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Neural inhibition as implemented 
by an actor‑critic model involves 
the human dorsal striatum 
and ventral tegmental area
Ana Araújo 1,2,3,4,5, Isabel Catarina Duarte 1,2, Teresa Sousa 1,2, Joana Oliveira 1,2, 
Ana Telma Pereira 1,2,3,4, António Macedo 1,2,3,4,5 & Miguel Castelo‑Branco 1,2,4*

Inhibition is implicated across virtually all human experiences. As a trade‑off of being very efficient, 
this executive function is also prone to many errors. Rodent and computational studies show that 
midbrain regions play crucial roles during errors by sending dopaminergic learning signals to the 
basal ganglia for behavioural adjustment. However, the parallels between animal and human neural 
anatomy and function are not determined. We scanned human adults while they performed an 
fMRI inhibitory task requiring trial‑and‑error learning. Guided by an actor‑critic model, our results 
implicate the dorsal striatum and the ventral tegmental area as the actor and the critic, respectively. 
Using a multilevel and dimensional approach, we also demonstrate a link between midbrain and 
striatum circuit activity, inhibitory performance, and self‑reported autistic and obsessive–compulsive 
subclinical traits.

In the course of their daily lives, individuals often encounter complex and dynamic situations demanding the 
inhibition of conflicting impulses to select the most appropriate actions. While intact inhibition is associated with 
better physical and mental  health1, failures of this process underly a range of neurodevelopmental disorders such 
as autism spectrum disorder (ASD) and obsessive–compulsive disorder (OCD)2–4. Even in healthy individuals, 
inhibitory processes are very susceptible to failures such as inadvertently running a semaphore red  light5. In these 
scenarios, the ability to learn from errors and adjust actions accordingly is essential for adaptive  behaviour6,7.

Despite its multifaceted nature, inhibition has often been assessed as a unitary  construct8. Even paradigms 
that dissociate inhibition into distinct domains lack a consensual explanatory  framework4. This picture hinders 
the fine-grained understanding of the potentially distinct inhibition facets and their links with the underlying 
 neurobiology2. To mitigate these challenges, we assumed that inhibition requires learning, and used a functional 
magnetic resonance imaging (fMRI) approach to isolate the neural processes underlying successful and failed 
inhibition, with a specific focus on the behavioural strategy. Then, we integrated our results in the context of a 
well-validated reinforcement learning framework: the actor-critic  model9,10. Reinforcement learning is a type of 
learning, in which subjects learn, by trial-and-error, from their own outcomes to improve future  performance10.

In the actor-critic  model9,10, the critic estimates the value of each state to predict future reward and then trains 
the actor to select the specific action that maximizes reward and minimizes negative outcomes. Evidence originat-
ing from rodent and computational models implicates the ventral tegmental area (VTA) and the substantia nigra 
(SN) as the  critic11,12, and the dorsal striatum as the  actor13. By learning over time from the midbrain dopamine 
neuromodulation, the basal ganglia help to select and initiate the best actions from numerous less adaptive pos-
sible  choices14–19. However, investigation of these structures in humans has been rare and predominantly using 
reward-conditioned tasks. Hence, how the circuits between the midbrain and striatum adjust to trial-and-error 
learning in the human brain remains largely unknown, and such insights would hold value for understanding 
the mechanisms underlying inhibitory control.

The primary focus of our work was on the neural correlates of trial-and-error inhibitory learning using the 
stop-signal task (SST) as a suitable paradigm to investigate this  process20–24. Participants were instructed to 
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respond to go-signals but to withhold their response on a minority of trials if a stop-signal followed the go-signal. 
The stop-signal serves a dual purpose as it provides an instruction to withhold an ongoing response and also 
conveys direct information about the performance  outcome20. The SST is commonly used to study inhibitory 
control and, as it generates many errors, also involves  learning21,23. Errors in the SST are distinct from those 
in reward tasks, as they arise from performance failures. Such failures require error monitoring and strategy 
 adjustment21,22. In the SST literature, it is generally accepted that these two error-related processes are encoded 
during failed  inhibition21. The task algorithm is adaptive to keep performance around a 50% error level (“clamp” 
mechanism)24, and participants were informed of this feature. They were also informed that both responding 
fast on go-trials and inhibiting the button press on stop-trials were equally important and they should discover 
(learn) the optimal balance between rapid response execution and successful  inhibition24.

We followed the hypothesis that the behavioural strategy in the SST is largely determined by the interplay 
between successful and failed inhibition, through successive adjustments and learning. Accordingly, we addressed 
the role of the midbrain and basal ganglia regions by comparing successful and failed inhibition outcomes. In 
line with the actor-critic model analogies, we predicted midbrain and basal ganglia recruitment in relation to the 
appearance of the unexpected stop signal (successful inhibition and failed inhibition). We also expected to find 
associations between patterns of activity in the actor-critic regions and: (a) participants’ performance (especially 
in the dorsal striatum, i.e. the actor) and (b) neurobehavioral subclinical traits of ASD and OCD.

