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Measuring the similarity of charts 
in graphical statistics
Krzysztof Górnisiewicz 1,3*, Zbigniew Palka 1,3 & Waldemar Ratajczak 2,3

Figures used in statistics and other sciences play a vital role in understanding and analyzing the 
problems under study. Due to the complexity and diversity of these problems, figures such as 
cartograms, choropleth maps, or radar charts take various geometric forms. Their visual evaluation 
from the view of geometric similarity is essential but insufficient. This paper proposes and theoretically 
justifies new metrics based on graph theory. They make it possible to quickly determine the degree 
of similarity of the statistical figures used in the research procedure. The new metrics were used 
to 1. Determine the similarity of the domestic route networks of major U.S. airlines, 2. Determine 
the similarity of the distribution of votes cast in U.S. presidential election in each state in 2016 and 
2020, 3. Compare radar charts of some countries, constructed based on the Global Competitiveness 
Index, 4. Analyze the similarity of neutrosophic double line graphs representing sets of approximate 
(neutrosophic) numbers. This improves analytical capabilities concerning various processes mapped 
with well-known types of statistical charts, such as choropleth maps, radar charts, etc.
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Graphical statistics provides ample opportunities not only to describe, but also to better understand a range of 
processes—natural, geographic and social.

Having originated in the 15th  century1 and made significant advances in the 18th and  19th2–6, the field is in 
constant development. It has seen particular progress since the emergence of graphics and computer cartogra-
phy;  see7–15.

The historical development of graphical statistics is presented in depth in seminal papers by authors such as 
Friendly and Tobler.

Researchers’ scientific needs and creative capabilities have resulted in using many types of geometric charts in 
graphical statistics, depicting various properties and interdependencies of different natural and social processes. 
Some have played and continue to play critical roles in analysis in statistical, econometric, economic, and geo-
graphical studies and in many other sciences. Significant types include choropleth maps, cartograms, and radar 
charts. Their valuable property is that they can also be represented as a graph.

Visual assessment is the primary way to determine the degree of similarity of such charts corresponding to the 
spatial units under study. For example, one may assess the similarity of their shape as substantial, average, weak, 
etc. Then, one may use a nominal or ordinal scale of measurement. This limits the possibility of applying certain 
mathematical operations. On the other hand, the use in such a case of an interval or quotient scale requires the 
definition of an appropriate metric, enabling an accurate determination of the degree of similarity of the charts. 
Such an approach is proposed in this work.

We present here a new proposal for determining the degree of similarity between statistical charts of the 
same type—for example, radar charts—using a newly defined topological metric. The structure of the paper is 
as follows. The “New metrics between graphical structures” Section presents the construction of the proposed 
metrics δ , δ∗ , γ , and γ ∗ . The metrics are based on the topological properties of statistical graphs. Therefore, some 
concepts from graph theory are used in this section to the extent necessary to give a strict definition of these 
metrics. In the “Applications of the new metrics” Section, the defined metrics are used to determine the degree of 
similarity of well-known types of statistical  graphs16. These are analyzed in the following areas. First, we compare 
the structural similarities of three domestic route networks of major U.S. airlines in 2022. Next, we examine the 
distances between choropleth maps depicting the 2016 and 2020 U.S. presidential election results, including the 
strength of electoral votes in U.S. states. One of the significant achievements in this paper is the adoption of our 
metrics for two radar charts instead of two graphs. This allows us to compare the socio-economic situation of 
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the countries depicted in the radar chart. Finally, we perform a similarity analysis of neutrosophic double-line 
graphs representing sets of approximate numbers.

The work is followed by four appendices containing supplementary materials. Also included is code for 
quickly determining the degree of similarity of radar charts.

New metrics between graphical structures
In its simplest form, a network is a collection of points joined together in pairs by lines, which is appropriate here. 
The points are referred to as vertices and the lines as edges. Many objects of interest in the physical, biological, 
social, and geographical sciences can be called networks.

Several mathematical models of networks have been implemented  (see17). Traditional models, such as random 
graphs and their extensions, mimic the patterns of connections in real networks. The fundamental paper  of18 
initiated essential research on random graphs and their applications, including the contribution of Erdös and 
Palka’s  papers19,20. In contrast to the random approach, we will apply here the most basic network model, namely 
the simple graph introduced by  Euler21 in 1736.

A simple graph G = (V ,E) is a pair of two finite sets, namely a non-empty set of vertices V and a set of edges 
E, which is a subset of unordered pairs of vertices from V. In particular, the set of edges can be empty; in that case 
G is called a null graph. We will adopt the following labeling convention. In mathematical formulae and inequali-
ties, and only there, the symbol V stands for |V|—the number of vertices, and E stands for |E|—the number of 
edges. This convention allows mathematical formulae to be written in a form that is easier to read and does not 
cause ambiguity. In graphical statistics, a question naturally arises about the distance between given graphs.

