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Anomaly detection in IoT‑based 
healthcare: machine learning 
for enhanced security
Maryam Mahsal Khan 1 & Mohammed Alkhathami 2*

Internet of Things (IoT) integration in healthcare improves patient care while also making healthcare 
delivery systems more effective and economical. To fully realize the advantages of IoT in healthcare, 
it is imperative to overcome issues with data security, interoperability, and ethical considerations. 
IoT sensors periodically measure the health-related data of the patients and share it with a server 
for further evaluation. At the server, different machine learning algorithms are applied which help in 
early diagnosis of diseases and issue alerts in case vital signs are out of the normal range. Different 
cyber attacks can be launched on IoT devices which can result in compromised security and privacy 
of applications such as health care. In this paper, we utilize the publicly available Canadian Institute 
for Cybersecurity (CIC) IoT dataset to model machine learning techniques for efficient detection of 
anomalous network traffic. The dataset consists of 33 types of IoT attacks which are divided into 7 
main categories. In the current study, the dataset is pre-processed, and a balanced representation of 
classes is used in generating a non-biased supervised (Random Forest, Adaptive Boosting, Logistic 
Regression, Perceptron, Deep Neural Network) machine learning models. These models are analyzed 
further by eliminating highly correlated features, reducing dimensionality, minimizing overfitting, 
and speeding up training times. Random Forest was found to perform optimally across binary and 
multiclass classification of IoT Attacks with an approximate accuracy of 99.55% under both reduced 
and all feature space. This improvement was complimented by a reduction in computational response 
time which is essential for real-time attack detection and response.

Keywords  Anomaly detection, IoT, Security, Machine learning, Deep learning, Pearson correlation 
coefficient, SMOTE, Imbalanced dataset

The Internet of Things (IoT) is a major technology that is the basis of several upcoming applications in the 
areas of health care, smart manufacturing, and transportation systems. IoT relies on the use of various sensors 
to gather information about humans, devices, and the surrounding environment. This information is passed 
to the cloud server regularly and as a result, application administrators can make various decisions to improve 
the efficiency of applications. Similarly, AI techniques can be utilized to automatically control the applications 
based on the collected data1.

Healthcare is one major application of IoT where patients are provided with wearable devices to collect data 
related to body vitals. Examples of such data could be body measurements such as oxygen level, blood pressure, 
sugar level, heart rate, etc. Without using IoT, these vital measurements can not be recorded continuously and 
sent to the cloud for processing. Thus, IoT-enabled health care is an important use case with a huge impact on 
human lives.

Since IoT-enabled health care involves the recording and sharing of critical data that is linked to human safety, 
it is vital to design efficient techniques to make sure that the data recording and sharing are reliable and secure. 
Healthcare systems can be subject to several security attacks that can lead to a loss of confidence in received data. 
In several cases, wrong decisions can be made on the malicious data, thus leading to the collapse of IoT-enabled 
healthcare applications.

There are several types of security attacks in healthcare systems such as Denial of Service (DoS) attack in 
which malicious users aims to deny the wearable or to share data with the cloud. This can be achieved by sharing 
incorrect data with high frequency towards the wearable or, thus blocking its access to the wireless medium. Simi-
larly, spoofing is another common cyber attack in which malicious users hide their identity to get access to the 
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critical health-related data of patients. Another example of a cyber attack is a brute force attack that tries to crack 
the password of users’ wearable devices and gain access to the sensor’s data. In addition, there are many other 
attacks such as data integrity and eavesdropping that can reduce the reliability of IoT health care applications.

This paper focuses on developing anomaly detection techniques for IoT attacks using the publicly available 
dataset. Following are the major contributions of the paper.

•	 The authors in2 have applied Machine Learning (ML) algorithms in an imbalanced dataset, producing models 
with high accuracy and low precision scores. The research motivation is to balance the dataset and train ML 
algorithms accordingly.

•	 To evaluate supervised machine learning algorithms across inary (2-Class) and multiclass (8 and 34-Class) 
representations on the balanced dataset.

•	 To evaluate the computational response time of machine learning models via feature reduction.
•	 To determine which features are essential for the generalization of machine learning models.

The paper is organized as follows. "Literature review" Section describes the literature review and recent work 
done in the area of IoT security and anomaly detection and briefly describes the ML algorithms used in the 
study and how they are evaluated. The problem of an imbalanced dataset and the strategy to resolve it through 
oversampling techniques is also included in this section. "Methodology" section describes the system model and 
utilized IoT attack dataset including the methodology and anomaly detection framework of the current study. 
The result and discussion are presented in "Results and discussion" section. Finally, conclusions are described 
in "Conclusion" section.