Results
Self‑report and performance data
Participants adhered to the task rules as indicated by the low rate (< 5%) of omission go trials. In around half of 
the stop trials (51.58 ± 0.67%), participants were able to successfully withhold their response (Successful Stop), 
while in the other half, they failed to stop (Failed Stop), which reflects the effective operation of the staircase 
procedure. The mean reaction time on go trials (GoRT; 612.84 ± 36.19 ms) and stop-signal reaction time (SSRT; 
243.98 ± 9.20 ms) were within the normal  range25. The strategy applied by the group revealed mean response 
delays (mean stop-signal delay [SSD]) of 367.49 ± 40.61 ms. While the SSRT reflects the final output of the stop-
ping process, the SSD is related to the individual stopping  strategy26. Given our focus on the trial-and-error learn-
ing processes underlying inhibition, for subsequent brain-behaviour analysis, we only report results concerning 
the SSD. However, it is important to note that we were able to replicate those results for the GoRT, a variable that 
is intrinsically related to the SSD.

As expected, mean scores of ASD (14.22 ± 1.89) and OCD traits (13.79 ± 8.01) were below the cut-off of each 
scale.

Region of interest analysis of basal ganglia and midbrain dopaminergic regions
Our region of interest (ROI) analysis was focused on the basal ganglia and its dopaminergic connections with 
midbrain regions, based on the hypothesis that implicates these structures in inhibition and reinforcement 
learning. First, we defined our ROIs based on whole-brain GLM analysis for the contrast Correct Go + Success-
ful Stop + Failed Stop + Inter-trial Interval > Baseline, which were further validated with anatomical  criteria27,28. 
Multiple comparisons correction was set taking into account the localization nature of this independent analysis, 
such that for smaller structures (those in the midbrain) our threshold was more liberal. This resulted in four ROIs: 
bilateral caudate’s head, dorsal anterior putamen (Fig. 1A; Table 1), VTA, and SN (Fig. 1B; Table 1). Then, for the 
resulting ROIs, we extracted the beta values for our two contrasts of interest: successful inhibition (Successful 
Stop > Correct Go) and failed inhibition (Failed Stop > Correct Go). Regions size and peak voxels are described in 
Table 1. For detailed information regarding the strategy to define our relevant ROIs see the “Methods” section, 
Supplementary Fig. 1, and Supplementary Table 1.

Figure 1.  (A) Region of interest defined by the intersection between a larger cluster from the whole-
brain analysis (Correct Go + Successful Stop + Failed Stop + Inter-trial Interval > Baseline; RFX, t(20) = 5.84, 
p-FDR = 0.001) and anatomical boundaries of the caudate (green) and putamen (blue). (B) Region of interest 
defined by intersections between our whole-brain activations (Correct Go + Successful Stop + Failed Stop + Inter-
trial Interval > Baseline; RFX, t(20) = 4.41, p-FDR = 0.005) and anatomical boundaries of the substantia nigra 
(red) and ventral tegmental area (orange).
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Associations between task strategy and brain activation
To characterize the relationship between participants’ behavioural strategy (SSD) and our ROI activation (beta-
values in the dorsal caudate and putamen, SN, and VTA) related to the defined contrasts of interest (successful 
inhibition [Successful Stop > Correct Go] and failed inhibition [Failed Stop > Correct Go]), we applied brain-
behaviour correlation analysis. Failed inhibition-related striatal activity correlated with longer SSD in both the 
caudate (r = 0.608, p-FDR = 0.018) and putamen (r = 0.578; p-FDR = 0.036). There was no statistically significant 
correlation between task performance and successful inhibition activity in either of the analyzed ROIs nor 
between task performance and SN/VTA failed inhibition activity. For detailed information regarding the cor-
relations between task performance and brain activation see Supplementary Table 2.

Effect of trial outcome: successful inhibition vs. failed inhibition
To test if failed inhibition (which was presumed to lead to post-error behavioural adjustment) requires higher 
midbrain-basal ganglia activation than successful inhibition, we used a two-factor (ROI and trial outcome) mixed 
repeated measures ANOVA. It revealed a significant effect of the trial outcome on brain activation (Huynh–Feldt 
F (6.854, 20) = 17.258, p < 0.001). We then performed post hoc paired samples t-tests (Supplementary Table 3) 
to investigate the sources of this effect. As shown in Fig. 2, we found that it resulted mainly from a significantly 
increased VTA response related to failed inhibition.

Together, these findings point towards the VTA and the striatum as functional regions implicated in error 
processes that come into action when inhibition fails, with distinct roles.

Mediation model
To test midbrain-striatum analogies with the actor-critic model during inhibitory learning, we tested two com-
plementary versions of our hypothesized mediation model (Fig. 3). Specifically, we evaluated the mediation role 
of the striatum activity (caudate and putamen) on the relationship between the VTA activity and task strategy 
(SSD values). We found two significant indirect effects related to failed inhibition, namely of: a) the caudate 
on the relationship between the VTA and the SSD, and b) the putamen on the relationship between the VTA 
and SSD. The indirect pathway models explained 39.12% (Model 1: F = 5.784 p = 0.012) and 33.45% (Model 2: 
F = 4.523, p = 0.026) of the variance of the SSD. We further tested these models with GoRT as outcome variable 
and we were able to replicate the presented results for the caudate (mediator). 

The results of all these models point to a pathway in which the VTA affects task performance through its 
relationship with the striatum and go against a direct effect of the VTA on behavioural adjustment.

