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Synchronization analyze 
of k‑uniform hyper‑networks
Juan Du 1,2, Xiujuan Ma 1,2*, Fuxiang Ma 1 & Wenqian Yu 1,2

Hyper‑networks tend to perform better in representing multivariate relationships among nodes. Yet, 
due to the complexity of the hyper‑network structure, research in synchronization dynamics is rarely 
involved. In this paper, a Kuramoto model more suitable for k‑uniform hyper‑networks is proposed. 
And the generalized Laplacian matrix expression of the k‑uniform hyper‑network is present. We use 
the eigenvalue ratio of the generalized Laplacian matrix to quantify synchronization. And we studied 
the effects of some important structure parameters on the synchronization of three types of k‑uniform 
hyper‑networks. And obtained different relationships between synchronization and these parameters. 
The results show the synchronization of the k‑uniform hyper‑networks is related to both structure and 
parameters. And as the size of the nodes increases, the synchronization ability gradually increases for 
ER random hyper‑network, while that gradually decreases for NW small‑world hyper‑network and BA 
scale‑free hyper‑network. As the uniformity increases, the synchronization ability of all three types 
of uniform hyper‑networks increases. In addition, when the structure and node size are fixed, the 
synchronization ability increases with the increase of the hyper‑clustering coefficient in BA scale‑free 
hyper‑network and ER random hyper‑network, while it decreases with the increase of the hyper‑
clustering coefficient in NW small‑world hyper‑network.

With the development of information technology, complex networks have become a powerful tool for analyzing 
real systems. Currently, research focuses on using complex networks to model real  systems1–3 and analyze their 
dynamical  behaviors4–7. With the rapid development of human society, whether it is a single system or a system 
formed by many systems, the connections between nodes begin to become more complex and diverse. Previous 
graph-based complex networks could only represent pairwise connections between two nodes, which could not 
express the complex coupling relationships between many  nodes8–10. Hypergraph-based hyper-networks provide 
a new research idea for the representation of complex systems with many nodes coupling. The hyper-edge in 
hypergraph can describe a certain complex connection by many  nodes11–14. While the different connections 
between nodes within hyper-edge can also better represent the influence of microstructure on the dynamics of 
hyper-networks15.

Synchronization is a common class of nonlinear physical phenomena that exists in nature. Such as the 
synchronous luminescence of  fireflies16 and the synchronous activity of cardiac muscle cells and nerve cells in 
the  brain17. Complex network synchronization refers to the state of nodes in the network reaching consistency or 
similarity through mutual coupling, at which point the network can be considered synchronized. Synchronization 
is an important dynamical behavior of complex systems, the study results of which can help people better 
understand and explain the synchronization phenomena in the real world. Synchronization is divided into 
controlled  synchronization18–20 and self-coupled  synchronization21–23. Controlled synchronization means that 
the variables or systems are synchronized after added some control strategies. Self-coupled synchronization 
means that the variables or systems are synchronized by information exchange through coupling relationships.

The purpose of studying the synchronization of complex networks is to better understand the influence 
of network structure on the dynamic behaviors of complex networks and then to further improve the 
synchronization ability of the system according to practical needs. For instance, a localized breakdown in the 
power system may lead to more outages and it is necessary to reduce the occurrence of accidents by increasing 
frequency synchronization. With the gradual progress of the study of complex network structure, the study of 
the synchronization of complex networks has become increasingly mature. Yet, due to the complexity of the 
hyper-network structure, most studies on synchronization have focused on graph-based complex networks, 
while the study of hyper-network synchronization is not deep enough. Daniel Irving et al.24 gave a general 
framework for studying the synchronization stability of super-networks by performing simultaneous chunking 
diagonalization operations on matrices while reducing the dimensionality of the problem. Anwar et al.25 proved 
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that the intra-layer synchronous state in a multilayer hyper-network is an invariant solution, obtained the 
condition for the stability of the coherent state under the time-averaged network structure, and finally obtained 
the condition for the stability of the synchronous state without considering the time-averaged network structure 
by diagonalizing the coupling matrix in blocks simultaneously. Sarbendu Rakshit et al.26 studied the inter-layer 
synchronization of stochastic multilayer hyper-networks under two different connectivity mechanisms and 
obtained invariance and stability conditions for the inter-layer synchronization manifolds. Sorrentino et al.27 
constructed a super-network coupled by two or more different networks, obtained the approximate form of 
the principal stability function using the principal stability function method, and generalized the stability 
results to the general hyper-network case by constructing neural hyper-networks. Wu et al.28 introduced 
the joint degree to construct an evolving hyper-network model and obtained several simple and effective 
synchronization criteria for evolutionary hyper-networks. Meanwhile, Tang et al.29 considered the Kuramoto 
model with 2-hyperlink interactions to get the synchronization ability of undirected higher-order networks and 
proposed a synchronization optimization criterion and proved that a symmetric structure can maintain the best 
synchronization ability in directed higher-order networks. Maxime Lucas et al.30 proposed a general framework 
for the Kuramoto model under higher-order structures and introduced a multi-order Laplacian operator whose 
spectrum determines the stability of the simultaneous solutions.

At present, the studies on the synchronization dynamics of hyper-network are not considered the influence of 
hyper-network structure. However, studying the influence of the hyper-network structure on the synchronization 
ability will better discover the relationship between the hyper-network structure and synchronization. And 
provides reliable theoretical support to further understand the hyper-network synchronization behavior.