Literature review
In this section, we present an overview of different intrusion and cyber-attack detection techniques in an IoT 
network and provide a brief description of different datasets that are used to analyze these attacks. The section 
also provides information on the Machine learning (ML) algorithm used in the study along with the standard 
performance metrics used for the evaluation of the ML models. Finally, the section describes the problem with 
ML models trained on imbalanced datasets and strategies to overcome them.

Review of different intrusion detection techniques
Table 1 lists different intrusion detection techniques focused on IoT networks. In3, authors utilize Deep Neural 
Network (DNN) and Bi-directional Long Short-Term Memory (Bi-LSTM) techniques to identify the abnormali-
ties in the data. A key feature of the proposed technique is the use of the Incremental Principal Component 
Analysis (IPCA) technique for reducing the features in the dataset. The proposed technique also uses dynamic 
quantization for efficient data analysis. The work achieves improved accuracy of intrusion detection and reduced 
complexity of the model.

The work in4 is focused on efficient cyber attack detection. The main idea of the proposal is to use federated 
learning for improved privacy and distributed model development. The proposed technique uses a Deep Neural 

Table 1.   Recent work related to Cyber attack and intrusion detection..

References Goal Key idea Results

3 Intrusion detection

DNN

Bi-LSTM Improved accuracy of detection

IPCA for feature reduction Reduced complexity of model

Dynamic quantization

4 Attack detection

Federated learning

DNN Improved accuracy

Feature reduction Improved privacy

Data balancing

5 Intrusion detection
Feature reduction

Improved F1 score
Data balancing

6 Attack detection

Class imbalance problem Improved accuracy

Bagging classifier Improved precision

DNN with balanced data

7 Intrusion detection

Adaptive recommendation system

Improved intrusion detection
Self improving mechanism

Autonomous intrusion knowledge

pseudo label based voting

8 Intrusion detection

Explainable AI based DNN

Improved efficiencyRuleFit

Shapley additive explanation
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Network (DDN) for attack detection. The work also contributed towards reducing the features and balancing 
of the data. Results show that the proposed technique improves the accuracy of attack detection as well as the 
privacy of the system.

In5, another intrusion detection for IoT networks is proposed. The focus of the work is on two key factors, 
one is removing the redundancy in dataset features, and the second is mitigating the imbalance in the dataset. 
By using these two factors, the proposed technique improves the F1 score of intrusion detection.

The work in6 proposes a cyber-attack detection mechanism. The class imbalance problem is handled by 
the proposed technique. Authors apply DNN on the balanced dataset to perform training and testing. A bag-
ging classifier mechanism is used to improve the performance of the system. The proposed technique achieves 
improved accuracy and precision.

In7 develops an adaptive recommendation system to improve the efficiency of intrusion detection. The main 
feature of the proposed technique is the development of a self-improving mechanism that autonomously learns 
the intrusion knowledge. A pseudo-label-based voting system is also used in the proposed technique, thus result-
ing in improved intrusion detection performance.

The work in8 develops an explainable AI-based intrusion detection system. Authors utilize the DNN technique 
in conjunction with explainable AI mechanisms such as RuleFit and Shapley Additive Explanation. Results show 
that the developed model is simple and easier to understand while providing improved efficiency.

Cyber attack and intrusion detection data sets in IoT
There are various publicly available data sets related to cyber attacks and intrusion detection in IoT as shown in 
Table 2. In9, the CIC IDS 2017 attack data set is provided by the Canadian Institute of Cyber Security. A 5-day 
network traffic data was collected using CIC Flow meter software. The data included normal traffic as well as 
different types of attacks such as Denial of Service (DoS), Distributed Denial of Service (DDoS), Brute Force, 
Cross-Site Scripting (XSS), Structured Query Language (SQL) injection, Infiltration, Port Scan, and Botnet.

The N-BaIoT data set in10 was collected by the University of California, Irvine. Nine Linux-based IoT 
machines were used to generate traffic. Two IoT Botnets were used, one was BASHLITE and the other was 
Mirai. The generated security attacks included Acknowledgement (ACK), Scan, Synchronize (SYN), and User 
Datagram Protocol (UDP) flooding.

In2, the CICIoT data set was provided by the Canadian Institute of Cyber Security. 105 IoT machines 
were used to generate diverse security attacks. The generated attacks were divided into 33 attacks and 7 major 
categories.