Functional connectivity analysis
In order to investigate the strength of connectivity between our regions of interest during the task, we conducted 
an ROI-to-ROI correlation analysis, using the ROIs previously defined in the striatum and  midbrain29. Figure 4 
illustrates the significant connections between the nodes of the defined network, represented as a connectome 
ring. We found that all nodes were positively connected, in particular, within the striatum. Moreover, as shown 
in Table 2, the caudate was the most significantly connected node. All caudate connections highly differed from 
zero (as confirmed by the t-values), suggesting a central role of this region in receiving and sending information 
to other key nodes during inhibition.

We then investigated how was each of these regions connected with all other regions of the brain taking into 
account the SSRT. To further elucidate the role of the midbrain and the striatum on the inhibitory process, we 
asked if the connectivity between our seed regions and other voxels in the brain differed between subjects with 
inhibitory performance higher and lower than the average (Fig. 5). Participants with higher inhibitory perfor-
mance (SSRT < 243.98 ms) presented higher connectivity between (a) the VTA and a cluster including the right 
putamen and globus pallidus (t = 5.19, p-FDR = 6.10 ×  10–4)), (b) the caudate and a cluster including the right 
putamen and globus pallidus (t = 5.09, p-FDR = 7.60 ×  10–4), and (c) the putamen and a cluster centered in the 
left caudate (t = 5.67, p-FDR = 4.50 ×  10–4).

Associations between self‑report measures and inhibitory‑related neural responses
To investigate if the brain regions implicated in inhibitory learning were related to subclinical manifestations of 
neurodevelopmental spectrum traits, we analyzed correlations between brain activity in our clusters and self-
reported measures scores (n = 19). Self-reported ASD scores decreased with increasing failed inhibition-related 

Table 1.  List of basal ganglia and midbrain ROIs used for analysis, based on our hypothesis and resulting 
from the intersection between our whole-brain analysis (correct go + successful stop + failed stop + inter-trial 
interval > baseline) and anatomical boundaries.

Region

MNI coordinate (peak)

Nr voxels t Px y z

Dorsal Caudate bilateral 16 16 0 1348 8.300  < 1.00 ×  10–6

Dorsal Putamen bilateral 17 16  − 1 935 7.956  < 1.00 ×  10–6

Substantia nigra bilateral  −7  − 22  − 11 288 6.146 5.00 ×  10–6

Lateral VTA bilateral 5  − 16  − 12 604 6.705 2.00 ×  10–6
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activity in the putamen (r = − 0.558, p = 0.04) and VTA (r = − 0.527, p = 0.04, FDR-corrected within the symptom 
dimension), and the same relationship emerged for OCD scores, in the SN (r = − 0.570, p = 3.5 ×  10–2), VTA 
(r = − 0.517, p = 0.035), and caudate (r = − 0.512, p = 0.035, FDR-corrected within the symptom dimension) related 
to successful inhibition.

These findings suggest that midbrain and striatal activation during specific stages of the inhibitory process 
are associated with decreased subclinical neurodevelopmental-spectrum manifestations.

Discussion
Inhibition is implicated across virtually all our human experiences. As a trade-off of being very efficient, this cog-
nitive function is also prone to many errors. Identifying which neural processes underly the responses elicited by 
those errors is crucial to understand adaptive and disordered behaviour. In the present study, we invited healthy 
adults to perform a task that is typically used to probe inhibitory control, and, as it generates many errors, also 
requires trial-and-error learning and strategy  adjustment21. We captured two distinct facets of the inhibitory 
process: successful inhibition and failed inhibition. Considering that next action selection is encoded together 
with previous outcome  monitoring30, this approach allowed us to investigate the neural correlates of post-error 
behavioural adjustment during failed inhibition.

Rodent and computational studies show that the midbrain regions play crucial roles during errors by send-
ing dopaminergic learning signals to the basal ganglia for action  selection11,12,31–38. However, the human neural 
processes underlying post-error adjustments remain elusive as there is an obvious lack of investigation in the 
 field27,39. Here, we were interested in trial-and-error mechanisms underlying inhibitory learning. This is a crucial 
function in our daily life as it contributes to withholding irrelevant actions while selecting the most adaptive 
ones. Guided by an animal and theoretically validated learning model, the actor-critic  model9,10, we were able 
to integrate our fMRI results and draw key analogies with human neural functioning. Our main findings were 
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Figure 2.  Differences between average ROI responses when comparing successful inhibition and failed 
inhibition. Error bars represent the standard deviation. There was a significant effect of the ventral tegmental 
area response on participant performance (t(20) = 3.977, p < 0.001, Cohen’s d = 0.543, 95% CI [0.356, 1.364]), 
which therefore was the main region contributing to this effect. **p < 0.01.
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as follows: (a) compared with go trials, both failed and successful inhibition recruited the VTA, SN, and the 
dorsal striatum (caudate and putamen); (b) increased failed inhibition-related activity in the dorsal striatum 
was associated with slower responses; (c) failed inhibition, compared with successful inhibition, led to increased 
activation in our relevant brain structures, in particular, the VTA; (d) during failed inhibition, activity in the 
dorsal striatum fully mediated the effect of the VTA on the task performance strategy; (e) connectivity analy-
sis further supported the functional relevance of a network including the VTA, SN, caudate and putamen; (f) 

Model 1:

Model 2:

X: VTA Failed Inhibi�on-
related ac�vity

Y: Stop-Signal Delay

M: Caudate Failed 
Inhibi�on-related ac�vity

a = 1.284 (0.211)** b = 0.165 (0.060)*

c’ = -0.080 (0.101) ns

ab = 0.211 (0.101), 95% CI [0.032, 0.425]

X: VTA Failed Inhibi�on-
related ac�vity

Y: Stop-Signal Delay

M: Putamen Failed 
Inhibi�on-related ac�vity

a = 1.151 (0.262)** b = 0.115 (0.054)*

c’ = -5.00x10-4 (0.0876) ns

ab = 0.132 (0.078), 95% CI [0.007, 0.314]

Figure 3.  Serial multiple mediation models 1 and 2 show two significant indirect effects of the ventral 
tegmental area on task strategy (stop-signal delay) mediated by the striatum (caudate or putamen). Numbers 
represent unstandardized coefficients. Numbers in parentheses represent standard errors. VTA: ventral 
tegmental area; X: predictor variable; M: mediator; Y: outcome variable; a: effect of X on Y; b: effect of M on Y; 
ab: indirect effect of X on Y; c’: direct effect of X on Y; CI: confidence interval; **p < 0.01, *p < 0.05, ns: non-
significant.

Figure 4.  ROI-to-ROI connectivity results, considering data from all subjects, during task performance. The 
color bar represents the strength of the t-statistic when evaluating how much differs connectivity from zero.
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increased inhibitory activation in both the midbrain and striatum correlated with decreased scores on ASD and 
OCD subclinical dimensions.

The ability to identify unpredicted stimuli and redirect attention and behavior accordingly is crucial for 
optimal learning. Our findings show that when compared with the go trials, both successful and failed stop tri-
als recruited regions in the midbrain and dorsal striatum. Specifically, the VTA, SN, caudate’s head, and dorsal 
anterior putamen activated during the appearance of the unpredicted stop-signals independently of whether the 
outcome was positive (successful inhibition) or negative (failed inhibition). Reward prediction error theories 
postulate that dopamine neurons fire to expected or actual  rewards11,12. However, accumulating animal evi-
dence challenges this view by identifying subpopulations of dopaminergic neurons with heterogeneous response 
 profiles31,36,37,40–44. Matsumoto and  Hikosaka35 recorded monkeys’ dopaminergic activity in the VTA and SN 
during a Pavlovian procedure and found that while ventromedial neurons encoded reward prediction error, 
neurons located in the dorsolateral region were excited by both reward and punishment, especially when they 
were unexpected. Our findings indicate that the “warning reaction” evoked by the stop-signal activates the mid-
brain and dorsal striatum regardless of the specific positive or negative trial outcome. Thus, our results in human 
males are in line with the existing non-human and experimental literature. In addition, we provide support for 

Table 2.  Average connectivity values for the selected network during task resolution. The statistical t-values 
indicate the degree of difference between each connectivity node and zero. p-values are corrected for the total 
number of connections tested.

Network connection t (19) p-FDR Effect size

Caudate—Putamen 13.64 1.00 ×  10–7 0.45

VTA—SN 7.29 2.00 ×  10–6 0.20

Caudate—SN 5.60 4.20 ×  10–5 0.10

Caudate—VTA 5.45 4.40 ×  10–5 0.14

Putamen—VTA 4.64 2.15 ×  10–4 0.11

Putamen—SN 3.93 9.09 ×  10–4 0.09

Figure 5.  Whole-brain connectivity analysis when considering as seed region the VTA (A), caudate (B), and 
putamen (C). Color bar represents the strength of the t-statistic when evaluating how much differs connectivity 
between subjects with SSRT lower than the average (higher inhibitory control) and subjects with SSRT higher 
than the average (lower inhibitory control). The correlation between each seed region and each voxel of the 
brain is displayed at a voxel threshold of p = 0.005 and a cluster threshold of p-FDR = 0.05.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6363  | https://doi.org/10.1038/s41598-024-56161-8

www.nature.com/scientificreports/

the functional specialization of the dorsolateral striatum and midbrain in trial-and-error performance, which 
is distinct from reward-prediction error  processing11,12.

It is important to note that, by comparing successful and failed inhibition, we found significant error-related 
increased activation in the VTA. Based on learning theories, successful inhibition induces a tendency toward 
repeating the same action, and failed inhibition promotes  switching23,45. Thus, we may hypothesize that the VTA 
activation during errors not only reflects the “surprise effect” to the unexpected stop-signal but also encodes 
an additional operation that induces strategy adjustment. We need to consider the possibility that errors may 
have resulted from momentary attentional  lapses26. Although our fMRI design limits conclusions regarding this 
issue, the generalized task-related default mode network deactivation found in our exploratory whole-brain 
contrasts indicates that participants were engaged during most of the experiment. Also during failed inhibition, 
larger activation in the caudate’s head, and dorsal anterior putamen affected the reaction times and was associ-
ated with response slowing. Usually, this type of delay on the SST is part of a strategy based on the individual’s 
motivations to improve the chances of successfully  stopping22–24. These results are consistent with the role of the 
basal ganglia in action initiation and  performance19 and specifically implicate the dorsal striatum in readjusting 
action-outcome associations during  errors6. Verharen et al.44 found that the stimulation of the rat D2 receptors 
in the dorsolateral striatum promoted explorative choice behaviour and led to response time increases. Similarly, 
in our study, participants with higher error-related activity in the dorsal striatum presented longer and more 
delayed reaction times. It is plausible to presume that striatal activation during errors leads to post-error slowing, 
reflecting the choice to switch to an explorative mode of action. Together, these findings seem to indicate that 
while the VTA activates to the occurrence of errors as a control-level mechanism, activity in the dorsal striatum 
is related to post-error instrumental  adjustments46.