Let us consider two graphs G1 = (V1,E1) and G2 = (V2,E2) . The choice of a metric between these graphs 
depends on the particular problems under investigation. For example, in a paper by Baláž et al.22, issues from 
organic chemistry were considered. To define the distance between graphs representing chemical structures, 
they used as a base concept the joint edges of the graphs under consideration, namely

where E1,E2 are the numbers of edges of graphs G1 and G2 , respectively, E(1,2) is the number of common edges in 
those graphs, and |V1 − V2| is the absolute value of the difference of the numbers of vertices in those structures. 
This metric is useful in determining the similarity of graphs in a case when the distribution of edges is impor-
tant—as in chemical structures.

In applications in geographical and other social sciences, in many cases we are dealing with graphical struc-
tures without any connections. In this case, Baláž’s metric (1) is useless, since the absolute value of the difference 
of the numbers of vertices in such structures does not correctly characterize geographical properties in practical 
considerations. Furthermore, from a geographical point of view, two subgraphs of a given graph may be treated 
as identical, even though from the point of view of classical graph theory, those structures are topologically 
different. To be more precise, in our investigations, two subgraphs representing geographical structures with 
a common vertex set and the same number of edges will be treated as identical, so the distance between them 
must be zero. This is not guaranteed by the metric (1).

Consequently, a new metric, denoted by PRW, between graphs G1 and G2 was proposed in a paper by Palka 
et al.23 in which the geographical aspect of the graph is taken into account. A fundamental property of geographic 
graphs is that their description considers the proper names of the elements of their structure, i.e., edges or ver-
tices. In general, the names describing the vertices of geographic graphs are more important than the names of 
edges. Here, instead of the notation PRW, we will use the Greek letter δ . The primary role in our metric is played 
by the symmetric difference of the vertex sets V1 and V2 and the absolute value of the difference of the numbers of 
edges in those structures. The symmetric difference of sets V1 and V2 , V1△V2 , is defined as (V1 ∪ V2) \ (V1 ∩ V2) , 
and is visualized using a Venn diagram in Fig. 1.

The metric between graphs G1 and G2 is defined by Palka et al.23 as follows:

where V1△2 denotes the number of vertices in the symmetric difference of sets V1 and V2 . Note that only two 
graph parameters determine the value of this metric: the numbers of vertices and edges of the graphs being 

(1)d(G1,G2) = E1 + E2 − 2E(1,2) + |V1 − V2|,

(2)δ(G1,G2) = V1△2 + |E1 − E2|,

Figure 1.  Venn diagram of symmetric difference, V1△V2 . Source: Own compilation.
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considered. Furthermore, it is easy to check that δ(G1,G2) = 0 if and only if V1 is the same as V2 and both graphs 
have the same number of edges, i.e. E1 = E2 , which is consistent with our discussion of the similarity of graphs 
representing geographical structures.

Since the symmetric difference V1△V2 can be expressed as

we have

where V (1,2) stands for the number of common vertices in those graphs. Finally, we obtain our distance in a more 
convenient form, namely

The property of symmetry of δ is obvious, since δ(G1,G2) = δ(G2,G1). Thus, we present a formal proof that for 
three given graphs G1 , G2 , and G3 , the distance δ satisfies the triangle inequality, i.e.

Clearly

since |a− b| is a metric on the real number line. Thus we need to show only that the following inequality holds:

After simple modifications, we obtain the inequality

It is easy to check that in the case when V1 ∩ V3 is the empty set and V2 is contained in V1 ∪ V3 , the left-hand side 
of this inequality equals zero. In all other cases, its value is at least one. This completes the proof.

Consequently, the proposed distance between graphs (in the form 2 or 3) satisfies the necessary properties of 
a metric. In the case of null graphs, this metric will be denoted as γ and has the following simple form

Note that if two graphs are not empty but have the same number of edges, then δ = γ . Nevertheless, we will use 
the notation γ only in the case of null graphs.

It terms out that in practical applications, dealing with a relative value of the distance δ or γ is more help-
ful than their absolute values, as in (3) and (4). Considering the possible applications of the measurement of 
similarities of geographical subgraphs, we propose in this paper to divide the value of δ and γ by the number 
of vertices in V1 ∪ V2 . Consequently, the formulae for the relative distances δ∗ and γ ∗ of a given pair of graphs, 
say G1 and G2 , are

and

respectively. The value of the denominator in (5) and (6) is greater than zero, since both V1 and V2 are non-empty 
sets. As in the case of the metric δ , the relative distance δ∗(G1,G2) = 0 if and only if V1 and V2 are the same and 
E1 = E2 . Furthermore, the relative distance for null graphs always satisfies the inequality 0 � γ ∗ � 1.