The NSL-KDD data set11 was provided by Tavallaee et al. The data set is an improved version of the KDD 
data set and removes duplicate entries. The attacks included in the data set are DoS, User to Root, Root to Local, 
and Probing.

In12, the UNSW_NB-15 data set was provided by the University of New South Wales. A synthetic attack 
environment was created including normal traffic and synthetic abnormal traffic. Several attacks were generated 
including Fuzzers, Analysis, Backdoors, etc.

Another data set named BoT-IoT was generated by the University of New South Wales13. This data set was 
based on a realistic environment of traffic containing both normal as well as Botnet traffic. The attack traffic 
included DoS, DDoS, Operating System (OS), Service scan, keylogging, and data exfiltration.

Motivation to use CICIoT 2023 dataset
The author2 introduced the CICIoT2023 dataset, which is composed of thirty-three different attacks (categorized 
into seven classes) executed against 105 IoT devices with well-documented processes defined. So far, the study 
provides a comprehensive and wide variety of attack types as compared to other reported in literature. Moreover, 
the main motivation of using the CICIoT2023 dataset is that it has been released recently and there exist only 
one publication using the dataset. In3 only two attacks (Mirai, DDoS) were focused on the study. There exists 
no article on the use of various intelligent machine learning models in identification of all types of malicious 
anomalous IoT attacks namely DDoS, DoS, Recon, Web-based, brute force, spoofing, and Mirai. The present 
study hence contributes to this direction.

Machine learning algorithms
There exist numerous supervised, unsupervised, and reinforcement-based machine learning algorithms. The 
research study only investigates the application of supervised ML algorithms in IoT attack detection. The per-
formance of five ML algorithms is tested in the present research work and a brief description of these algorithms 
is provided herewith.

•	 Random forest (RF): Multiple decision trees are combined in the ensemble learning technique known as RF. 
For the classification task, the RF’s output is the statistical mode while for the regression task, average of 
the predictions made by each tree. Applications for RFs are numerous and include image analysis, finance, 
and healthcare. Their usefulness, usability, and capacity to manage high-dimensional data are well-known 
attributes.

•	 Logistic regression (LR): It is the type of regression that determines the likelihood that an event will occur 
and is used for classification. Statistics is used to predict a data value given the previous observations of a 
data set. The output is discrete. LR operates on a logistic sigmoid function, which accepts any real input and 
outputs an integer between zero and one.

•	 Perceptron (PER): As a linear classifier, the PER performs best in situations when there is a linear separation 
of the classes. It uses the perceptron learning rule to update its weights and makes adjustments in response 
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to the misclassifications. Simple and effective, the scikit-learn Perceptron class may not converge on datasets 
that are not linearly separable. Under such circumstances, more sophisticated algorithms, like support vector 
machines or neural networks should be used.

•	 Deep neural network (DNN): An artificial neural network with several layers between the input and output 
layers is called a Deep Neural Network (DNN). Deep learning models are a subclass of neural networks dis-
tinguished by their capacity to acquire intricate hierarchical data representations. A deep neural network’s 
layers are made up of linked nodes or neurons, and these layers are generally divided into three categories: 
input layer, hidden layer, and output layer. Key characteristics of a DNN include the use of non-linear acti-
vation function, deep architectures, and backpropagation algorithm for training weights of the network for 
locating an optimal solution.

•	 Adaptive boosting (AB): AB creates a powerful classifier by combining several weak classifiers. Training 
instances are given weights by the algorithm, which then iteratively updates them. A weighted sum of the 
individual weak classifiers yields the final prediction.

Table 2.   Cyber attack and intrusion detection related datasets..

Dataset name Organization Collection methods Attacks

CIC IDS 20179 Canadian Institute of Cyber Security CIC flowmeter software 5 day data

DoS

DDoS

Brute force

XSS

SQL injection

Infiltration

Port scan

Botnet

N-BaIoT10 University of California, Irvine Nine Linux based IoT machines 2 IoT Botnets, BASHLITE and Mirai

ACK

Scan

SYN

UDP flooding

CICIoT2 Canadian Institute of Cyber Security 105 IoT machines diverse attacks

33 Attacks

7 Categories

DDoS

DoS

Recon

Web-based

Brute force

Spoofing

Mirai

NSL-KDD11 Tavallaee et al. Improved version of KDD dataset removed duplicates

DoS

User to root

Root to local

Probing

UNSW_NB-1512 University of New SouthWales Synthetic attack environment normal traffic abnormal synthetic traffic

Fuzzers

Analysis

Backdoors

DoS

Exploits

Generic

Reconnaissance

Shellcode

Worms

BoT-IoT13 University of New SouthWales Realistic environment of traffic normal traffic Botnet traffic

DoS

DDoS

OS

Service scan

Keylogging

Data exfiltration
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Machine learning performance metrics
In machine learning classification problems, several performance metrics are commonly used to evaluate the 
performance of a model. These metrics include accuracy, precision, recall, and F1-score, each of which measures 
different aspects of classification performance.