Guided by the actor-critic framework, our mediation models and connectivity analysis corroborated the func-
tional relevance of a pathway linking the VTA to the dorsal striatum (caudate and putamen) leading to strategy 
adjustment. Our results suggest that VTA identifies the unexpected stop-signal and estimates an error measure 
based on the mismatch between the required and the current performance. It might thus use this information 
to “criticize” the dorsal striatum which then plays the actor by operationalizing the required behavioural adjust-
ments. In conditioned learning tasks, the dorsomedial striatum processes stimulus–response associations and 
motor and cognitive control, and the ventromedial striatum is involved in reward and punishment  learning6,47. 
Here, we found a role of the dorsal striatum in instrumental trial-and-error learning that appears to be relatively 
independent of the affective input coming from the ventral striatum. Alternatively, we may have to consider that 
activation in the ventral striatum during performance errors was too brief to be detected by the  fMRI21. Enhanced 
temporal precision functional neuroimaging techniques might help clarify this question. The same rationale 
applies to other regions within the basal ganglia such as the subthalamic nucleus and the globus pallidus, whose 
roles in modulating the direct and indirect pathways have been  described20,48.

Another extensively studied dichotomy in the basal ganglia is between the caudate and putamen in relation 
to goal-directed and habitual actions, respectively. There is an ongoing debate about whether they operate in 
functionally segregated  loops15 or if there is a dynamic shift between goal-directed and habitual  modes5,49. Our 
connectivity data shows that the caudate and putamen were concomitantly engaged and interacted with each 
other and the midbrain during inhibitory learning. Further, we found stronger connectivity between these regions 
in individuals exhibiting better inhibitory abilities. This might suggest that the representation of the instrumental 
outcome in the SST serves both as an outcome underlying goal-directed learning, and it also reinforces the associ-
ation between the action and the antecedent stimuli as part of a co-occurring habit-related  process6. Importantly, 
the caudate showed the highest connectivity scores with the other regions (putamen, SN, and VTA), ascribing 
a central role to the goal-directed system during our task. These data go against the view that the corticostriatal 
loops function independently and suggest that inhibition requires cooperation between the goal-directed and 
habitual systems. Although our fast event-related design used for activity analysis did not allow for separating 
brain connectivity into failed versus successful stops, this is an interesting question for future studies.

Symptoms in psychiatry are seen as dimensional constructs and it is relatively well accepted that a continuum 
exists from normal to pathological  behavior50. The impairment in inhibitory control and the underlying basal 
ganglia dysregulation has been implicated in both ASD and  OCD3,51. However, it is unlikely that the same deficit 
explains distinct  phenotypes52. Moreover, the exact direction of the brain activity impairments leading to dis-
ordered behaviour is inconsistent across  studies51. Our observations in healthy individuals suggest a protective 
function of the midbrain and striatum responses regarding subclinical psychiatric symptoms. Autistic traits 
increased with decreased activation in the putamen, VTA, and SN during failed inhibition, which corresponds 
to the period when error awareness processes take place. The link between autism and impaired error monitor-
ing is well-documented53. Here, we propose that this relationship also encompasses the subclinical spectrum. 
Failure to activate the SN, VTA, and caudate during successful inhibition was positively correlated with OCD 
features. This is consistent with the tendency seen in OCD patients to be less goal-oriented and more habitual, 
at least to positive  outcomes54. Our results suggest that although distinct, the neural substrates underlying the 
overlap between ASD and OCD subclinical features in healthy individuals are closely intertwined. Future work 
in healthy and clinical samples should thus treat inhibition as a multifaceted  phenomenon52.

In conclusion, we used a multilevel and dimensional approach and demonstrated a link between midbrain 
and striatal circuit activity, performance on an inhibition task, and self-reported ASD and OCD traits. During 
instrumental learning, the roles of the dorsal striatum and the VTA were respectively consistent with the actor 
and the critic postulated by animal models of reinforcement learning. We thus provide evidence for an actor-critic 
network in the human brain subserving trial-and-error inhibitory learning which is also implicated in subclinical 
ASD and OCD manifestations. Because this was a male sample and the age range was relatively limited, gen-
eralization of the present findings to the female sex and other neurodevelopmental windows, requires further 
investigation. Nevertheless, our findings highlight that these questions deserve further investigation and that 
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the pathway between the VTA and the dorsal striatum may be of particular interest when studying instrumental 
performance in reaction and inhibitory tasks.

Methods
Participants
The reported analyses included twenty-one healthy right-handed adult males, recruited locally using social 
media advertising. We decided to exclude female participants to avoid the confounding effect resulting from sex 
differences in the actor-critic network activation, as it was previously  shown55. The age of the participants was 
29.56 ± 2.22 years (mean ± standard deviation), allowing us to evaluate a neurodevelopmental period in which 
inhibitory abilities are already well-developed55.

