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Study of the intestinal microbiota 
composition and the effect 
of treatment with intensive 
chemotherapy in patients 
recovered from acute leukemia
Xenia Vázquez 2,8, Pilar Lumbreras‑Iglesias 1,3,7, M. Rosario Rodicio 1,4, Javier Fernández 1,3,5,6, 
Teresa Bernal 7, Ainhoa Fernández Moreno 7, Paula López de Ugarriza 7, 
Ana Fernández‑Verdugo 1,3, Abelardo Margolles 2,8 & Carlos Sabater 2,8*

A dataset comprising metagenomes of outpatients (n = 28) with acute leukemia (AL) and healthy 
controls (n = 14) was analysed to investigate the associations between gut microbiota composition and 
metabolic activity and AL. According to the results obtained, no significant differences in the microbial 
diversity between AL outpatients and healthy controls were found. However, significant differences 
in the abundance of specific microbial clades of healthy controls and AL outpatients were found. We 
found some differences at taxa level. The relative abundance of Enterobacteriaceae, Prevotellaceae 
and Rikenellaceae was increased in AL outpatients, while Bacteirodaceae, Bifidobacteriaceae and 
Lachnospiraceae was decreased. Interestingly, the abundances of several taxa including Bacteroides 
and Faecalibacterium species showed variations based on recovery time from the last cycle of 
chemotherapy. Functional annotation of metagenome‑assembled genomes (MAGs) revealed the 
presence of functional domains corresponding to therapeutic enzymes including l‑asparaginase in a 
wide range of genera including Prevotella, Ruminococcus, Faecalibacterium, Alistipes, Akkermansia. 
Metabolic network modelling revealed potential symbiotic relationships between Veillonella parvula 
and Levyella massiliensis and several species found in the microbiota of AL outpatients. These results 
may contribute to develop strategies for the recovery of microbiota composition profiles in the 
treatment of patients with AL.

Keywords Acute leukemia, Metagenomics, Microbial metabolism, Cross-feeding, Chemotherapy, 
l-asparaginase

Gut microbiota contains the majority of microorganisms present in humans. This microbial community is esti-
mated to have at least the same number of bacterial cells than human  cells1,2. Along with bacteria, other life forms 
also reside in the gastrointestinal tract in the minority, such as fungi, viruses, archaea and protozoa. Metabolic 
interactions between the gut microbiota and the human body contribute to maintain intestinal homeostasis. 
The predominance of several microbial phyla including Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, 
Fusobacteria, and Verrucomicrobia is commonly associated with a healthy gut microbiota. In this regard, the 
phyla Firmicutes and Bacteroidetes usually represent the 90% of gut  microbiota3. However, specific alterations 
in the microbiome can contribute to the development of certain  diseases4.Changes in the composition of the 
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microbiota have been associated with several types of cancer such as leukemia. Leukemia is a haematological 
malignancy related to the uncontrolled proliferation of mutant progenitors, suppressing the production of nor-
mal blood cells and leading to pancytopenia and high infection and bleeding  risk5–7. In 2020, 470,000 cases of 
leukemia were diagnosed worldwide, representing 2.5% of cancer cases in the  world8.

Leukemia can be classified into two groups based on growth and cell line of origin. Based on how quickly the 
disease progresses, there are two types of leukemia, chronic and acute. Chronic leukemia targets mostly adults 
and is usually overpowered at a gradual rate, whereas acute leukemia (AL) develops quickly. In addition, AL 
may involve lymphoid or myeloid precursors, resulting in acute lymphoblastic leukemia (ALL) or acute myeloid 
leukemia (AML), respectively. Whereas ALL is the most frequent type of AL of childhood and adolescence, AML 
is the most frequent type of AL of  adults9. In addition, AML can be preceded by preleukemia states, what are 
called myelodysplastic syndromes (MDS). The risk of AML evolution for a particular MDS is calculated taking 
into consideration clinical and genetic  variables10. Hence, two large groups of MDS patients-low and high-risk, 
can be differentiated in terms of their clinical  evolution11.