To this end, first, this paper proposes a general expression for the Kuramoto model of k-uniform hyper-
networks. And present an expression for the generalized Laplacian matrix of k-uniform hyper-networks. We use 
the eigenvalue ratio of the generalized Laplacian matrix to quantify synchronization. Next, the synchronization 
abilities of the 3-uniform BA scale-free hyper-network, the 3-uniform NW small-world hyper-network, and the 
3-uniform ER random hyper-network are studied in detail, using the 3-uniform hyper-network as an example. In 
addition, by analyzing the relationship between the hyper-clustering coefficient and the synchronization ability 
under different hyper-network structures, this paper obtains the hyper-clustering coefficient can be used as a 
measure to characterize the synchronization ability of the hyper-network.

Related knowledge and calculation
Hypergraph
Let H = (V,E) be a  hypergraph31, where V is the set of nodes,V = {v1, v2, . . . , vN } ; E is the set of hyper-
edges,E = {e1, e2, . . . , eM} , and ei  = ∅(i = 1, 2, . . . ,M) . The number of node is N and the number of hyperedge 
is M in the hypergraph. If node vi and node vj belong to the same hyper-edge ek , then vi ∈ ek and vj ∈ ek . If 
hyper-edges ei and ej are adjacent to each other, then ei ∩ ej �= ∅ . If all nodes inside a hyper-edge ei do not belong 
to any other hyper-edges, the hyper-edge ei is said to be an isolated hyper-edge.

Uniform hypergraph and non‑uniform hypergraph
Let |ei| be the number of nodes contained in the hyper-edge ei . The rank of the hypergraph H is the maximum 
value of the number of nodes contained in the hyper-edge, denoted as r(H) = max|ei|, (i = 1, 2, . . . ,M) . The 
co-rank of the hyper-graph H is the minimum value of the number of nodes contained in the hyper-edges, 
denoted as cr(H) = min|ei|, (i = 1, 2, . . . ,M) . If the hypergraph H satisfies r(H) = cr(H) = k , the hypergraph is 
said to be a uniform hypergraph or a k-uniform  hypergraph31. Conversely, the hypergraph H is said to be a non-
uniform hypergraph. A hyper-network constructed based on a uniform hypergraph is a uniform hyper-network. 
A hyper-network constructed based on a non-uniform hypergraph is a non-uniform hyper-network. Figure 1a 
show a 3-uniform hypergraph with 6 nodes and 4 hyper-edges; Fig. 1b shows a non-uniform hypergraph with 
9 nodes and 4 hyper-edges.

(a) uniform hypergraph (b) non-uniform hypergraph
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Figure 1.  Uniform hypergraph and Non-uniform hypergraph.
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Hyper‑adjacent matrix
Let the hyper-network H = (V,E) be a k-uniform hyper-network containing k nodes at each hyper-
edge.AHk

= (ai1,i2,...,ik ) N×N×···×N
︸ ︷︷ ︸

k

(i1, i2, . . . , ik ∈ {1, 2, . . . ,N}) is a k-dimensional and N-order symmetric 

matrix, that represents the hyper-adjacent matrix of the k-uniform hyper-network14. And ai1,i2,...,ik denote the 
coupling relationship between any k nodes in the hyper-network, then:

Hyper‑clustering coefficient
The clustering coefficient is used to describe the closeness between nodes in a network. In a hyper-network, the 
hyper-clustering coefficient of node i is defined as the ratio of the number of “hyper-triangles” formed by the node 
to the number of “2-hyper-paths” formed by the node. A hyper-triangle is a sequence of 3 different nodes and 3 
different hyper-edges. And a 2-hyper-path is a sequence of 3 different nodes and 2 different hyper-edges32. As in 
Fig. 1a, v6, e3, v4, e2, v5, e4, v6 is a hyper-triangle, while v5, e2, v4, e4, v4, e2, v5 is not a hyper-triangle because there 
have identical nodes and hyper-edges, which is a “false hyper-triangles”; then v6, e3, v2, e1, v3 is a 2-hyper-path.

The hyper-clustering coefficient HCi of node i is defined as:

where Ni� is the number of hyper-triangles formed from node i and Ni� is the number of 2-hyper-paths formed 
from node i.

The average hyper-clustering coefficient HC of the hyper-network is defined as:

The hyper-clustering coefficient of the hyper-network shown in Fig. 1a is HC = 1.555 and the hyper-clustering 
coefficient of individual nodes is shown in Table 1.

Joint degree
Let di1i2...ik−1

 be the joint degree of node i1i2...ik−1 , which denotes the number of hyper-edges containing nodes 
i1i2...ik−1 . Let JDHk

 is the joint degree matrix of the hyper-network28, then

The joint degree matrix of the hyper-network is shown in Fig. 1a as follows:

Kuramoto model of k‑uniform hyper‑network
Inspired by  reference29,30, in this paper, we propose the Kuramoto model that is more suitable for describing 
k-uniform hyper-network synchronization, as shown in (6):

(1)ai1,i2,...,ik =

{
1, {i1, i2, . . . , ik} ⊆ ∃ei , i = 1, 2, . . . ,M
0, {i1, i2, . . . , ik} �⊂ ∀ei , i = 1, 2, . . . ,M

.

(2)HCi =
6× Ni�

Ni�

(3)HC =
1

N

N∑

i=1

HCi

(4)JDHk
= (Jdi1i2...ik−1

) N×N×···×N
︸ ︷︷ ︸

k−1

=

{
p;
0,

(5)Jdi1i2...ik−1
=

N∑

i1=1

ai1i2...ij ...ik =

N∑

i2=1

ai1i2...ij ...ik = · · · =

N∑

ij=1

ai1i2...ij ...ik = · · · =

N∑

ik=1

ai1i2...ij ...ik .

JDH3
=











v1 v2 v3 v4 v5 v6
v1 0 1 1 0 0 0

v2 1 0 1 1 0 1

v3 1 1 0 1 1 0

v4 0 1 1 0 2 2

v5 0 0 1 2 0 1

v6 0 1 0 2 1 0











.