•	 Accuracy: Accuracy measures how accurately a classification model is applied overall. It determines the pro-
portion of accurately predicted occurrences to all of the dataset’s instances and is mathematically computed 
using Eq. (1), where

–	 TP (True Positives) is the number of correctly predicted positive instances.
–	 TN (True Negatives) is the number of correctly predicted negative instances.
–	 FP (False Positives) is the number of instances that were actually negative but were incorrectly predicted 

as positive.
–	 FN (False Negatives) is the number of instances that were positive but were incorrectly predicted as 

negative.

	 
•	 Precision: Precision measures the accuracy of positive predictions made by the model. It calculates the ratio 

of true positives to the total number of positive predictions expressed in Eq. (2). 

•	 Recall: Recall measures the ability of the model to correctly identify positive instances. It calculates the ratio 
of true positives to the total number of actual positive instances, expressed in Eq. (3). 

•	 F1-score: The F1-Score is the harmonic mean of precision and recall. It provides a balance between precision 
and recall and is particularly useful when dealing with imbalanced datasets, expressed in Eq. (4)

Imbalanced datasets
An imbalanced dataset has a distribution of classes (categories or labels) that is severely skewed, indicating that 
one class has significantly more samples or instances than the other(s). The occurrence of the dataset is frequently 
seen in machine learning. In binary classification problems, one class is the majority class and the other is the 
minority class while in multiclass classification, class imbalance can arise when one or more classes have dis-
proportionately fewer samples than the others. In applications where the minority class is of great importance, 
such as fraud detection, medical diagnosis, and rare event prediction, addressing class imbalance is essential for 
reliable predictions. Two major concerns in using ML on an imbalance dataset includes14,15:

•	 Biased model training: Machine learning algorithms are often biased in favor of the dominant class when 
one class outweighs the others significantly. The model may prioritize correctly predicting the majority class 
while ignoring the minority class because its goal is frequently to minimize the overall error. The model may 
have trouble making precise predictions for the minority class based on unobserved data because it hasn’t 
seen enough examples from that group resulting in poor generalization of the problem.

•	 Misleading evaluation metrics: In unbalanced datasets, standard accuracy becomes a misleading statistic. Even 
if a model that predicts the majority class in every instance can still be highly accurate. The sensitivity (true 
positive rate) of the model for the minority class is fairly low in unbalanced datasets. This indicates that a 
large number of false negatives could result from the model missing a significant number of cases from the 
minority class.

Several tactics and strategies can be used to reduce the problems caused by class imbalance. These include resa-
mpling techniques such as oversampling of minority class and under-sampling majority class16; synthetic data 
generation techniques like SMOTE17, Adaptive Synthetic Sampling(ADASYN)1, cluster-based techniques18 to 
name a few. The authors in2 have applied Machine Learning (ML) algorithms in an imbalanced dataset, pro-
ducing models with high accuracy and low precision scores. The motivation of this research is to balance the 
dataset and then apply the ML algorithms to generate generalized models with marked improvements in the 
evaluation metrics.

Synthetic minority over‑sampling technique: balanced dataset generation
Synthetic Minority Over-sampling Technique (SMOTE), is a well-known pre-processing approach in the area 
of machine learning and data preparation that deals with the issue of class imbalance in classification problems. 
Class imbalance happens when one class in a binary or multi-class classification problem has significantly fewer 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1score =
2× Precision× Recall

Precision+ Recall
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samples than the other(s), resulting in an inaccurate model that tends to bias the dominant class. To address this 
problem, Chawla et al. developed the SMOTE algorithm in 200217. It balances the class distribution by creating 
artificial examples of the minority class, which improves the learning algorithm’s performance and lowers the 
likelihood of a biased model. Mathematically expressed as in Eq. (5).

where, x is the original minority class instance. neighbor is one of the k nearest neighbors of x within the minority 
class. � is a random value between 0 and 1, controlling the amount of interpolation.