Curative treatment of AL and high-risk MDS relies on the administration of intensive chemotherapy with 
or without stem cell transplant, which is applied depending on the prognostic features of the  disease12–15. It 
should be noted that microbiome changes have been linked not just to leukemia-induced microenvironmental 
changes, but also to chemotherapy or antibiotic treatment, and may cause or exacerbate dysbiosis and infectious 
 complications16. Chemotherapy, radiotherapy and immunotherapy have all been shown to detrimentally impact 
the composition of the gut microbiota, with changes in its composition identified years after treatment. For 
example, a reduction in gut microbial diversity during induction chemotherapy in acute lymphoblastic leukemia 
patients has been  reported17. These changes are increased by high rates of antibiotic use, disease-associated stress, 
and changes in dietary habits.

On the other hand, next-generation sequencing (NGS) technologies allow a comprehensive characterisation 
of gut microbiota composition and functionality. In this regard, the applications of shotgun metagenomics to 
recover metagenome-assembled genomes (MAGs) have been  reported18,19. Bioinformatic methods based on 
MAG genome annotation and metabolic models can be used to simulate metabolic interactions between dif-
ferent gut microbe communities. These methods could be of great interest to investigate the role of microbial 
metabolism in several pathologies associated with gut  dysbiosis18. However, the majority of studies deal with the 
recovery of MAGs from healthy microbiota samples.

Few studies report the applications of metagenomics to characterize the microbiota of AL patients. Metagen-
omic analyses of bloodstream infections in patients with acute leukemia have been performed while MAGs were 
recovered from faecal samples of AL patients with gut colonization by Multidrug-resistant (MDR) Enterobac-
teriaceae20,21. Moreover, in a recent work carried out by our research group, shotgun metagenomics revealed 
the absence of extended-spectrum betalactamases (ESBL)- and/or carbapenemase-producing Enterobacterales 
in the gut microbiota of 28 outpatients who had recovered from AL, supporting that outpatients were truly 
 decolonized22. To our knowledge, no studies report a comprehensive characterisation of microbiome composi-
tion and function of decolonized individuals, which may have important repercussions for the future clinical 
management of the patients. In addition, no studies report the potential of shotgun metagenomics and metabolic 
modelling to elucidate metabolic interactions between microbial communities in the context of AL.

Therefore, the aim of this study was to characterize the gut microbiota of 28 outpatients who have recovered 
from AL (AML, MDS and ALL) at taxonomic and functional level using shotgun metagenomics. Then, MAGs 
were recovered and annotated to elucidate metabolic activities involved in AL remission and metabolic interac-
tions between these microbial communities were reconstructed using bioinformatic methods.

Results
Assembly‑free analysis
Microbial diversity
An assembly-free analysis was first performed to characterise microbial communities of outpatients of AL and 
healthy controls. Changes in the microbial composition of samples at both taxonomic and functional levels 
were determined. Concerning taxonomic analysis, alpha diversity measuring the variability of species within a 
sample was calculated. The alpha diversity estimators, such as Chao1, Shannon, Simpson, and inverse Simpson 
indices, were calculated to characterize microbial diversity at species level (Fig. 1a). Shannon, Simpson, and 
inverse Simpson indices reflected similar patterns in the microbiota composition within samples without relevant 
changes in diversity microbial, confirming the results from the different analyses (Fig. 1b). In this regard, Chao1 
and Shannon indexes showed no significant differences (p > 0.05) among samples while Simpson and inverse 
Simpson estimators were significantly (p < 0.05) higher in healthy controls than outpatients recovered from AL, 
the latter showing a high intrasample variability. Then, beta diversity estimators based on Bray–Curtis distances 
were calculated to estimate microbial diversity between individuals within a group (Supplementary Figure S1). 
This parameter reflects differences in microbial diversity between samples. As can be seen, beta diversity esti-
mators calculated for taxonomic composition data (Supplementary Figure S1a) microbial gene families and 
metabolic pathways (Supplementary Figure S1b, c) were significantly higher (p < 0.05) in outpatients recovered 
from AL than healthy controls. These significant differences highlight the variability between the samples of the 
outpatient group.