Table 1.  Number of hyper-triangles, 2-hyper-paths and the hyper-clustering coefficient.

v1 v2 v3 v4 v5 v6

Hyper-triangles 0 2 2 4 2 2

2-Hyper-paths 4 8 6 8 8 9

Hyper-clustering coefficient 0 1.5 2 3 1.5 1.33
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where θij = [0, 2π) denotes the phase of the node ij, f(·) is the local dynamical function used to describe the 
natural frequency of the node, K is the coupling constant, and N is the number of nodes of the hyper-network, 
ai1i2...ij ...ik is the hyper-adjacent matrix of the k-uniform hyper-network, which represents the coupling relationship 
between any k nodes, if k nodes belong to the same hyper-edge then ai1i2...ij ...ik = 1 , otherwise, ai1i2...ij ...ik = 0 . g 
is the coupling function for synchronization, which is usually taken as g = sin θ . For instance, when the coupling 
occurs between two nodes θi1 and θi2 , then g(θi1 , θi2) = sin(θi2 − θi1)

29.

Generalized Laplacian matrix of k‑uniform hyper‑network
When considering the synchronization between nodes of the hyper-network, the synchronization ability of 
the hyper-network can be obtained by the master stability equation analysis method. Since the Jacobi term is 
constant in the main stability equation, the stability of the main stability equation only depends on the generalized 
Laplacian  matrix30, further the synchronization ability can be expressed by the eigenvalues of the generalized 
Laplacian  matrix29. In the master stability equation-based analysis method, the generalized Laplacian matrix of 
the node is defined as follows:

where k denotes the number of associated nodes inside the hyper-edge, i.e., the uniform number of the 
k-uniform hyper-network; dH (ij) denotes the hyper-degree of node ij; JDHk

 is the joint-degree matrix denoted 
by (4). The generalized Laplacian matrix of the hyper-network shown in Fig. 1a is shown below:

Specially, we calculate the eigenvalues of hyper-network Laplacian matrix of (7), which can be arranged as 
0 = �1 < �2 ≤ �3 ≤ . . . ≤ �N . Note that the eigenvalues are all real, as generalized Laplacians are symmetric. 
The smallest nonzero eigenvalue �2 is known as the spectral gap. It has been proved in the  reference30 that the 
eigenvalue ratio R = �N

�2
 quantifies synchronization ability of hyper-network. By diagonalizing the Laplacian 

matrix (7), we can get its eigenvalues and the eigenvalue  ratio29,30.

Kuramoto model and Generalized Laplacian matrix of 3‑uniform hyper‑network
In this paper, we study and analyze the synchronization stability of k-uniform hyper-networks by using 3-uniform 
hyper-network as an example. From Eq. (6) and Definition (7), the expression of the Kuramoto model for the 
3-uniform hyper-network is shown in (9):

A simultaneous state linearization of the state equation (9)  yields29:

The simultaneous state stability of the linearization equation (10) can be determined by its generalized 
Laplacian matrix (11):

Let the eigenvalues of the generalized Laplacian matrix of the 3-uniform hyper-network be 
0 = �1 < �2 ≤ �3 ≤ · · · ≤ �N . According to the theory of principal stability functions the synchronization 

(6)
·

θij = f (ωij )+ K

N∑

i1=1

N∑

i2=1

· · ·

N∑

ij=1

· · ·

N∑

ik=1

ai1i2...ij ...ik g
(

θi1θi2 . . . θij . . . θik

)

(7)Li1 i2...ij ...ik−1
= (k − 1) · dH (ij)δi1 i2...ij ...ik−1

− JDHk

(8)dH (ij) =





N�

i1=1

. . .

N�

ij−1=1

N�

ij+1=1

. . .

N�

ik=1

ai
1
...ij ij+1 ...ik



/(k − 1)

L =










2 −1 −1 0 0 0

−1 4 −1 −1 0 −1

−1 −1 4 −1 −1 0

0 −1 −1 6 −2 −2

0 0 −1 −2 4 −1

0 −1 0 −2 −1 4










.

(9)
.

θi = f (ωi)+ K

N∑

j=1

N∑

k=1

aijk sin(θj + θk − 2θi)

(10)δ
.

θi = K

N∑

j=1

N∑

k=1

aijk(δθj + δθk − 2δθi)

(11)Lij = 2 · dH (i)δij − JDH3

(12)dH (i) =

N∑

j=1

N∑

k=1

aijk/2

(13)JDH3
= JdH3

(ij) = (Jdijk)N×N
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ability of the 3-uniform hyper-network is determined by the minimum nonzero eigenvalue �2 or eigenvalue 
ratio R = �N

�2
 of the generalized Laplacian  matrix30. Generally, the smaller the eigenvalue ratio R or the larger the 

�2 , the stronger the synchronization ability of the hyper-network; the larger the eigenvalue ratio R or the smaller 
the �2 , the weaker the synchronization ability of the hyper-network29. In this paper, the eigenvalue ratio R is used 
as the basis for judging the synchronization ability of the k-uniform hyper-network.