The SMOTE method has multiple versions, each with unique adjustments to handle various facets of the class 
imbalance issue. A few variations of the SMOTE algorithm include e.g. Borderline-Smote which applies SMOTE 
to instances near the decision boundary19; ADASYN that generates samples based on the local density of the 
minority class1; SMOTE-with Edited Nearest Neighbour(ENN) which removes noisy samples using ENN20,21; 
SMOTE-Tomek Links combines SMOTE with Tomek Links undersampling technique to remove noisy samples22; 
SMOTE-Boost that combines SMOTE with AdaBoost ensemble method to oversample minority class in each 
iteration of AdaBoost23 for improving performance. Different versions of the SMOTE algorithm provide differ-
ent strategies for increasing minority class samples and reducing noisy data. In the current research study, the 
conventional SMOTE algorithm is used as a starting point to observe the change in performance metrics after 
applying the SMOTE algorithm to the CICIoT dataset.

Methodology
CICIoT2023 dataset
In the current research study, we use the publicly available IoT attack dataset namely CICIoT20232. The dataset 
was created to encourage the creation of security analytics applications for use in actual IoT operations. The 
authors executed 33 different attacks in an IoT topology of 105 devices. These attacks are classified into seven 
categories, namely DDoS, DoS, Recon, Web-based, brute force, spoofing, and Mirai. The dataset consists of 169 
files in two different file formats PCAP and CSV. The CSV files are PCAP-processed files generating 46 attributes 
that indicate the different types of attacks. The number of recorded samples per category is not uniform, whereas 
Web-Based and Brute-Force have far-low representation—a classic sign of an imbalanced dataset. Figure 1 dis-
plays the research study’s workflow. The dataset is pre-processed and balanced to ensure credibility in the evalu-
ation of the machine learning models. The data features are further reduced, to improve predictive performance 
and training times of the ML models across both binary and multiclass representation of the dataset. Further 
explanation is ahead. The algorithm of the methodology is shown in 1.

(5)synthetic_sample = x + � · (neighbor− x)

Figure 1.   Methodology of the research work applied on the CCIoT2023 Dataset.
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Algorithm 1.   Performance of ML algorithms on balanced representation of CCIoT2023 dataset.

Dataset preprocessing
Data cleaning is a crucial step in the ML pipeline. Data cleaning includes handling missing or noisy data or deal-
ing with outliers or duplicates. The dataset consists of 33 different classes of IoT attacks with forty-six numerical 
features. Features with no variation across the thirty-four classes are removed from the dataset. Hence out of 46 
features, 40 features are processed ahead. These features are normalized using a standard scalar method which 
is a common requirement for many machine learning algorithms.

Feature scaling is particularly important for algorithms that use distance-based metrics, as differences in scale 
can disproportionately impact the influence of certain features on the model. This pre-processing step helps in 
improving the performance and convergence of ML algorithms. There are two methods of scaling the features 
in a dataset (1) Normalization (2) Standardization. Normalization is the process of scaling the features within 
a certain range e.g. [0–1] and standardization is the process of scaling features to a mean of zero and standard 
deviation of 1. Many of the ML algorithms including linear regression and Neural networks converge faster in 
the standardized feature space. In the current study, the forty features obtained after cleaning are normalized 
using a standard scalar method.

Data balancing
This is the important block of the methodology and requires balancing the dataset using either random under-
sampling or oversampling via the conventional SMOTE algorithm, described in "Synthetic minority over‑sam-
pling technique: balanced dataset generation" section. The process of dataset generation for binary and multiclass 
classification is explained below.

•	 2-Class representation: In this scenario, the thirty-three malicious classes are labeled as one category ‘Attack’. 
Approximately 50% of the data, which captures the different types of malicious representations, from each 
of the 169 CSV files is randomly extracted and a balanced data set is created. No SMOTE algorithm is used 
in this particular scenario. The total number of samples per class in the integrated dataset was 8450.

•	 8-Class representation: The data samples from all the different type of attacks i.e. 34 subcategories has been 
used in the construction of the 8 Class dataset. The process of random undersampling in the majority class 
and SMOTE-based upsampling of the minority class is executed to produce a uniform representation of the 
dataset samples. The total number of samples per class in the integrated dataset was 33,800.

•	 34-Class representation: For the 34 classes in the CICIoT dataset, it has been found that two classes namely 
BruetForce and Web-based have less representative samples in the dataset. The process of random under-
sampling in the majority class and SMOTE-based upsampling of the minority class is executed to produce a 
uniform representation of the dataset samples. The total number of samples per class in the integrated dataset 
was 84,500.