In addition, diversity distances were used to cluster metagenomes (Supplementary Figure S2). Most metage-
nomes of outpatients recovered from AL were clustered together although some samples corresponding to 
the healthy control group were clustered in the same branch as outpatient metagenomes. This behaviour was 
observed in clusters generated for both taxonomic (Supplementary Figure S2a) and functional data (Supple-
mentary Figure S2b, c) and may be attributed to the high interindividual variability of microbiota of samples 
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corresponding to each group. This variability exerts a great influence on the global metagenomic profile. With 
regard to the functional analysis of metagenomes, a similar gene count was determined for both groups: healthy 
controls (mean 9028 ± 2281; median 9817) and outpatients recovered from AL (mean 6399 ± 4127; median 7989). 
No statistically significant differences (p > 0.05) were found in the gene count of these groups.

Statistical analysis of the microbiota
A principal coordinates analysis (PCoA) of complete microbial taxa present in the microbiota of each group 
was computed to study in depth the differences in microbiota profiles of samples (Supplementary Figure S3). 
Regarding the taxonomic profiles, no characteristic patterns could be found for control and outpatient samples 
with the exception of two outpatient metagenomes that showed a high variability in their composition compared 
to the rest of samples from this group (Supplementary Figure S3a). However, PcoA discriminated several sam-
ples from healthy control and outpatient groups based on microbial gene families (Supplementary Figure S3b) 
and metabolic pathways (Supplementary Figure S3c). It should be noted that samples could not be properly 
discriminated due to the high intragroup variability in outpatient metagenomes, in agreement with alpha and 
beta-diversity analyses (Fig. 1 and Supplementary Figure S1). Nevertheless, statistically significant differences 
(p < 0.05 and padj < 0.05) in specific taxonomic clades and metabolic functions between healthy controls and 
outpatients recovered from AL were determined (Table 1 and Supplementary Table S3).

Figure 1.  (a) Comparison of different alpha-diversity indicators (Chao1, Shannon, Simpson and Inverse 
Simpson) of the relative abundance of taxa determined at species level in outpatients recovered from acute 
leukemia (AL) or that underwent stem cell transplantation and healthy controls. (b) Relationship between 
different alpha-diversity estimators: Chao1, Shannon, Simpson and Inverse Simpson indices. These coefficients 
reflected similar patterns in the microbiota composition. a,bStatistically significant (p < 0.05) differences between 
groups.
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The characteristic microbiome pattern of healthy controls (Table 1, Supplementary Figure S4) comprised 
two main phyla (Actinobacteria and Firmicutes), two orders (Bifidobacteriales and Clostridiales), three families 
(Bacteirodaceae, Bifidobacteriaceae and Lachnospiraceae) and three genera (Bacteroides, Bifidobacterium and 
Blautia). These characteristic genera were significantly higher (p < 0.05 and padj < 0.05) in healthy controls than 
outpatients recovered from AL. The microbiome of these individuals was enriched to a lesser extent with the 
genera Prevotella, Alistipes, Escherichia, Faecalibacterium, Parabacteroides, Ruminococcus or Dorea although these 
differences were not significant due to intragroup variability (p > 0.05 and padj > 0.05). In this regard, a graphical 
representation of major differences in the abundances of microbial species is provided in Fig. 2.

On the other hand, the characteristic microbiome pattern of outpatients recovered from AL (Table 1) com-
prised Proteobacteria phylum, Gammaproteobacteria class, Enterobacterales order, three families (Enterobacte-
riaceae, Prevotellaceae and Rikenellaceae) and two genera (Alistipes and Prevotella). The abundance of these two 
characteristic genera was significantly higher (p < 0.05 and padj < 0.05) in outpatients recovered from AL than in 
healthy controls. A significant (p < 0.05 and padj < 0.05) decrease in the relative abundance of Bacteroides, Blautia 
and Bifidobacterium, three of the most abundant taxa in the microbiome of healthy controls, was detected in 
colonized samples. Notably, a positive correlation expressed as Pearson correlation coefficients (p < 0.05) was 
observed between chemotherapy time and the presence of Bacteroides vulgatus.

Interestingly, no statistically significant (p > 0.05 and padj > 0.05) differences in the microbiota composition of 
male and female outpatients was observed. However, some differences were observed between rectal swabs and 
faecal samples (Fig. 3). Bacteroides and Prevotella were the most abundant genera in faecal samples and rectal 
swabs, respectively. In addition, a high abundance of Escherichia was found in rectal swabs, while Alistipes, 
Parabacteroides and Lachnospiraceae showed high abundances in faecal samples.