Let us emphasize again that the value of the metric δ∗ is determined by two parameters, the numbers of ver-
tices and edges of the graphs under consideration, and has nothing to do with their topological structures. In 
Fig. 2, there are two subgraphs (black and red edges, respectively) on the same vertex set V = {1, 2, . . . , 22} , for 
which the distance δ∗ equals zero. This is because both subgraphs have the same number of edges, equal to 21.

A simple transformation of formula (5) provides the following form for our distance:

From this formula, it is easy to see that

To illustrate this case, let us consider the two graphs shown in Fig. 3. The black graph has 19 vertices and 18 edges, 
whereas the red graph has 16 vertices and 15 edges. Moreover, the two graphs have 13 common vertices (marked 
green). Consequently the inequality V (1,2) > |E1 − E2| holds, and by (7) the distance between these graphs is 0.55.

(V1 \ (V1 ∩ V2)) ∪ (V2 \ (V1 ∩ V2)),

V1△2 = V1 + V2 − 2V (1,2),

(3)δ(G1,G2) = V1 + V2 − 2V (1,2) + |E1 − E2|.

δ(G1,G2)+ δ(G2,G3) ≥ δ(G1,G3).

|E1 − E2| + |E2 − E3| ≥ |E1 − E3|,

V1 + V2 − 2V (1,2) + V2 + V3 − 2V (2,3) ≥ V1 + V3 − 2V (1,3).

V2 − V (1,2) − V (2,3) + V (1,3) ≥ 0.

(4)γ (G1,G2) = V1 + V2 − 2V (1,2).

(5)δ∗(G1,G2) =
V1 + V2 − 2V (1,2) + |E1 − E2|

V1 + V2 − V (1,2)

(6)γ ∗(G1,G2) =
V1 + V2 − 2V (1,2)

V1 + V2 − V (1,2)
,

(7)δ∗(G1,G2) = 1−
V (1,2) − |E1 − E2|

V1 + V2 − V (1,2)
.

δ∗ < 1 if and only if V
(1,2) > |E1 − E2|.
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On the other hand

It appears that the value of the relative distance δ∗ may be substantially large. Indeed, let us consider two graphs 
G1 = (V1,E1) and G2 = (V2,E2) where G1 is a complete graph on the vertex set V1 , i.e. each pair of vertices from 
V1 is connected by an edge, and G2 is a null graph having one vertex, which is also an element of V1 . Consequently

Thus from (7) we obtain

δ∗ > 1 if and only if |E1 − E2| > V
(1,2).

E1 =

(

V1

2

)

=
1

2
V1(V1 − 1), V (1,2) = 1 and V1 + V2 − V (1,2) = V1.

Figure 2.  Two subgraphs with the distance δ∗ = 0 . Source: Own compilation.

Figure 3.  Two graphs with distance δ∗ < 1 . Source: Own compilation.
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if V1 � 2 . To illustrate this case, let us consider the two graphs shown in Fig. 4. G1 is a complete graph on the 
vertex set {1, 2, 3, 4} , while G2 is a null graph on a single vertex {4} . By (7)

Another task encountered in such fields as international economics, urban economics, socio-economic geog-
raphy, sociology, etc. is comparison of the socio-economic situation of countries, cities, etc., depicted on a radar 
chart. This may also be known as a web chart, irregular polygon, star plot polygon, or polar chart. Radar charts 
have a long history, having been invented by Georg von Mayr in 1877 (see Appendix 2). Figure 5 shows a radar 
chart of two countries. The image spanned by the values of 100 categories represents an ideal case in the sense that 
all factors (pillars) are taken into account; for example, some countries are developed to the maximum degree. 
This is a situation which in reality will probably never occur. However, the question can be posed: what is the 
distance between specified countries in terms of the given n pillars (in the example in Fig. 5, n = 12 )? Here, we 
propose to adopt a γ metric for two radar charts, say R1 and R2 , rather than two graphs. Instead of taking into 
account the number of vertices of the graphs, our metric will be based on the areas of corresponding parts of 
the radar charts.

Let A(F) denote the area of a figure F. Let Ri,1 and Ri,2 denote the i-th parts of the given radar charts R1 and 
R2 . Then

where n is the number of pillars in R1 and R2.
First, let us note that the metric γ (Ri,1,Ri,2) must be considered separately for each i-th part of the radar 

charts. Keeping in mind formula (4) and the assumption that the metric for radar charts is based on the area of 
corresponding parts, we have, for a given i:

where A(Ri,1) and A(Ri,2) are the areas of Ri,1 and Ri,2 , respectively, and A(R(1,2)
i ) is the area of Ri,1 ∩ Ri,2 . Let 

△XYZ denote the triangle with vertices X, Y and Z. We have to analyze two significantly different situations.
Case 1. In a given part the lines of the two tested figures do not intersect.
For example, in Fig. 5, in the part between the first and second pillars, the red line does not cross the green 

line. This situation is simple to analyze. As shown in Fig. 6a, in this case we have two triangles, say △Q1OQ2 and 
△P1OP2 , of which the second is properly contained in the first. Thus, by (9),