We excluded participants with psychiatric or medical disorders affecting brain development, drug/alcohol 
dependency, history of head injury, abnormal structural MRI scans, and MRI contraindications.

All participants underwent a comprehensive clinical assessment including an interview with the Mini-Inter-
national Neuropsychiatric Interview for DSM-IV – Portuguese version 5.0.0 (Guterres T, Levy P, Amorim P 
(1999), unpublished manuscript)56. Evaluation with the Wechsler Adult Intelligence Scale – third  edition57,58 was 
applied to all except two of the participants who were unable to return to the research center until the end of the 
recruitment. Those participants were however included in the analysis because showed no signs of intellectual 
disability and were able to comprehend the task. Detailed information regarding the sample’s characteristics 
is provided in Supplementary Table 5. Although the relationship between inhibitory control and intelligence 
remains  unclear59, we would not expect to find an influence of IQ on task performance and brain activation. 
This was proven in our analysis.

This study was conducted under the Declaration of Helsinki. We obtained ethical approval from the local 
Research Ethics Committee (CHUC-089-20) and all participants signed written informed consent after a detailed 
explanation of the study procedure.

MRI procedure
The acquisition session comprised one structural and three functional sequences. The task was performed dur-
ing the last half-hour of an MRI session with a total duration of 1 h. The SST was presented on an LCD monitor 
(48.5 × 87.8 cm, 1920 × 1080 pixel resolution, 60 Hz refresh rate) which the participants viewed through a mirror 
mounted above their eyes. The distances from the eye to the top and to the bottom of the screen were 1750 mm 
and 1825 mm, respectively. Participants’ responses were collected via an MRI-compatible response box. All 
participants used the dominant hand. When necessary, we ensured correction to normal vision using specific 
magnetic field-compatible eyeglasses.

Stop‑signal task
We developed and presented the SST using Psychophysics Toolbox 3 on MatLab R2019b (The MathWorks, 
Inc., USA) according to previous consensus  guidelines22–24,60, as illustrated in Fig. 6. The participants could 

Figure 6.  Schematic of the fMRI implementation of the stop-signal task. The task included 3 runs of 120 trials 
(a total of 360 trials). Within each run, the trials were presented in blocks of 20 trials (60 s) interleaved with a 
baseline of 25 s. Go trials (75%) began with a fixation dot (250 ms) followed by a go-signal, which was a white 
arrow either pointing to the right or left side on the screen, instructing participants to press the left or right 
button of the response. Stop trials (25%) began with a fixation dot (250 ms) followed by the white arrow, which 
turned red (stop-signal) after a variable period of time (stop-signal delay), instructing the subject to withhold 
the response. Approximately half of the stop trials could not be stopped, as desired from the implementation of 
the staircase. The inter-trial interval (the time between the end of the previous trial and the start of the current 
trial) was jittered between 750 and 2750 ms. ITI inter-trial interval, jit jittered, SSD stop-signal delay.
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respond by pressing with the right hand one of two buttons (left or right) of an MRI-compatible response box. 
We instructed participants to quickly press the right or the left button on go-trials (75% of the total number of 
trials) and to withhold their response on stop-trials (25% of the total number of trials). We also informed them 
that both stopping on stop-trials and responding fast on go-trials were equally important; that go-trials were 
aborted after a fixed period of time; that the task was adaptive to their performance so that at the end of each run 
the number of Successful and Failed Stop was approximately equal, and that stopping would not be possible in 
some of the stop-trials. Participants completed 3 runs of 120 trials (a total of 360 trials). Within each run, blocks 
of 20 trials were interleaved with baseline periods of 25 s. At the beginning of each trial, a black dot appeared 
on the screen (250 ms). There were two types of trials. The trial began with an arrow pointing to the right or 
left side on the screen (go-signal). The arrow was displayed within the central 2.25 degrees of the visual field. 
In 25% of trials (the stop trials), the arrow in the go-signal turned red (stop-signal). The trials ended at button 
press or after 1250 ms if the participant did not respond (Successful Stop or Omission Go). We randomly jittered 
the mean Inter-trial Interval (ITI; the time between the end of the previous trial and the start of the current trial) 
between 750 and 2750 ms to optimize statistical efficiency. The SSD (the delay between a go-signal and a stop-
signal) started at 200 ms and was dynamically changed according to an adaptive staircase procedure, with a 50% 
performance criterion. If the participant stopped successfully on a stop trial, the SSD latency of the following 
stop trial increased by 50 ms (up to a maximum of 950 ms), making the task more difficult for the next trial; if 
the participant failed, the SSD latency decreased by 50 ms (up to a minimum of 100 ms). In this way, at the end 
of the task, successful stopping was always approximately 50%. Feedback about task performance (RT, number 
of Omission go trials, and % of Successful Stop) appeared on the screen at the end of each run. Before entering 
the MRI scanner, participants performed a training session (240 trials) of the task.

fMRI acquisition and preprocessing
We acquired functional MRI images using a 3 Tesla Magnetom Prisma Fit scanner (Siemens, Erlangen, Ger-
many), with a 64-channel head coil. The scanning session included one T1-weighted 3D anatomical magnetiza-
tion prepared rapid acquisition gradient echo pulse sequence, with a repetition time (TR) = 1000 ms, echo time 
(TE) = 3.5 ms, resolution 2 mm3, flip angle = 7°, 192 slices and field of view (FOV) = 256 × 256 mm. Afterward, 
we acquired three functional runs using a T2*-weighted gradient echo-planar imaging sequence, with a multi-
band acceleration factor of 6, a slice thickness of 2 mm and voxel size 2  mm2, 72 interleaved slices without gap, 
phase encoding direction from anterior to posterior, parallel to the AC-PC line, TR = 1000 ms, TE = 37 ms, flip 
angle of 68° and FOV of 200 × 200.