The IoT topology deployed to produce the CICIoT2023 dataset comprises 105 IoT devices. 33 different types 
of IoT attacks were modeled. In the dataset, the number of rows captured per attack is not uniform, e.g. the 
attack type DDoS-ICMP Flood contains 7,200,504 data rows representing a majority class whereas WebBased-
Uploading Attack is a minority class with 1252 data rows. Applying ML algorithm directly on an imbalanced 
dataset with non-uniform data-rows across the different attack classes would impact the generalization and 
performance of a ML model e.g. the authors in2 have produced models with high accuracy and low precision 
scores. Hence, the main motivation and contribution of this research is to balance the dataset and generate ML 
models that are unbiased with non-misleading evaluation metrics.
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Feature reduction
For feature engineering, model selection, and general data analysis in machine learning, the Pearson correla-
tion coefficient (PCC) is significant since it offers a clear indicator of the relationship between variables. PCC 
facilitates the creation of more accurate predictive and descriptive models by assisting in the decision-making 
process over which variables to include in models and how they interact. Many applications have been devised 
where eliminating highly correlated features has reduced model complexity without compromising the predictive 
performance. The formula for calculating the Pearson correlation coefficient r between two variables, X and Y, 
with n data points, is given shown in Eq. (6).

where Xi and Yi are the individual data points for variables X and Y respectively and X̄ and Ȳ  are the means of 
variables X and Y respectively.

As mentioned, the pre-processed dataset consists of forty features. The PCC of the forty characteristics is cal-
culated, and Fig. 2a shows the absolute correlation coefficient heat map. Darker shades in the figure display highly 
correlated features. A PCC value of 0.9 or higher, in the current study, is regarded as a highly correlated feature, 
and it is eliminated from the feature collection. Hence a total of thirty-one features are analyzed in the reduced 
feature space. Referred to Fig. 2b, a heat map of the reduced feature set and related PCC values is displayed.

Model generation and evaluation
Any binary or multiclass classification problem is modeled through the application of supervised machine learn-
ing algorithms. Five popular and powerful supervised ML algorithms (Random forest RF, Adaptive Boosting 
AB, Logistic Regression LR, Perceptron PER and Deep Neural Network DNN); are studied on the balanced 
dataset with both full features and reduced feature set respectively. The datasets are split into 80% training and 
20% testing as followed in the research study2 for a fair comparison. Standard performance metrics for evaluating 
supervised algorithms, discussed in "Machine learning performance metrics" section, are computed and reported 
in Table 3 for 2-Class, 8-Class, and 34-Class respectively.

Results and discussion
Table 3, shows the performance of ML algorithms on the balanced dataset across three defined classification 
scenarios i.e. 2-Class, 8-Class, and 34-Class. The ML models generated are evaluated based on Accuracy, Preci-
sion, Recall, and F1-Score details which have been explained in "Machine learning performance metrics" section. 
Overall, RF has been found to perform better than other ML models across the different scenarios. In the 2-Class 
task, all of the ML models perform with an accuracy of ≥ 98% , while it decreases with increasing complexity of 
the problem i.e. 8-Class and 34-Class label identification. There is a slight improvement in accuracy for the ML 
models trained in the reduced feature e.g. 0.06% in RF and DNN models. With balanced dataset representation 
across the three classification tasks, improvement in precision, recall, and f1-score from the ones reported in 
literature2 is obtained.

To visualize the performance of the RF models across the different class categories, confusion matrices are 
observed. In Figure 3, for the binary classification problem, out of the 1690 test samples per category i.e. benign 
or attack, benign prediction is found to be more accurate than the attack ones in both scenarios. This might be 
attributed to the fact that the 33 variations of attack are labeled as one category. The f1-score of the RF-model is 
found to slightly improve in the reduced feature space i.e. from 99.49 to 99.55% respectively.

Figure 4 shows the confusion matrices of the multi-classification eight-class problem where 33,800 samples 
per category were tested by the RF model under both scenarios. Two attack categories in particular Recon and 
Spoofing were found to be poorly recognizable (with an f1-score of 90%) by the RF models despite being trained 
on real samples. SMOTE-based synthetic samples generated for BruteForce and Web were found to be in good 
agreement with the original training samples. Further analysis is required to understand Spoofing and Recon 
attack characteristics.