(In practical applications the number of the part of the charts, i.e. the value of i, will be known.)
Case 2. In a given part the lines of the two tested figures intersect.
For example, in Fig. 5, in the part between the ninth and tenth pillars, the red line crosses the green line. This 

situation is somewhat more involved to analyze than Case 1. Nevertheless, as is shown in Fig. 6b:

Consequently, by (9)

δ∗(G1,G2) = 1+
|E1 − E2| − V (1,2)

V1

=
1

2
V1 +

1

2
−

1

V1

≥
1

2
V1,

δ∗(G1,G2) = 2
1

4
>

1

2
V1 = 2.

(8)γ (R1,R2) =

n
∑

i=1

γ (Ri,1,Ri,2),

(9)γ (Ri,1,Ri,2) = A(Ri,1)+ A(Ri,2)− 2A(R
(1,2)
i ),

(10)γ (Ri,1,Ri,2) = A(△Q1OQ2)− A(△P1OP2).

A(R
(1,2)
i ) = A(△Q1OQ2)− A(△P1RQ1).

Figure 4.  Two graphs for which δ∗ > 1 . Source: Own compilation.
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Figure 5.  Radar map of two countries. Source: own compilation.

Figure 6.  Two different cases of intersection of radar maps. Source: own compilation.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6893  | https://doi.org/10.1038/s41598-024-56156-5

www.nature.com/scientificreports/

and finally we have for Case 2, for this particular part of the charts,

In the case of the metric γ ∗ , let us assume that we are dealing with m radars R1,R2, . . . ,Rm . Let

be the largest value of metric γ . Then for a given pair of radars—Rk ,Rl , say—we define the metric γ ∗ as follows:

In socio-economic studies and many others, there are very often situations where available sets of numerical 
data are ambiguous. Then for example, neutrosophic statistic tools can be used—including neutrosophic statisti-
cal graph  (see24–28). Their spatial structure can be very different. Hence assessing the mutual similarity of such 
figures can be difficult. The metric derived in this paper make it easy to determinate the degree of similarity 
between netrosophic graphs.

Based on the determination of the metric γ for radar maps, we will now describe an idea of applying our 
approach to asses the “proximity” of the data represented by uncertain numbers.

In the first step we define a metric between given sets of points on the plane. Let B = {(a1, b1), . . . , (an, bn)} 
and C = {(a1, c1), . . . , (an, cn)} , where a1 < a2 < · · · < an , bi � 0 , ci � 0 , be two sets of n points. Cor-
responding to them are the polygons PB , PC with vertices PB = {(a1, b1), . . . , (an, bn), (an, 0), (a1, 0)} and 
PC = {(a1, c1), . . . , (an, cn), (an, 0), (a1, 0)} , which define the closed and connected set. Keeping in mind our 
previous considerations we propose the distance γ (B,C) between sets B and C as

where A(F) denotes, as before, the area a figure F (compare with (10) in the case of radar maps).
Now we ready to define a new metric for neutrosophic sets. Let us assume that we have two data sets of 

uncertain numbers N1 = {d11 + u11, . . . , d1n + u1n} and N2 = {d21 + u21, . . . , d2n + u2n} describing n given 
objects (more details about neutrosophic statistic number  see24). An example of such sets in case when 
N1 = {10+ 1.0, 5+ 1.5, 2+ 2.5, 4+ 2.25, 6+ 0.5} and N2 = {7+ 2.5, 5+ 2.0, 3+ 0.25, 2+ 1.25, 8+ 2.25} , is 
presented in the form of neutrosophic double line graph on Fig. 7.

Our goal is to propose a metric between N1 and N2 , which will be based on a metric between polygons. A 
crucial point in our considerations is as follows. Instead of using metric (13) directly to the sets N1 and N2 , we 
will consider more sophisticated approach, namely we take into account the minimum and maximum values of 
uncertain numbers and create the four sets of plane points:

γ (Ri,1,Ri,2) = A(△P1OP2 − A(△Q1OQ2)+ 2A(△P1RQ1)

(11)γ (Ri,1,Ri,2) = A(△P1RQ1)+ A(△P2RQ2).

M = max
({

γ (Ri ,Rj) : 1 � i, j � m
})

,

(12)γ ∗(Rk ,Rl) =
γ (Rk ,Rl)

M
.

(13)γ (B,C) = A(PB)+ A(PC)− 2A(PB ∩ PC),

Figure 7.  Intersection of two neutrosophic double line graphs ( N1-red, N2-green). Source: Own compilation.
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Consequently having in mind the expression (13) we postulate the following formula for the distance between 
the sets X and Y of uncertain numbers:

To illustrate this idea let us return to the example on Fig.  7; we have the following four sets: 
Nmin
1 = {10, 5, 2, 4, 6} , Nmax

1 = {11.0, 6.5, 4.5, 6.25, 6.5} , Nmin
2 = {7, 5, 3, 2, 8} , Nmax

2 = {9.5, 7.0, 3.25, 3.25, 10.25} . 
Corresponding polygons to these sets are presented on Fig. 8.