Theoretical valuation of hyper‑clustering coefficient
In this paper, we give the equation (14) for the valuation of the number of hyper-triangles and the equation (15) 
for the valuation of the number of 2-hyper-paths, and explore the relationship between the synchronization 
ability and hyper-clustering coefficient of the hyper-network.

where ri denotes the total number of nodes in the hyper-edge of contains the node i, rj denotes the total number 
of nodes in the hyper-edge of contains the node j; rk denotes the total number of nodes in the hyper-edge of 
contains the node k; JDH

3
(iq) denotes the joint degree of node i and node q; ei denotes the hyper-edge containing 

the node i; ej denotes the hyper-edge containing the node j; and ek denotes the hyper-edge containing the node k.
From equations (14) and (15), the number of hyper-triangles of a node is not only related to the hyper-degree 

of that node but also to the joint degree of that node. Since both the valuation equation of the hyper-clustering 
coefficient and the expression of the generalized Laplacian matrix of the hyper-network are related to the joint 
degree of the nodes. For this reason, this paper further explores the relationship between the synchronization 
ability and the hyper-clustering coefficient of 3-uniform hyper-networks.

Results
To investigate the influence of the structure of the hyper-networks on their synchronization ability, this paper 
compares and analyzes the synchronization ability of three types of k-uniform ER random hyper-network, 
k-uniform NW small-world hyper-network, and k-uniform BA scale-free hyper-network, respectively. The 
relationship between the synchronization ability and the hyper-clustering coefficient of three types of 3k-uniform 
hyper-networks under different hyper-network structures is also explored. To ensure the validity and reliability 
of the experimental results, all results in this paper are taken as an average of 50 realization.

Synchronization ability and hyper‑clustering coefficient analyze of k‑uniform hyper‑network
Different structures of hyper-networks exhibit different topological properties, among which the most 
representative topological property is the hyper-degree distribution of hyper-networks. Under different hyper-
network structures, the hyper-degree distribution shows different distribution characteristics, for example, the 
hyper-degree distribution of ER random hyper-network obeys Poisson distribution; the hyper-degree distribution 
of NW small-world hyper-network obeys skewed Poisson distribution, while the hyper-degree distribution of 
BA scale-free hyper-network obeys power-law distribution. Figure 2 shows the hyper-degree distributions of 
three different types of uniform hyper-networks.

Let He is the number of hyper-edges added at each time step during model construction of the BA scale-free 
hyper-network, P‑NW is the probability of adding hyper-edges in the NW small-world hyper-network and P‑ER 
is the probability of connection hyper-edges in the ER random hyper-network, N is the number of node of the 
hyper-network. When analyzing the synchronization ability of three types of k-uniform hyper-networks, this 
paper analyzes the effects of node size N, P‑ER, P‑NW and He on the synchronization ability of three types of 
k-uniform hyper-networks, and analyzes the hyper- clustering coefficient (HC), respectively.

(14)Nhyper_triangle = dH (i)







ri�

j = 1

j �= i
j ∈ ei
ej �= ei

rj
�

k = 1

k �= j �= i
k ∈ ej
ek �= ej �= ei

rk�

q=1

dH (j)× dH (k)× JDH3
(iq)







(15)N2-hyper-path = dH (i)
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j = 1

j �= i

j ∈ ei
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�

k = 1
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Figure 3 shows the variation of the R with N for three types of k-uniform hyper-networks when P‑ER, P‑NW 
and He is certain (k = 3,4,5). From Fig. 3, it can be seen that the R of the k-uniform ER random hyper-network 
keep decreasing and those of the k-uniform NW small-world hyper-network and the k-uniform BA scale-free 
hyper-network keep increasing as the N keeps increasing. For instance when N = 300, R = 6.9860 for the 3-uniform 
ER random hyper-network, R = 26.104 for the 3-uniform NW small-world hyper-network, and R = 179.442 for 
the 3-uniform BA scale-free hyper-network; when N = 1000, R = 4.413 for the 3-uniform ER random hyper-
network, R = 36.235 for the 3-uniform NW small-world hyper-network, and R = 418.237 for the 3-uniform BA 
scale-free hyper-network.

The results in Fig. 3 show that the synchronization ability of the k-uniform ER random hyper-network 
increases with the increasing N when the connection hyper-edges probability P‑ER is certain. The analysis 
shows that the larger the N of the k-uniform ER random hyper-network is, the more the number of nodes 
with the same hyper-degree will be when the probability P‑ER of the hyper-network is determined. The more 
homogeneous the k-uniform ER random hyper-network is at this point, the easier it is to achieve synchronization. 
While the synchronization ability of the k-uniform NW small-world hyper-network and the k-uniform BA 
scale-free hyper-network shows a decreasing trend with increasing N. The analysis shows that during the model 
construction of the NW small-world hyper-network since the hyper-edge is added to the nearest-neighbor 
coupling hyper-network with probability P‑NW and the k nodes in the hyper-edges are chosen randomly, this 
leads to the heterogeneous characteristics of the constructed k-uniform NW small-world hyper-network, and the 
heterogeneity of the k-uniform NW small-world hyper-network becomes stronger and the synchronization ability 
of the hyper-network becomes weaker as the N keeps increasing. During the construction of the k-uniform BA 
scale-free hyper-network model, as the size of the hyper-network nodes increases, the stronger the heterogeneity 
of the k-uniform BA scale-free hyper-network exhibits, and the less easy it is to achieve synchronization in the 
k-uniform BA scale-free hyper-network at this time.

Figure 4 shows the variation of the hyper-clustering coefficient (HC) with N for three types of k-uniform 
hyper-network when P‑ER, P‑NW and He are certain (k = 3,4,5). As can be seen from Fig. 4, the hyper-clustering 
coefficient of the k-uniform ER random hyper-network keeps increasing with the increasing N, while the hyper-
clustering coefficients of the k-uniform NW small-world hyper-network and the k-uniform BA scale-free hyper-
network keep decreasing. For instance, when N = 300, HC = 0.1922 for the 3-uniform ER random hyper-network, 
HC = 0.8610 for the 3-uniform NW small-world hyper-network, HC = 0.5210 for the 3-uniform BA scale-free 
hyper-network; when N = 1000, HC = 0.2397 for the 3-uniform ER random hyper-network, HC =  0.6904 for the 
3-uniform NW small-world hyper-network, and HC = 0.3148 for the 3-uniform BA scale-free hyper-network.