In addition, differences in outpatient recovery time from the last cycle of chemotherapy to sampling were 
investigated. Samples were grouped into outpatients with early recovery or T1 (< 2 years) and outpatients with 
delayed recovery or T2 (≥ 2 years), but no significant differences were detected. However, small differences were 
observed at the taxonomic level (Supplementary Figure S5). The species Prevotella buccallis and Eubacterium 
rectale were most abundant in T1 outpatients, while a high abundance of Escherichia coli, Bacteroides uniformis, 
Faecalibacterium prausnitzii and Bacteroides ovatus was found in T2 outpatients compared to T1 outpatients.

With regard to significant (p < 0.05 and padj < 0.05) differences found in functional profiles, up to 1565 and 58 
characteristic microbial gene families were determined for healthy controls and outpatients recovered from AL 
(Supplementary Table S3). Most of these gene families corresponded to B. vulgatus and B. uniformis. As expected, 
the healthy control group showed characteristic gene families from P. distasonis, R. gnavus and Bacteroides sp., 

Table 1.  Microbial taxa showing the highest abundances in the microbiota of outpatients recovered from 
acute leukemia (AL) and healthy controls. Mean abundances and standard deviations (SD) of taxonomic clades 
are shown.

Level Taxa

Controls Outpatients

Mean SD Mean SD

Taxonomic clades showing higher abundances in healthy controls

 Phylum Actinobacteria 7.76 12.18 1.89 3.93

 Phylum Firmicutes 34.70 15.91 24.29 15.54

 Class Clostridia 29.12 17.58 16.14 15.13

 Order Bifidobacteriales 5.84 11.65 0.97 3.77

 Order Clostridiales 29.12 17.58 16.14 15.13

 Family Bacteroidaceae 42.85 19.64 25.56 18.92

 Family Bifidobacteriaceae 5.84 11.65 0.97 3.77

 Family Lachnospiraceae 15.99 12.20 6.67 8.90

 Genus Bacteroides 42.85 19.64 25.56 18.92

 Genus Bifidobacterium 5.84 11.65 0.23 0.26

 Genus Blautia 8.61 9.62 0.93 2.33

 Species Bacteroides vulgatus 16.53 13.50 8.16 11.09

Taxonomic clades showing higher abundances in outpatients recovered 
from acute leukemia (AL)

 Phylum Proteobacteria 3.54 5.07 13.01 23.30

 Class Gammaproteobacteria 2.62 4.23 11.40 23.57

 Order Enterobacterales 2.25 4.28 11.25 23.59

 Family Enterobacteriaceae 2.25 4.28 10.61 23.41

 Family Prevotellaceae 4.00 10.47 22.13 25.07

 Family Rikenellaceae 1.72 3.15 4.77 6.59

 Genus Alistipes 1.72 3.15 4.77 6.59

 Genus Prevotella 4.00 10.47 22.08 25.11
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while characteristic gene families of outpatients corresponded to Bacteroides and Eubacterium in agreement with 
taxonomic profiles of samples (Table 1, Fig. 2, Supplementary Figure S4).

Metagenome‑assembled genomes (MAGs)
MAGs recovery
Assembly-based analysis led to a total 991 bins assembled from healthy control and outpatients recovered from 
AL metagenomes. These bins were quality-filtered based on completeness and contamination (at least 50% of 
the genome is represented and contains less than 5% contamination according to previous  works23. Therefore, a 
total 381 draft metagenome-assembled genomes (MAGs) of medium to high quality were recovered from healthy 
controls (n = 129) and outpatients recovered from AL (n = 252) (Supplementary Table S4). Some MAGs were 
recovered from both healthy controls and outpatients recovered from AL and were classified as “common MAGs”. 
In contrast, some MAGs were recovered only from one group of samples and were classified as “characteristic 
MAGs of healthy controls” or “characteristic MAGs of outpatients recovered from AL”. Then, MAGs were clas-
sified at taxonomic level. Some MAGs could be identified at strain or species level while other sequences could 
be correctly identified only at genus or family level (Supplementary Table S3).