The application of newly defined metric γ for neutrosohic numbers is outlined in Section “Neutrosophic 
double line graphs”.

Applications of the new metrics
Graphs
Graphs describe spatial relations using various metrics, often understood as distance functions. They also help 
determine, for example, the accessibility of certain spatial points, the spatial structure of objects consisting of 
points and connecting lines, etc. (e.g.29). In some scientific work, for example in the procedure of grouping the 
objects under study due their structural similarity it is necessary to determine the degree of similarity of such 
objects. The proposed distances δ and δ∗ can be used to achieve this goal. We illustrate this by comparing the 
structural similarities of three major U.S. airlines. It is virtually impossible to determine visually the similarity 
or dissimilarity of the connection networks of these airlines; see Fig. 9. It is, however, feasible if the δ and δ∗ 
metrics are used.

Based on the data in Table 1, namely E,V ,V (1,2),V (1,3),V (2,3) , one can easily determine the degree of similar-
ity between the domestic connection networks offered by these airlines. This degree of similarity is determined 
by the numerical values of the metrics δ and δ∗ . It can be concluded that in terms of structure, the connection 

Nmin
1 = {(1, d11), . . . , (n, d1n)},

Nmax
1 = {(1, d11 + u11), . . . , (n, d1n + u1n)},

Nmin
2 = {(, d21), . . . , (n, d2n)},

Nmax
2 = {(1, d21 + u21), . . . , (n, d2n + u2n)}.

(14)γ (N1,N2) =
1

4
(γ (Nmin

1 ,Nmin
2 )+ γ (Nmin

1 ,Nmax
2 )+ γ (Nmax

1 ,Nmin
2 )+ γ (Nmax

1 ,Nmax
2 )).

Figure 8.  Four pairs of polygons corresponding to neutrosophic numbers N1 , N2 . Source: own compilation.
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networks of American Airlines and Delta differ the most. On the other hand, the greatest similarity is found 
between the network structures of Delta and United Airlines. It should be added that the numerical values of 
the metrics can, of course, be used in various kinds of studies and reports on the spatial optimization of airline 
connections.

Especially when new air routes are planned and the problem of competition between airlines arises. It should 
be notes that the metrics used here, can be used to analyze the similarity of the structure of various network 
like objects.

Choropleth maps
In spatial economics there is often a need to compare various spatial structures, for example, in the form of 
choropleth maps (see Appendix 2). Figure 10 shows three choropleth maps depicting the same region, whose 
seven internal spatial units are categorized into four spatial types: A, B, C, and D (In cartography, charts in the 
form of choropleth maps are also known as cartograms proper, because their scale is discontinuous (discrete).). 
Comparative analysis requires establishing the similarity between the objects—preferably through an explicitly 
defined distance. Both γ and γ ∗ can be used for this purpose. It is clear that the regions 1, 2 and 3 in Fig. 10 can 
be considered as three null graphs with the same number of vertices, namely 7, and different numbers of com-
mon vertices. Thus, for example: γ (1, 2) = 7+ 7− 2 · 3 = 8 , while γ ∗(1, 2) = 8/11 = 0.73 . In turn, γ (1, 3) = 4 , 
γ ∗(1, 3) = 0.44 , γ (2, 3) = 8 and γ ∗(2, 3) = 0.73 . The result confirms the visual assessment according to which 
choropleth maps 1 and 3 are the most similar in terms of spatial structure.

Our next application deals with the 2016 U.S. presidential election, in which the Democratic Party’s candidate 
was Hilary Clinton and the Republican Party’s candidate was Donald Trump. The choropleth maps in Fig. 11 
illustrate numbers of popular votes cast for both candidates. It is easy to see the great spatial variation in these fig-
ures, as quantified by the metrics γ and γ ∗ given in Table 2. Thus, it is known that the election results in individual 

Figure 9.  The networks of domestic connections of major U.S. airlines in 2022. Source: Own compilation.

Table 1.  Numbers of vertices and edges of the networks of connections of major U.S. airlines and the 
similarity between them expressed by distance. Source: Authors’ calculation.

Airlines E V V
(1,2)

V
(1,3)

V
(2,3)

δ δ∗

AA D UA AA D UA

1. American Airlines (AA) 898 229 165 162 – – 380 346 – 1.3869 1.2014

2. Delta (D) 627 210 – – 154 380 – 174 1.3869 – 0.6282

3. United Airlines (UA) 678 221 – – – 346 174 – 1.2014 0.6282 –
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Figure 10.  Choropleth maps showing a region whose internal units are classified into different types. Source: 
Own compilation.

Figure 11.  Percentage of popular vote in each state of the USA in 2016 and 2020. Source: Own compilation.

