12 090 111 418 852 3.46% 43.42 344.8 87% 0.909

Croccorighedda 12 077 091 347 902 2.88% 34.67 377.4 91% 0.939

Fara 12 821 281 377 349 2.94% 37.50 362.0 90% 0.939

Giallo Bosa 12 727 494 348 887 2.74% 35.58 350.3 90% 0.939

Laconi A 12 898 821 398 287 3.09% 38.42 379.3 90% 0.939

Melone 12 738 291 474 332 3.72% 44.83 329.4 86% 0.879

Mirabolano Giallo 11 206 801 314 737 2.81% 32.17 331.5 90% 0.879

Mirabolano Rosso 12 374 131 353 261 2.85% 35.08 313.8 89% 0.879

Nero Sardo 13 072 930 374 498 2.86% 37.58 355.9 89% 0.879

San Giovanni 10 943 511 350 362 3.20% 31.17 243.0 87% 0.818

Sanguigna I Bosa 12 233 641 360 474 2.95% 35.33 351.5 90% 0.970

Shiro 13 273 416 431 660 3.25% 39.67 356.2 89% 0.879

Sighera 12 333 561 369 697 3.00% 36.08 370.1 90% 0.909
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Figure 5.   Best segmentations obtained by PARSEG (on the left) and STAPLE (on the right) for the images: 
Cariadoggia, Cariasina, Coru, Coru e Columbu, Croccorighedda. Pixels plotted in green correspond to those 
recognized as foreground by the given segmentation algorithm.

Figure 6.   Best segmentations obtained by PARSEG (on the left) and STAPLE (on the right) for the images: 
Fara, Laconi A, Melone, Mirabolano Giallo, Mirabolano Rosso. Pixels plotted in green correspond to those 
recognized as foreground by the given segmentation algorithm.
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Data availability 
Data and source code of the analysis in R are available from the authors on request by contacting the correspond-
ing author at frigau@unica.it

Appendix: Alternative metrics: F1 score
In the appendix we provide the results obtained for Giallo Bosa if other metrics were used as the reference classifier 
performance. In particular, we consider F1 score metric. Table 6 summarizes the results of the comparison of 
the validation of all twelve segmentation outcomes performed on the optimal sample selected by the proposed 
approach (sample) or on the entire image (whole). Instead, Fig. 8 shows the output of the procedure described 
in Section “PARSEG” aimed at determining the optimal sample size for the image validation experiment.

Figure 7.   Best segmentations obtained by PARSEG (on the left) and STAPLE (on the right) for the images: Nero 
Sardo, San Giovanni, Sanguigna I Bosa, Shiro, Sighera. Pixels plotted in green correspond to those recognized as 
foreground by the given segmentation algorithm.

Table 6.   Giallo Bosa image: Comparison of the validation of all twelve segmentation outcomes performed on 
the optimal sample selected by the proposed approach (sample) or on the entire image (whole). The average F1 
score and their ranks (in parenthesis) are reported together with their normalized values obtained by rescaling 
average F1 score to [0, 1].

Segmentation algorithm

φ̄ (Rank) Normalized φ̄

Whole Sample Whole Sample

Intermodes 0.999 95 (2) 0.999 88 (1) 0.999 94 1.000 00

Minimum 0.999 96 (1) 0.999 87 (2) 1.000 00 0.999 63

Otsu 0.999 95 (3) 0.999 87 (3) 0.999 89 0.999 61

Huang2 0.999 73 (4) 0.999 52 (4) 0.989 76 0.988 66

Sauvola 0.999 06 (6) 0.998 87 (5) 0.959 90 0.968 42

Moments 0.999 47 (5) 0.998 39 (6) 0.978 24 0.953 49

RenyiEntropy 0.997 45 (8) 0.996 15 (7) 0.887 40 0.884 01

Shanbhag 0.998 42 (7) 0.995 95 (8) 0.930 90 0.877 73

Triangle 0.996 57 (9) 0.993 34 (9) 0.847 85 0.796 58

Mean 0.996 36 (10) 0.992 40 (10) 0.838 18 0.767 36

Huang 0.988 31 (11) 0.983 23 (11) 0.476 12 0.482 41

Percentile 0.977 72 (12) 0.967 71 (12) 0.000 00 0.000 00
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Figure 8.   For each segmentation algorithm, the projection of the points of Dj identified by the standardized 
sample sizes δ(ξ) (x-axis), where ξ is the subset of sample sizes needed to find the optimal sample size s∗ , and the 
standardized consistency measures δ(�) (y-axis). The dashed line represents the cubic spline that estimates their 
relationship. The solid line identifies the tangent of the cubic spline, i.e, the point where its derivative equals −1 , 
while the red point has coordinates (s∗

j
, ψ̂s

∗
j
) : it corresponds to the point closest to the tangent line.
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