Figure 5 shows the variation of the synchronization ability of three types of 3-uniform hyper-networks 
with P‑ER, P‑NW and He when the N is certain (N = 500, 1000). As can be seen from Fig. 5, the R of both the 
3-uniform ER random hyper-network and the 3-uniform NW small-world hyper-network keep decreasing as 
P‑ER, P‑NW keeps increasing when the N is certain. Meanwhile, when the N is certain, the R of the 3-uniform 

(a) ER random hyper-network (b) NW small-world hyper-network (c) BA scale-free hyper-network

Figure 2.  Hyper-degree distribution.

(a) k-uniform ER random hyper-

network

(b) k-uniform NW small-world 

hyper-network

(c) k-uniform BA scale-free hyper-

network

Figure 3.  Variation curve of R with N. 
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BA scale-free hyper-network keeps decreasing as He keeps increasing, and the detailed change values are shown 
in Table 2. While He = m for adding m hyper-edges at each time step during model construction of the BA scale-
free hyper-network.

Combining Table 2 and Fig. 5, it can be seen that when the N is certain, the synchronization ability of 
the 3-uniform ER random hyper-network keeps increasing with the increasing probability P‑ER. The analysis 
shows that when the N is certain, the larger the connection hyper-edge probability P‑ER, the more the number 
of hyper-edges in the hyper-network, the closer the connection between nodes, and the easier it is to achieve 
synchronization in the 3-uniform ER random hyper-network at this time. At the same time, the synchronization 
ability of the 3-uniform NW small-world hyper-network is increasing with the increasing probability P‑NW. 
The analysis shows that when the N is certain, the larger the probability P‑NW, the greater the number of hyper-
edges joined in the hyper-network, the more dense the connections between nodes in the hyper-network, and 
the easier it is to achieve synchronization in the 3-uniform NW small-world hyper-network at this time. The 
synchronization ability of the 3-uniform BA scale-free hyper-network increases with the increasing number of 
hyper-edges He added at each time. The analysis shows that during the construction of the 3-uniform BA scale-
free hyper-network model, one node and He hyper-edges are added at each time step, and the more hyper-edges 
are added, the node will establish connections with more nodes, and the easier the 3-uniform BA scale-free 
hyper-network is to achieve synchronization at this time.

(a) k-uniform ER random hyper-

network

(b) k -uniform NW small-world 

hyper-network

(c) k -uniform BA scale-free hyper-

network

Figure 4.  Variation curve of HC with N. 

(a) 3-uniform ER random hyper-

network

(b) 3-uniform NW small-world 

hyper-network

(c) 3-uniform BA scale-free hyper-

network

Figure 5.  Variation of R with P‑ER, P‑NW, He. 

Table 2.  Size of the values of the three types of 3-uniform hyper networks R with different P‑ER, P‑NW and 
He (N = 500).

R

P-ER = P-NW = 0.1 (He = 1) P-ER = P-NW = 0.2 (He = 2) P-ER = P-NW = 0.3 (He = 3) P-ER = P-NW = 0.4 (He = 4)
P-ER = P-NW = 0.5 
(He = 5)

ER_hyper-network 23.523 6.869 4.902 4.471 4.373

NW_hyper-network 154.983 39.837 23.422 17.459 13.696

BA_hyper-network 234.1567 187.2823 90.6349 58.723 38.2426
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Figure 6 shows the variation of the hyper-clustering coefficient with P‑ER, P‑NW and He for three types 
of 3-uniform hyper-networks when the N is certain (N = 500,1000). The results in Fig. 6 show that the hyper-
clustering coefficient of the 3-uniform ER random hyper-network increases continuously with the increasing 
probability P‑ER; the hyper-clustering coefficient of the 3-uniform NW small-world hyper-network decreases 
continuously with the increasing probability P‑NW; and the hyper- clustering coefficient of the 3-uniform BA 
scale-free hyper-network increases continuously with the increasing He.

Figure 7 shows the variation of synchronization ability with P_ER, P_NW and He for three types of k-uniform 
hyper-networks when k is different. From Fig. 7, it can be seen that in three types of k-uniform hyper-networks, 
the eigenvalue ratio under different uniformities keeps decreasing as the P_ER, P_NW and He keeps increasing at 
k = 3,4,5, when the synchronization ability of three types of k-uniform hyper-networks keeps increasing. Specific 
analysis is the same as that of the 3-uniform hyper-network.

Figure 8 shows the variation of hyper-clustering coefficient with P_ER, P_NW and He for three types of 
k-uniform hyper-networks when k is different. From Fig. 8, it can be seen that as the P_ER and He keeps 
increasing, the hyper-clustering coefficient of k-uniform ER random hyper-networks and k-uniform BA scale 
free hyper-networks continues to increase; while the hyper-clustering coefficients of k-uniform NW small-world 
hyper-network continue to decrease under different uniformities at k = 3,5,7. Specific analysis is the same as that 
of the 3-uniform hyper-network.

Relationship between the synchronization ability and hyper‑clustering coefficient analysis of 
the k‑uniform hyper‑network
In analyzing the relationship between synchronization ability and hyper-clustering coefficients of three types of 
k-uniform hyper-networks, this paper explores the different relationships between synchronization ability and 
hyper-clustering coefficient of k-uniform hyper-networks with different N, P‑ER, P‑NW and He, respectively.