Table 2.  Distances between choropleth maps showing the results of the 2016 and 2020 U.S. presidential 
elections. Source: Own compilation.

Candidates

 Metrics

γ γ ∗

2016 Clinton–Trump 86 0.915

2020 Trump–Biden 78 0.867
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states for the Clinton–Trump contest in 2016 were less similar to each other than for the Biden–Trump contest 
in 2020. The metrics γ and γ ∗ also enable an extended analysis of the results of the 2016 and 2020 presidential 
elections. It can be noted, for example, that when the same candidate—Donald Trump, in this case—runs in 
successive elections, the results obtained by him in individual states in 2020 are not a faithful copy of the results 
from the previous election, because the values γ = 8 and γ ∗ = 0.145 are very small.

Election analysts can derive many more conclusions based on the values summarized in Tables 2 and 3 or 
others that can be constructed based on the γ and γ ∗ metrics. Particularly noteworthy, therefore, is the fact that 
quantification of the differences that occur between analyzed images—here choropleth maps—creates the pos-
sibility of further analysis using quantitative methods, which are very important in political and geopolitical 
analysis, for example.

The results in Table 3 allows us to conclude that:

• The choropleth maps showing the results of voting in each state in 2016 and 2020 for candidate Trump are 
the most similar. The corresponding values are γ = 8 and γ ∗ = 0.145 . At the same time, it can be noted that 
not all states in 2020 voted for candidate Trump as in 2016.

• In contrast, the largest disparity between election results is found for candidates Clinton and Trump in 2016 
( γ = 84 and γ ∗ = 0.93 ). It is larger than that between candidates Trump and Biden in 2020 ( γ = 80 and 
γ ∗ = 0.879 ). One can try to determine why?

It should be emphasized at this point, that the identification of the degree of similarity between choropleth 
maps in numerical form creates the possibility of futher in-depth numerical analysis.

Cartograms
Presidential elections in the U.S. are in fact two-tiered: the President is elected by a college of electors representing 
each state. Hence, in assessing the influence of individual states on the final outcome of the elections, the electoral 
strength characterizing each state is an important factor. It can be determined as proposed  by13 using the formula

The results obtained for the 2016 and 2020 presidential elections are summarized in Table 4. The corresponding 
cartograms are shown in Fig. 1230,31.

The indicator (15) is highly dependent on the number of popular votes for each state, which in turn is 
dependent on the number of residents of the state. Thus, as can be easily seen, the highest electoral vote power 
is found in such sparsely populated states as Wyoming, Vermont, Alaska, District of Columbia, etc., and the 
lowest in Florida, North Carolina, Colorado, etc., where the number of residents is large. The γ and γ ∗ metrics 
help determine the degree of similarity of the cartogram constructed for 2016 to the cartogram for 2020. The 
numerical values of these metrics are as follows: γ = 22 , γ ∗ = 0.355 . They confirm the relatively high similarity 
of the two cartograms.

Radar charts
To illustrate the proposed metrics γ , γ ∗ for establishing the geometrical similarity of radar charts, a set of nine 
countries with similar values of the competitiveness coefficient (GCI) was selected. These were the countries 
ranked from 35 to 43, with 4.5 � GCI � 4.7 (see WEF 2017–2018). Their radar charts are shown in Fig. 13. The 
complexity of this figure and the difficult in comparing the different radar charts with each other are readily 
apparent. Use of the metrics γ and γ ∗ makes it easier to determine the similarity and allows further detailed 
comparative analysis.

Table 5 includes the above-mentioned information on the nine selected countries. The table also contains the 
distances between their radar charts in terms of γ ∗.

It may be noted that the GCI values suggest dividing the set of countries into only three subsets, i.e. {Azer-
baijan, Indonesia}, {Malta, Russian Federation, Poland, India, Lithuania, Portugal}, and {Italy}. In contrast, the 

(15)Vote power =

Number of electoral votes
Number of popular votes

mean
(

Number of electoral votes
Number of popular votes

) .

Table 3.  Distances between choropleth maps showing the results of the 2016 and 2020 U.S. presidential 
elections for candidates of the same party and candidates of different parties. Source: Own compilation.

Candidates

 Metrics

γ γ ∗

2016 2020

Trump Trump 8 0.145

Clinton Biden 38 0.543

Clinton Trump 84 0.903

Trump Biden 80 0.879
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Table 4.  Electoral vote power of U.S. states in 2016 and 2020 presidential elections.  
Source: Authors’ calculation.