In the multi-classification 34-class problem, 16,900 samples per category were tested. Confusion matrices for 
the RF models under both scenarios (all features and reduced features) are shown in Fig. 5. In the test set, 16,900 
samples per category were tested on the trained model. 31 of the classes produced an f1-score greater than 85% 
while three classes, DNS-Spoofing, Recon-PortScan and Recon-OSScan had an f1-score of 83%, 82% and 79%. 
These subclasses belong to Recon and Spoofing IoT attack category, which was also found harder to classify than 
other class labels in the 8-Class task.

An additional tool for comprehending important characteristics in the dataset is a feature importance graph, 
which is produced through RF models. The feature significance graph from the RF models for the three classi-
fication tasks is displayed in Fig. 6, where (a) shows the RF models when all features are used and (b) shows the 
RF models when a reduced feature set is used. The top features identified in the binary classification tasks under 
both scenarios were urgcount and AVG. urgcount is the number of packets with urg flag set and AVG represents 
the average packet length. For both of the multi-classification tasks, IAT was found to be the top feature. IAT 
measures the time difference between the current and the previous packet. The statistical measurements e.g. 
Header Length, Min, Max, Average, covering the right side of the feature graph in Fig. 6 were more frequently 
chosen than the other features.

Figure 7a, c and e displays the training time in seconds and Fig. 7b, d and f shows the testing time in seconds 
of the ML algorithms on all and reduced feature sets for 2-Class Fig. 7a and b, 8-Class Fig. 7b and c and 34-Class 
classification Fig. 7e and f tasks respectively. As the feature set is reduced, we can see a reduction in the training 

(6)r =

∑n
i=1(Xi − X̄)(Yi − Ȳ)

√

∑n
i=1(Xi − X̄)2

∑n
i=1(Yi − Ȳ)2
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Table 3.   Performance of supervised machine learning algorithms on a balanced representation of the 
CICIoT2023 Dataset with 2-Class, 8-Class, and 34-Class representations, across the full feature set and the 
reduced feature set.. RF Models performed best under all categories.

Classification Metrics

All features

RF LR AB PER DNN

2 Class

Accuracy 0.99570414 0.98431952 0.99408284 0.97514792 0.98875739

Precision 0.99500941 0.983730717 0.994089068 0.975531538 0.98878204

Recall 0.99497041 0.98343195 0.99408284 0.97514792 0.98875739

F1-score 0.99497031 0.98342939 0.99408282 0.97514291 0.98875725

8 Class

Accuracy 0.95520710 0.63357618 0.48387204 0.51879807 0.80096153

Precision 0.9553639 0.64638726 0.54242677 0.53682618 0.80409692

Recall 0.9552071 0.63357618 0.48387204 0.51879808 0.80096154

F1-score 0.95496382 0.63101848 0.46571153 0.50323578 0.80079878

34 Class

Accuracy 0.96541594 0.55419248 0.45970240 0.42658371 0.72217716

Precision 0.9649844 0.55479577 0.60071804 0.49572711 0.74045282

Recall 0.96541594 0.55419248 0.4597024 0.42658371 0.72217717

F1-score 0.96482905 0.53594043 0.44796463 0.40393062 0.71522424

Classification Metrics

Reduced features

RF LR AB PER DNN

2 Class

Accuracy 0.99556213 0.98343195 0.99437869 0.9742603 0.98934911

Precision 0.99559146 0.98362770 0.99439272 0.97426451 0.98941766

Recall 0.99556213 0.98343195 0.99437870 0.97426036 0.98934911

F1-score 0.99556206 0.98343028 0.99437866 0.97426030 0.98934874

8 Class

Accuracy 0.95545118 0.67647928 0.45780695 0.5661020 0.83071745

Precision 0.95559533 0.69044049 0.49852236 0.58018594 0.83629505

Recall 0.95545118 0.67647929 0.45780695 0.56561021 0.83071746

F1-score 0.95515475 0.6739131 0.42244699 0.56370658 0.83003669

34 Class

Accuracy 0.96327706 0.56593456 0.44914201 0.47258614 0.81235816

Precision 0.96281357 0.57223999 0.52861758 0.51726442 0.8224986

Recall 0.96327706 0.56593456 0.44914201 0.47258615 0.81235816

F1-score 0.9626063 0.54896777 0.40313942 0.45495343 0.80931119

Figure 3.   Confusion matrices of RF models on a binary classification task i.e. Attack versus benign, using the 
CICIoT2023 dataset across (a) all features and (b) reduced features, respectively.
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time of all the models. For the DNN model performance in 2-Class classification, Fig. 7a and b, training time 
across all features was approximately 8.6s while in the reduced space it was 6.6s respectively. Similarly, as the 
feature set is reduced in almost all cases there is a reduction in response time of the models. For the RF model 
in 8-Class classification, Fig. 7d, testing time across all features was approximately 13.08 s while in the reduced 
feature space was 6.64 s secs respectively. All these steps are carried out in the development environment with 
Intel Core i7 7820HQ-processor, 32 GB DDR4 RAM, and Windows 10 operating system.