Figure 9 shows the variation of the R and the hyper-clustering coefficient HC for the three types of k-uniform 
hyper-networks with different N(k = 3,4,5). From the simulation data given in Table 3, it can be seen that in the 
k-uniform ER random hyper-network, the hyper-clustering coefficient increases and the R decreases as the N 
continues to increase. In the k-uniform NW small-world hyper-network, the hyper-clustering coefficient keeps 
decreasing and the R keeps increasing as the N keeps increasing; in the k-uniform BA scale-free hyper-network, 
the hyper- clustering coefficient keeps decreasing and the R keeps increasing as the N keeps increasing. As can 
be seen from Fig. 9, the k-uniform NW small-world hyper-networks and the k-uniform BA scale-free hyper-
networks show the same changing trend, i.e., the hyper- clustering coefficient decreasing and the R increases as 

(a) 3-uniform ER random hyper-

network

(b) 3-uniform NW small-world 

hyper-network

(c) 3-uniform BA scale-free hyper-

network

Figure 6.  Variation of HC with P‑ER, P‑NW, He. 

(a) k-uniform ER random hyper-

network

(b) k-uniform NW small-world hyper-

network

(c) k-uniform BA scale-free hyper-

network

Figure 7.  Variation of R with P_ER, P_NW and He when k = 3,4,5
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(a) k-uniform ER random hyper-

network

(b) k-uniform NW small-world hyper-

network

(c) k-uniform BA scale-free hyper-

network

Figure 8.  Variation of HC with P_ER, P_NW and He when k is different.

(a) k-uniform ER random hyper-

network

(b) k-uniform NW small-world hyper-

network

(c) k-uniform BA scale-free hyper-

network

Figure 9.  Relationship between R and HC when N is different (k = 3,4,5).

Table 3.  Numerical magnitudes of R and HC for the three types of k-uniform hyper-networks at different N. 

N = 100 N = 500 N = 700 N = 1000

ER_hyper-network

 k = 3
R 13.482 5.477 4.5463 4.413

HC 0.1143 0.2167 0.2296 0.2398

 k = 4
R 14.6651 6.2192 6.0182 5.8242

HC 0.1482 0.4637 0.6483 0.8756

 k = 5
R 14.4849 5.4539 5.3025 4.2277

HC 0.2056 0.7998 1.0787 1.1058

NW_hyper-network

 k = 3
R 20.625 29.971 34.814 36.235

HC 0.9593 0.8144 0.7878 0.6904

 k = 5
R 10.0984 13.142 13.6896 14.9198

HC 0.5603 0.517 0.4921 0.4855

 k = 7
R 5.9754 7.2791 7.3702 7.7857

HC 0.9931 0.6186 0.5095 0.5056

BA_hyper-network

 k = 3
R 81.999 250.642 315.508 418.237

HC 0.619 0.457 0.391 0.3148

 k = 4
R 75.1547 248.8911 322.4018 413.3311

HC 0.4098 0.1482 0.1245 0.1007

 k = 5
R 69.1208 245.5323 314.8336 407.5843

HC 0.5477 0.1942 0.1575 0.1224
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the N keeps increasing. And the k-uniform ER random hyper-network exhibits a different trend from the other 
two types of k-uniform hyper-networks, i.e., the hyper-clustering coefficient keeps increasing and the R keeps 
decreasing as the N keeps increasing.

From Fig. 9, it can be seen that although the three types of k-uniform hyper-networks show different trends 
between the R and hyper-clustering coefficient, all three types of k-uniform hyper-networks exhibit smaller 
R for larger hyper-clustering coefficients, i.e., the greater the hyper-clustering coefficient, the greater the 
synchronization ability. When considering the effect of a single variable on its synchronization ability under 
different hyper-network structures, the trend of the hyper-clustering coefficient can be used to characterize the 
trend of the synchronization ability of a uniform hyper-network.

Figure 10 shows the different relationships between the synchronization ability and the hyper-clustering 
coefficient for the three types of 3-uniform hyper-networks with different P‑ER, P‑NW and He. From the data 
in Table 4, it can be seen that the hyper-clustering coefficient of the 3-uniform ER random hyper-network keeps 
increasing and the R keeps decreasing as the probability of connection hyper-edges P‑ER keeps increasing; the 
hyper-clustering coefficient of the 3-uniform NW small-world hyper-network keeps decreasing and the R keeps 
decreasing as the probability of adding hyper-edges P‑NW keeps increasing; the hyper- clustering coefficient of 
the 3-uniform BA scale-free hyper-network keeps increasing and the R keeps decreasing as He keeps increasing. 
As can be seen from Fig. 10, among the three types of 3-uniform hyper-networks, the 3-uniform ER random 
hyper-network and the 3-uniform BA scale-free hyper-network show the same changing trend, i.e., the hyper-
clustering coefficient keeps increasing and the R keeps decreasing with the increasing probability of connection 
hyper-edges P-ER and He. In contrast, the 3-uniform NW small-world hyper-network indicates a different trend 

(a) 3-uniform ER random hyper-network(N=500) (b) 3-uniform ER random hyper-network(N=1000)

(c) 3-uniform NW small-world hyper-network(N=500) (d) 3-uniform NW small-world hyper-network(N=1000)

(e) 3-uniform BA scale-free hyper-network(N=500) (f) 3-uniform BA scale-free hyper-network(N=1000)

Figure 10.  Relationship between R and HC when P‑ER, P‑NW, He are different.
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from the other two types, i.e., the hyper-clustering coefficient keeps decreasing and the R keeps decreasing with 
the increasing probability of adding hyper-edges P‑NW.