No Code State Electoral vote

 2016 2020

Vote power Unitized variables Rank Vote power Unitized variables Rank

1 WY Wyoming 3 2.2856 100.0 1 2.4168 100.0 1

2 DC District of Columbia 3 1.8786 75.9 2 1.9424 74.1 2

3 VT Vermont 3 1.8560 74.5 3 1.8205 67.5 5

4 AK Alaska 3 1.8353 73.3 4 1.8604 69.6 3

5 HI Hawaii 4 1.8177 72.2 5 1.5525 52.8 8

6 ND North Dakota 3 1.6981 65.1 6 1.8476 68.9 4

7 RI Rhode Island 4 1.6798 64.1 7 1.7225 62.1 6

8 SD South Dakota 3 1.5800 58.1 8 1.5828 54.5 7

9 WV West Virginia 5 1.3642 45.3 9 1.4028 44.7 9

10 DE Delaware 3 1.3176 42.6 10 1.3262 40.5 10

11 NM New Mexico 5 1.2208 36.8 11 1.2066 34.0 11

12 MT Montana 3 1.1762 34.2 12 1.1080 28.6 13

13 NE Nebraska 5 1.1544 32.9 13 1.1657 31.7 12

14 ID Idaho 4 1.1295 31.4 14 1.0276 24.2 17

15 NH New Hampshire 4 1.0475 26.5 15 1.1062 28.5 14

16 ME Maine 4 1.0424 26.2 16 1.0883 27.5 16

17 NV Nevada 6 1.0392 26.1 17 0.9519 20.1 21

18 AR Arkansas 6 1.0343 25.8 18 1.0974 28.0 15

19 UT Utah 6 1.0337 25.7 19 0.8989 17.2 22

20 KS Kansas 6 0.9874 23.0 20 0.9736 21.2 20

21 MS Mississippi 6 0.9671 21.8 21 1.0183 23.7 18

22 OK Oklahoma 7 0.9390 20.1 22 1.0000 22.7 19

23 TN Tennessee 11 0.8549 15.1 23 0.8031 11.9 28

24 SC South Carolina 9 0.8342 13.9 24 0.7984 11.7 29

25 AZ Arizona 11 0.8333 13.8 25 0.7240 7.6 36

26 CT Connecticut 7 0.8295 13.6 26 0.8557 14.8 24

27 AL Alabama 9 0.8262 13.4 27 0.8637 15.3 23

28 TX Texas 38 0.8258 13.4 28 0.7488 9.0 32

29 KY Kentucky 8 0.8104 12.5 29 0.8348 13.7 25

30 IN Indiana 11 0.7840 10.9 30 0.8086 12.2 27

31 LA Louisiana 8 0.7685 10.0 31 0.8304 13.4 26

32 GA Georgia 16 0.7579 9.4 32 0.7135 7.1 37

33 CA California 55 0.7559 9.2 33 0.7007 6.4 38

34 IA Iowa 6 0.7468 8.7 34 0.7912 11.3 30

35 NY New York 29 0.7321 7.8 35 0.7504 9.1 31

36 WA Washington 12 0.7052 6.2 36 0.6545 3.8 45

37 NJ New Jersey 14 0.7044 6.2 37 0.6861 5.6 39

38 IL Illinois 20 0.7041 6.2 38 0.7391 8.4 33

39 MD Maryland 10 0.7008 6.0 39 0.7341 8.2 35

40 MO Missouri 10 0.6940 5.6 40 0.7368 8.3 34

41 OR Oregon 7 0.6818 4.8 41 0.6573 4.0 44

42 MN Minnesota 10 0.6619 3.7 42 0.6803 5.2 40

43 WI Wisconsin 10 0.6549 3.3 43 0.6760 5.0 42

44 MI Michigan 16 0.6498 3.0 44 0.6440 3.3 47

45 MA Massachusetts 11 0.6448 2.7 45 0.6754 5.0 43

46 OH Ohio 18 0.6383 2.3 46 0.6777 5.1 41

47 VA Virginia 13 0.6359 2.1 47 0.6498 3.6 46

48 PA Pennsylvania 20 0.6323 1.9 48 0.6428 3.2 48

49 CO Colorado 9 0.6310 1.8 49 0.6161 1.7 49

50 NC North Carolina 15 0.6166 1.0 50 0.6053 1.2 50

51 FL Florida 29 0.6001 0.0 51 0.5842 0.0 51
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numerical values of the metric γ ∗ used in Ward’s clustering procedure make it possible to divide this set of coun-
tries in more detail. This is visualized in Fig. 14. Experience suggests that this division is more in line with the 
socio-economic situation of these countries. Determination of this division was made possible by the use of γ ∗.

Neutrosophic double line graphs
Let’s return to the example in Fig.  7, which shows two sets of uncertain numbers, namely 
N1 = {10+ 1.0, 5+ 1.5, 2+ 2.5, 4+ 2.25, 6+ 0.5}, N2 = {7+ 2.5, 5+ 2.0, 3+ 0.25, 2+ 1.25, 8+ 2.25} . Using 
the formula (13), we calculate four metrics γ (Nmin

1 ,Nmin
2 ) , γ (Nmin

1 ,Nmax
2 ) , γ (Nmax

1 ,Nmin
2 ) and γ (Nmax

1 ,Nmax
2 ) , 

whose values are shown in Table 6 (we used a software system Wolfram Mathematica and build in function, to 
compute values of intersection areas).