The CICIoT2023 dataset has been recently released and there exists not much literature using the dataset. 
The reported best models in the study are compared with the best models produced by the authors in2 and are 
shown in Table 4. The optimum performing model metrics are highlighted in bold. The results of the existing 
study have performed better than the ones reported. The dataset originally was imbalanced hence models gen-
erated have low recall values. Recall values can be seen improved due to balancing the data samples across the 
different classification tasks.

Conclusion
The use of Medical Internet of Things (IoT) devices in healthcare settings has made automation and monitoring 
possible e.g. in enhanced patient care and remote patient monitoring. However, it has also introduced a host of 
security vulnerabilities and risks including identity theft, unauthorized alteration of medical records, and even 
life-threatening situations. Furthermore, it is becoming more challenging to secure each device entry point in 
real-time due to the growing usage of networked devices.

Machine learning has the potential to detect and respond to attacks in real-time by identifying anomalies 
in the data captured by IoT devices. The current study explored the potential of supervised machine learning 
algorithms in identifying anomalous behavior on a recently published dataset, CCIoT2023. The dataset consists 
of 33 different categories of IoT attacks represented by 46 features, with a varying number of data samples. The 
dataset is imbalanced, i.e., it has a non-uniform sample distribution. The study explored improving machine 
learning models by employing a balanced approach to data distribution using the SMOTE algorithm. Classifi-
cation models for three strategies of ‘IoT Attack’, two-class, eight-class, and thirty-four class, were investigated. 
Random Forest was found to excel in all three defined classification problems and performed better than what has 
been reported so far in the literature. Eliminating strongly correlated features slightly improved the performance 
of the model but reduced computational response time and enabled real-time detection.

The feature importance graph depicted urgcount-number of urg flags in the packet and AVG-average packet 
length in 2-Class and IAT – time difference between packet arrival time, as an important feature in discriminating 
various attack categories in multiclassification problem. Moreover, certain IoT attacks e.g. Spoofing and Recon 
require further analysis and feature expansion to be able to discriminate these classes and their corresponding 
sub-classes further.

Figure 4.   Confusion matrices of trained RF models on a multiclass classification task with 8-class labels, using 
the CICIoT2023 dataset across (a) all features and (b) reduced features, respectively.
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Figure 5.   Confusion Matrices of trained RF models on a multiclass classification task with 34-class labels, using 
the CICIoT2023 dataset across (a) all features and (b) reduced features, respectively.
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Figure 6.   Feature significance graphs, extracted from the RF models across (a) all features and (b) reduced 
features in the CCIoT2023 Dataset for 2-Class, 8-Class and 34-Class classification tasks.



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5872  | https://doi.org/10.1038/s41598-024-56126-x

www.nature.com/scientificreports/

Figure 7.   Time is taken, in seconds, to train and test supervised ML algorithms, with and without feature 
reduction. The figure shows training and testing time for (a, b) 2-Class, (c, d) 8-Class, and (e, f) 34-Class 
multiclassification tasks, respectively.

Table 4.   Performance comparison of the best ML models with others reported in the literature. The best 
figures are highlighted in bold.

Method Labels Accuracy Precision Recall F1-Score References

Random forest

2-Class 0.99680798 0.965395244 0.965163906 0.965279544
28-Class 0.994368173 0.705407564 0.91001105 0.71928904

34-Class 0.99164365 0.704492066 0.831586401 0.714021981

Random Forest

2-Class 0.99556213 0.99559146 0.99556213 0.99556206

Current Research8-Class 0.95545118 0.95559533 0.95545118 0.95515475

34-Class 0.96327706 0.96281357 0.96327706 0.9626063

DL-BiLSTM 8-Class 0.9313 0.9180 0.9313 0.9194 24



15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5872  | https://doi.org/10.1038/s41598-024-56126-x

www.nature.com/scientificreports/

Data availability
Details of data is available in the paper.
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