From Fig. 10, it can be seen that among the three types of 3-uniform hyper-networks, with the increasing of 
P‑ER and He, both 3-uniform ER random hyper-networks and 3-uniform BA scale-free hyper-networks exhibit 
the larger the probability of connection hyper-edges P‑ER and He, the larger the hyper- clustering coefficient 
and the smaller the R, i.e., with the increase of P‑ER and He, the larger the hyper- clustering coefficient and the 
stronger the synchronization ability. And the 3-uniform NW small-world hyper-networks show a different trend 
from the other two types of uniform hyper-networks, i.e., the larger the probability of adding hyper-edges P‑NW, 
the smaller the hyper-clustering coefficient, the smaller the R, and the stronger the synchronization ability. It 
is thus clear that under different hyper-network structures and considering different variables, although the 
synchronization ability of three types of uniform hyper-networks increases with the increase of different variables, 
the hyper-clustering coefficient of the three types of uniform hyper-networks shows different trends with the 
increase of different variables. When both the structure and the variables of the considered hyper-networks are 
different, it is not possible to characterize the trend of the hyper-network synchronization ability uniformly 
using the trend of the hyper-clustering coefficient. Yet, when the hyper-network structure is determined, if 
only a single variable is considered, the trend of the change of the hyper-clustering coefficient can be used 
to characterize the trend of the hyper-network synchronization ability now. For instance, when considering 
the variation of the synchronization ability of a 3-uniform ER random hyper-network with the probability of 
connection hyper-edges P‑ER, the trend of the hyper-clustering coefficient can be used to characterize the trend 
of the synchronization ability.

From Figure 11, it can be seen that among the three types of k-uniform hyper-networks, with the increasing of 
P‑ER and He, both k-uniform ER random hyper-networks and k-uniform BA scale-free hyper-networks exhibit 
the larger the probability of connection hyper-edges P‑ER and He, the larger the hyper- clustering coefficient 
and the smaller the R, i.e., with the increase of P‑ER and He, the larger the hyper- clustering coefficient and 
the stronger the synchronization ability. And the k-uniform NW small-world hyper-networks show a different 
trend from the other two types of uniform hyper-networks, i.e., the larger the probability of adding hyper-edges 
P‑NW, the smaller the hyper-clustering coefficient, the smaller the R, and the stronger the synchronization ability. 
Specific analysis is the same as that of the 3-uniform hyper-network.

Synchronization ability comparison of k‑uniform hyper‑network
To obtain the strength of synchronization ability of three types of k-uniform hyper-networks. This paper 
compares the size of the eigenvalue ratio R of three types of 3-uniform hyper-networks with the same node size 
N, then obtains the strength of synchronization ability of three types of 3-uniform hyper-networks.

Table 4.  Numerical magnitudes of R and HC for three types of k-uniform hyper-networks for different P‑ER, 
P‑NW and He. 

P-ER = 0.1 P-ER = 0.3 P-ER = 0.5 P-ER = 0.7 P-ER = 0.9

ER_hyper-network

 k = 3
R 23.523 6.869 4.902 4.471 4.373

HC 0.0332 0.1501 0.282 0.4122 0.546

 k = 4
R 19.9581 5.344 3.758 3.0376 2.5302

HC 0.1639 0.3826 0.5952 0.8043 1.0702

 k = 5
R 31.079 7.3227 4.751 3.9171 3.2209

HC 0.2474 0.617 0.9834 1.3294 1.6786

k = 3 P-NW = 0.3 P-NW = 0.5 P-NW = 0.7 P-NW = 0.9

NW_hyper-network

 k = 3
R 154.983 39.837 23.422 17.459 13.696

HC 1.4312 0.9503 0.7026 0.5456 0.4581

 k = 5
R 45.9799 16.0349 10.014 8.1558 7.1328

HC 1.3324 0.3099 0.2871 0.2689 0.2599

 k = 7
R 60.8713 11.5462 7.5317 5.8475 5.2109

HC 1.3614 0.353 0.3458 0.3407 0.3373

He = 1 He = 2 He = 3 He = 4 He = 5 He = 6

BA_hyper-network

 k = 3
R 234.157 187.2823 90.6349 58.723 38.2426 28.438

HC 0.2563 0.3187 0.4104 0.4743 0.4833 0.4885

 k = 4
R 248.8911 162.7441 72.1714 40.7534 34.5272 22.9592

HC 0.1482 0.2829 0.3364 0.3465 0.3544 0.3893

 k = 5
R 245.5323 190.7416 82.1763 59.8465 37.1564 30.5083

HC 0.1942 0.3085 0.4241 0.4519 0.492 0.5079
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Figure 12 shows the variation of the R for the three types of 3-uniform hyper-networks as the N varies. It can 
be seen that when the N is fixed, the one with the largest R among the three types of 3-uniform hyper-networks 
is the 3-uniform BA scale-free hyper-network, followed by the 3-uniform NW small-world hyper-network, and 
the smallest is the 3-uniform ER random hyper-network, i.e., the hyper-network with the best synchronization 
ability among the three types of 3-uniform hyper-networks is the 3-uniform ER random hyper-network, followed 
by the 3-uniform NW small-world hyper-network, and finally the 3-uniform BA scale-free hyper-network. As 
can be seen from Fig. 12, with the increasing N, only the R curves of the 3-uniform ER random hyper-network 
show a decreasing trend, while the R curves of the 3-uniform NW small-world hyper-network and the 3-uniform 
BA scale-free hyper-network show an increasing trend. The trend of the R curves of the three types of 3-uniform 
hyper-networks shows that the best synchronization ability is 3-uniform ER random hyper-networks when the 
N is large, which is also consistent with the results of the comparison of the synchronization ability of several 
types of networks in complex networks.