Figure 12.  Spatial variability of electoral vote power in the U.S. in the period 2016–2020. Source: own 
compilation.

Figure 13.  Radar charts of nine countries with similar Global Competitiveness Index values. Source: Authors’ 
calculations based on WEF 2017–2018 Report.
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Finally, according to the proposed formula (14), the distance between the given sets of uncertain numbers 
γ (N1,N2) = 5.64239.

If we have more than two sets of uncertain numbers, using the normalized metric γ ∗ to compare such 
numbers is more advantageous. After determining the metric γ for each pair of sets of uncertain numbers, we 
normalize it by the value of the largest of them.

As an example, let us consider two additional sets: N3 = {8+ 1.5, 9+ 1.0, 2+ 1.25, 10+ 2.0, 5+ 2, 25} and 
N4 = {1+ 0.75, 5+ 0.5, 2+ 1.0, 4+ 1.5, 8+ 2.25} . Then, we have six possible pairs (see Fig. 15), for which 
we calculate γ metrics. Proceeding as in the example above, we determine areas of polygons for each pair and 
calculate the γ metric, according to formula (14). Then, we normalize each of them by dividing its value by the 
largest γ . The relevant results are summarized in Table 7.

In the considered example, the farthest from each other in the sense of our proposed metric are the sets N3,N4 , 
( γ ∗(N3,N4) = 1 ), while the closest are the sets N1,N2 ( γ ∗(N1,N2) = 0.3995 ). This is consistent with the visual 
assessment of the mutual position of these sets in Fig. 15, but more accurate.

Conclusions
In the field of statistics, and graphical statistics in particular, many types of chart have been developed to facilitate 
the understanding and depiction of the relationships occurring in time and space between the various phenom-
ena and factors under study. Some of them are especially frequently used, such as cartograms or choropleth 
maps. Figures depicting the variability of a phenomenon—for example, over time—show a certain degree of 
similarity. How can we determine this degree of similarity objectively? This work has provided an answer to that 
question. The metric δ , constructed by the authors, and its standardized form δ∗ make it possible to determine 
the degree of similarity of statistical figures by determining the specific distance between them. In this way, the 
unavoidable subjectivity associated with the visual evaluation of statistical charts is successfully eliminated—in 
particular, when the metrics γ and γ ∗ are also used to assess similarity.

Table 5.  Global Competitiveness Index of each country, their ranks, and distances between radar 
charts. Source: Authors’ calculation.

Country Rank GCJ

 Distances between radar charts

1 2 3 4 5 6 7 8 9

1. Azerbaijan 35 4.7 0 0.44056 0.59894 0.56842 0.53254 0.49692 0.47817 0.44521 0.68892

2. Indonesia 36 4.7 0.44056 0 0.75425 0.45504 0.43042 0.31639 0.53313 0.65929 0.55772

3. Malta 37 4.6 0.59894 0.75425 0 0.82855 0.64353 1 0.33696 0.63216 0.94313

4. Russia 38 4.6 0.56842 0.45504 0.82855 0 0.23561 0.58921 0.50699 0.51620 0.35177

5. Poland 39 4.6 0.53254 0.43042 0.64353 0.23561 0 0.64394 0.31459 0.49532 0.46987

6. India 40 4.6 0.49692 0.31639 1 0.58921 0.64394 0 0.78657 0.69274 0.60786

7. Lithuania 41 4.6 0.47817 0.53313 0.33696 0.50699 0.31459 0.78657 0 0.45128 0.66796

8. Portugal 42 4.6 0.44521 0.65929 0.63216 0.51620 0.49532 0.69274 0.45128 0 0.43708

9. Italy 43 4.5 0.68892 0.55772 0.94313 0.35177 0.46987 0.60786 0.66796 0.43708 0

Figure 14.  Cluster analysis of nine countries by the Ward method using the γ ∗ metric. Source: own 
compilation.

Table 6.  Values of γ metric for pairs of polygons corresponding to N1 and N2. Source: Authors’ calculation.

γ (Nmin
1 ,Nmin

2 ) γ (Nmin
1 ,Nmax

2 ) γ (Nmax
1 ,Nmin

2 ) γ (Nmax
1 ,Nmax

2 )

3.8333 4.86875 8.8913 4.9762
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This assertion has been confirmed by the empirical analyses carried out in this paper, concerning the similar-
ity of specific graphs, radar charts, choropleth maps and neutrosophic double line graphs that provide geometric 
representations of studied phenomena.

Also worthy of note is the simplicity of the proposed metrics, and thus the ease with which their numerical 
values can be calculated.

In many situations it is not necessary to use computers and often expensive software to determine these values. 
Therefore, we hope that they will prove useful in statistical, economic, geographical, social and other analyses.

Data availibility
All data used in the article are directly available in the text.
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