Data pre-processing was performed on BrainVoyager 22.0 and 22.4 software (Brain Innovation, Maastricht, 
Te Netherlands). Pre-processing included slice-scan time correction, 3D head-motion correction, and temporal 
high-pass filtering (2 cycles per run). To correct for geometrical distortion, we used the COPE  plugin61. Then, 
we co-registered the resulting fMRI data and anatomical T1-image, applied a normalization to Montreal Neu-
rological Institute (MNI) standard atlas, and performed spatial smooth using a Gaussian kernel with FWHM of 
4 mm. Runs where at some points, the movement exceeded 6 in any axis were excluded from further analysis. 
Accordingly, we excluded a total of 10 runs. We added motion and physiological signals (respiration and cardiac 
signals) as confound predictors into the GLM model. PhysIO toolbox for SPM in  Matlab62,63 was used to create 
the physiological confound predictors.

Self‑reported questionnaires
All the participants except 1 filled in the Portuguese versions of the following questionnaires. Although none 
of those are diagnostic per se, higher scores may indicate the need for a more in-depth clinical  evaluation64,65.

The Autism Spectrum  Quotient64 is a 50-item self-assessment instrument for measuring the degree to which 
any adult of normal IQ has traits associated with the autistic spectrum, across five domains ([poor] social skill, 
[poor] communication, [poor] attention-switching, [exceptional] attention to detail and [poor] imagination). 
The Autism Spectrum Quotient scores of ≥ 32 indicate the need for further clinical evaluation. The dimensional-
ity of the instrument enables the assessment of ASD traits as a continuous, rather than categorical or diagnostic 
variables, which was preferable in the present study as we intended to capture the broad autistic phenotype. The 
Portuguese adaptation of the Autism Spectrum Quotient was performed by a group of experts with experience 
 ASD66.

The Obsessive–Compulsive Inventory –  Revised65 is the short 18-item version of the original 42-item self-
assessment questionnaire. The Obsessive–Compulsive Inventory – Revised evaluates the severity of six obses-
sive–compulsive dimensions (hoarding, checking, ordering, neutralization, cleaning, and obsessions). The instru-
ment was designed for clinical and non-clinical populations. The authors of the original Obsessive–Compulsive 
Inventory – Revised found an optimal cut-off score of 21 (sensitivity 65.6%; specificity 63.6%). The Portuguese 
validation presented good psychometric proprieties and confirmed the six related factors structures of the origi-
nal  scale67.

Stop‑signal task performance variables
To evaluate performance on the  SST22,23, we calculated the GoRT, SSD, and the SSRT. The SSRT is a quantitative 
estimate of the time needed to abort a prepotent (already initiated) response. To estimate the SSRT, we used the 
integration method from Verbruggen et al.24, taking into consideration the independent race  model22. Shorter 
SSRTs are indicative of faster reactive  stopping22, involving a balanced strategy between faster reaction times 
and the tendency to slow down. While the SSRT reflects the overall efficiency of the stopping process, the SSD 
determines the individual stopping strategy. Higher SSDs are associated with response slowing, usually applied 
to increase the likelihood of successful stopping (“speed-accuracy trade-off ”).
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Data analysis
For the preprocessing of the neuroimaging data and beta-extraction of the mean activation of our ROIs, we 
used the Brain Voyager 22.0 and 22.4 software (Brain Innovation, Maastricht, the Netherlands). In the first-level 
analysis for each subject, we used a general linear model approach. We obtained the predictor’s model by con-
volution of the time course of each condition with a two-gamma hemodynamic response function. We modeled 
all regressors with a duration of 1 TR (1 s) from the onset of the stimulus presentation (left and right-pointing 
arrow). Three types of trial outcomes were distinguished: Correct Go (go trials in which participants pressed the 
correct right or left button), Successful Stop (stop trials in which participants inhibited the response of pressing 
the button), and Failed Stop (stop trials in which participants incorrectly pressed the button). Note that Incorrect 
Go (go trials in which participants pressed the wrong-side button) or Omission Go trials were not included in 
the model because were rare events and not all the participants committed those errors.