Figure 13 shows the variation of the hyper-clustering coefficient of the three types of 3-uniform hyper-
networks as the N changes. The results in Fig. 13 show that the hyper-clustering coefficient curves of the 
3-uniform ER random hyper-network show an increasing trend with the increasing N, while the hyper-clustering 
coefficient curves of the 3-uniform NW small-world hyper-networks and the 3-uniform BA scale-free hyper-
networks show a decreasing trend.

Table 3 shows the relationship between the R and the hyper-clustering coefficient HC for three types of 
k-uniform hyper-networks with different N(k = 3,4,5). The results shown in Table 3 indicate that the R of the 
k-uniform NW small-world hyper-network and the k-uniform BA scale-free hyper-network decrease with 
increasing hyper-clustering coefficient as the N continues to increase, i.e., the smaller the hyper- clustering 
coefficient in the k-uniform NW small-world hyper-network and the k-uniform BA scale-free hyper-network, 
the stronger the synchronization ability of the hyper-network. On the contrary, in the k-uniform ER random 
hyper-network, the R increases with the decreasing hyper-clustering coefficient as the N keeps increasing, 
i.e., the smaller the hyper-clustering coefficient in the k-uniform ER random hyper-network, the stronger 
the synchronization ability of the hyper-network. In summary, with the increasing size of nodes, the trend of 
synchronization ability of all three types of uniform hyper-networks can be characterized by the trend of the 
hyper-clustering coefficient.

Table 4 shows the relationship between the R and the hyper-clustering coefficient HC for two types of hyper-
networks with different P‑ER, P‑NW(k = 3,4,5). From Table 4, it can be seen that in the k-uniform ER random 

(a) k-uniform ER random hyper-

network

(b) k-uniform NW small-world hyper-

network

(c) k-uniform BA scale-free hyper-

network

Figure 11.  Relationship between R and HC when P‑ER, P‑NW, He are different (k = 3,4,5).

Figure 12.  Comparison of three types of uniform hyper-networks R with different N. 
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hyper-network, when the N is certain, the hyper-clustering coefficient increases continuously with the increasing 
probability of connection hyper-edges P‑ER and the R decreases continuously; while in the k-uniform NW 
small-world hyper-network, when the N is certain, the hyper-clustering coefficient decreasing continuously 
with the increasing probability of adding hyper-edges P‑NW and the R decreases continuously. Under both types 
of hyper-network structures, the synchronization ability is enhanced with the increasing P‑ER, P‑NW, but the 
hyper-clustering coefficient of the two types of hyper-networks show different trends with the increasing P‑ER, 
P‑NW at this time.

In summary, when the N of k-uniform hyper-networks is certain, the synchronization ability of both 
k-uniform ER random hyper-network and k-uniform NW small-world hyper-network increases with the increase 
of P‑ER, P‑NW, but the hyper- clustering coefficient of the two types of hyper-networks show different trends. 
Therefore, when considering the effects of two different variables, the probability of connection hyper-edges P‑ER 
and the probability of adding hyper-edges P‑NW on the synchronization ability of the two types of k-uniform 
hyper-networks, the synchronization ability of the two types of hyper-networks shows different trends about the 
hyper-clustering coefficient. It is thus clear that the variation of synchronization ability of the two types of hyper-
networks cannot be measured purely by the indicator of hyper-clustering coefficient when both the structure 
and variables of the considered hyper-networks are different.

Discussion
In this paper, we propose a Kuramoto model expression that is more suitable for describing the synchronization 
of k-uniform hyper-networks and propose an expression for the generalized Laplacian matrix of uniform 
hyper-networks. Based on the size of the R as the basis for judging the strength of synchronization ability, we 
compare and analyze the synchronization ability of three types of k-uniform hyper-networks and obtain different 
relationships between the synchronization ability of hyper-networks and the hyper-clustering coefficient. The 
strongest synchronization ability among the three types of k-uniform hyper-networks obtained by experimental 
analyze is the k-uniform ER random hyper-network, followed by the k-uniform NW small-world hyper-network, 
and the worst synchronization ability is the k-uniform BA scale-free hyper-network. In analyzing the effect 
of N on the synchronization ability of the three types of uniform hyper-networks, the k-uniform ER random 
hyper-network exhibits increasing synchronization ability with increasing N, while the k-uniform NW small-
world hyper-network and the k-uniform BA scale-free hyper-network exhibit decreasing synchronization ability 
with increasing N. In analyzing the effects of parameters on the synchronization ability of uniform hyper-
networks, the k-uniform ER random hyper-network exhibits increasing synchronization ability with increasing 
probability of connection hyper-edges P‑ER. The k-uniform NW small-world hyper-network exhibits increasing 
synchronization ability with increasing probability of adding hyper-edges P‑NW. The k-uniform BA scale-free 
hyper-network exhibits increasing synchronization ability with increasing number of joining hyper-edges He 
per time step. In this paper, the relationship between the hyper-clustering coefficient and the synchronization 
ability is also explored while analyzing the strength of the synchronization ability of uniform hyper-networks. It is 
concluded that when the influence of a single variable on the synchronization ability is considered under different 
hyper-network structures, the changing trend of the synchronization ability can be characterized by the changing 
trend of the hyper-clustering coefficient, but when both the considered hyper-network structures and variables 
are different, the changing trend of the hyper-clustering coefficient and the changing trend of the synchronization 
ability is different under different hyper-network structures, and the change of the synchronization ability of 
k-uniform hyper-networks cannot be measured by a single indicator of the hyper-clustering coefficient at this 
time.

Figure 13.  Comparison of three types of uniform hyper-networks HC with different N. 
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Data availability
The processed data required to reproduce these findings cannot be shared at this time as the data also forms part 
of an ongoing study. In future, the processed data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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