For the second-level analysis, we applied a random effects (RFX) analysis at the group level to examine the 
task-related activation (Correct Go + Successful Stop + Failed Stop + Inter-trial Interval > Baseline) across the whole 
brain. In line with conceptualizations of inhibition as a dynamic process, this whole-brain exploratory analysis 
aimed to identify the areas recruited during the SST, encompassing all its required cognitive processes. Then, 
based on the resulting clusters and guided by current models of inhibition and reinforcement learning, we defined 
our ROIs in the basal ganglia and dopaminergic midbrain. Supplementary Fig. 1 illustrates the group brain activ-
ity map resulting from the contrast between the task and baseline periods. Detailed information regarding the 
identified clusters is provided in Supplementary Table 1. Contrary to our expectation, neither the subthalamic 
nucleus nor the nucleus accumbens were in our activation map, even at lower thresholds, so they were excluded 
from the subsequent region of interest analysis. Both anatomical and functional criteria, taking the intersection 
of our RFX significant functional activation and anatomical boundaries in the basal ganglia (caudate, putamen, 
globus pallidus, subthalamic nucleus, SN) and the dopaminergic midbrain (nucleus accumbens, VTA)28, were 
used. To distinguish the clusters within the basal ganglia (RFX, t(20) = 5.84, p-FDR = 0.001), we applied the 
MNI-305  Atlas68 from the Neuroimaging & Surgical Technologies (McGill University). To identify the SN and 
midbrain regions, as these are smaller structures difficult to isolate with  fMRI21,68,69, we used the intersections 
between our whole-brain maps corrected at a more liberal threshold (RFX, t(20) = 4.41, p-FDR < 0.005) and two 
probabilistic atlases of the SN and  VTA27,28 from the Adcock Lab (Duke University). We confirmed the selected 
clusters by comparing our peak voxel coordinates with previously outlined anatomical  landmarks27,28.

Beta-values were extracted from our ROIs for two contrasts of interest: successful inhibition (Successful 
Stop > Correct Go) and failed inhibition (Failed Stop > Correct Go)70. In the SST literature, it is generally accepted, 
that both error monitoring and post-error behavioural adjustment are encoded during failed  inhibition21. Here, 
we modeled these two error-related processes as a unitary construct using the contrast of failed inhibition (Failed 
Stop > Correct Go). Importantly, while error detection briefly (~ 100 ms) deactivates regions of the salience net-
work, given the low fMRI temporal resolution, this contrast, which joins error monitoring with adjustment, 
consistently shows positive brain activity within this  network21,71.

In the subsequent analysis, we used the Statistical Package for Social Sciences, version 26 (SPSS ®, Chicago, 
IL, USA) to assess the correlations between brain activation, performance variables, and subclinical traits of 
ASD and OCD. To investigate activation differences between successful and failed inhibition in our ROIs, we 
performed a two-factor (ROI and trial outcome) mixed repeated measures ANOVA followed by the post hoc 
paired samples t-Tests. The resulting statistics were corrected to p-FDR = 0.05. Then, we conducted a mediation 
analysis using PROCESS macro (Model 4) for  SPSS72. The effects were estimated with 5000 bias-corrected boot-
strap samples. This approach allowed us to investigate the mediation role of the basal ganglia on the relation-
ship between midbrain activation and task performance. Only the variables that presented significant results in 
the previous analysis were inserted into the mediation model. Because most of the variables presented normal 
distributions and homogeneity of variances in Kolmogorov–Smirnov and Levene’s Test, respectively, we used 
parametric statistics in the analysis.

To further investigate the functional relevance of the circuitry tested we performed a functional connectivity 
analysis using the CONN toolbox version 22.a73 on MATLAB 2020b (MathWorks®). Data were preprocessed 
using the default minimal preprocessing pipeline. This included functional realignment and unwarp, slice-timing 
correction, outlier detection, functional normalization into MNI reference space, and spatial smoothing with a 
8 mm full width at half maximum Gaussian kernel. Anatomical data preprocessing comprised direct segmenta-
tion and normalization, and normalization to MNI space. Subsequently, denoising was performed (by default) 
to minimize the presence of non-neural noise sources and residual subject motion effects in the BOLD signal. 
Then, measures of region-to-region functional connectivity (Fisher-transformed Pearson’s correlations) during 
task performance were computed including all participants’ data. Only the ROIs previously defined (VTA, SN, 
caudate, and putamen) were  considered29. Functional connectivity between these brain regions was indexed by 
a matrix of correlation coefficients reflecting the association between average temporal BOLD time series sig-
nals across all voxels in each brain region. Statistical values from these analyses were corrected to p-FDR = 0.05. 
Additionally, we ran a seed‐based connectivity analysis to obtain brain maps of the estimated functional con-
nectivity between each of our ROI and all the voxels in the brain. In first‐level analyses, for each participant, a 
seed‐based connectivity map was obtained by computing Fisher‐transformed correlation coefficients between 
the seed ROI and all other voxels. Then, subject‐level results were contrasted between subjects with SSRT lower 
than the average (SSRT < 243.98 ms, higher inhibitory control) and subjects with SSRT higher than the average 
(SSRT > 243.98 ms, lower inhibitory control) to investigate whether the connectivity between our seed regions 
and other brain regions differed between groups. Connectivity values were estimated using a voxel threshold of 
p = 0.005 and a cluster threshold of p = 0.05 (FDR-corrected). The final functional connectivity group difference 
maps were converted to t‐statistics and overlaid onto the standard MNI template for visualization purposes.
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Age and IQ were not included as co-variates in the analysis because no significant correlations were found 
between these and the other variables in the study (task performance and brain activity). These parameters also 
did not differ between groups with faster and slower inhibitory performance.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to ethical restric-
tions but are available from the corresponding author on reasonable request.
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