The most frequent species recovered from outpatient and healthy control groups were E. coli and P. distasonis, 
respectively. As expected, a large number of MAGs belonging to different species of the genus Prevotella obtained 

Figure 2.  Most abundant taxa found in the microbiota of outpatients recovered from acute leukemia (AL) 
and healthy controls. These taxa constitute the core microbiota of individuals. Data are expressed as abundance 
percentages (%).

Figure 3.  Most abundant taxa found in the microbiota of rectal swab and faecal samples of outpatients 
recovered from acute leukemia (AL). These taxa constitute the core microbiota of individuals. Data are 
expressed as abundance percentages (%).
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were recovered from outpatient metagenomes compared to the control group, in agreement with assembly-free 
taxonomic analysis (Table 1). On the other hand, the majority of MAGs recovered from healthy controls belonged 
to several genera that are commonly associated with a healthy gut composition such as Faecalibacterium, Fae-
calibacillus, Akkermansia or Copromonas24,25. These results highlight the negative impact that chemotherapy and 
further colonization by ESBL- and/or carbapenemase-producing Enterobacterales exert on the gut microbiota of 
outpatients, leading to a reduction in microbial diversity.

Functional annotation of MAGs
These MAGs were also annotated at functional level and the capability to produce therapeutic enzymes was inves-
tigated. In this regard, l-asparaginase has been widely used in the treatment of acute lymphoblastic leukemia, 
and other lymphoid malignancies in combination with other  drugs26,27. The presence/absence of l-asparaginase 
and similar enzymes with therapeutic activity was detected in MAGs recovered from healthy controls and out-
patients recovered from AL (Fig. 4). These enzymes were annotated in several MAGs of a wide range of genera 
recovered from both healthy and outpatient metagenomes including Prevotella, Ruminococcus, Faecalibacterium, 
Alistipes, Akkermansia (Fig. 4a, b). In general, major differences were observed between both groups of samples. 
These functional domains showed a greater representation in characteristic MAGs from outpatients than in 
characteristic MAGs from controls (Fig. 4c, d). These enzymes were detected in at least two MAGs from each 
genus recovered from the outpatient group (Fig. 4d). Despite differences among groups, most MAGs from a wide 
range of genera showed glutaminase (PF17763) and l-asparaginase (PF00710) domains. Interestingly, PF06089 
l-asparaginase domain was detected only in MAGs from Peptoniphilus B and novel Acutalibacteraceae species 
UMGS1071 recovered from outpatients. It is worth noting the absence of the enzyme phenylalanine ammonia 
lyase / tyrosine phenol lyase (PF00221) in all characteristic MAGs recovered from the control group, with the 
exception Bifidobacterium MAGs (Fig. 4c).

As explained, l-asparaginase is an antineoplastic agent that has been widely used in the acute lymphoblastic 
leukemia  chemotherapy26,27. Therefore, the presence of l-asparaginase domains in major gut microbial genera 
may play a positive role in the recovery of outpatients.

Figure 4.  Heatmap showing the presence of different microbial domains involved in the prevention of acute 
leukemia (indicated as black cells) in metagenome-assembled genomes (MAGs) recovered from the microbiota 
of outpatients recovered from acute leukemia (AL) or that underwent stem cell transplantation and healthy 
controls: (a) MAGs recovered from healthy controls that were also found in the microbiota of outpatients 
recovered from AL, (b) MAGs from outpatients recovered from AL that were also found in the microbiota of 
healthy controls, (c) MAGs recovered only from healthy controls, (d) MAGs recovered only from outpatients. 
These MAGs were assigned to taxonomic clades (see Supplementary Table S4). PF00491: arginase; PF04960 
and PF17763: glutaminase; PF01112, PF00710 and PF06089: l-asparaginase; PF06838: methionine γ-lyase; 
PF00221: phenylalanine ammonia lyase / tyrosine phenol lyase.
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Metabolic interaction network
Finally, to gain a better understanding of metabolic interactions between MAGs recovered from healthy controls 
and outpatients recovered from AL, potential cross-feeding mechanisms were elucidated in silico according to 
Belcour et al19. In this regard, essential symbionts and alternative symbionts were determined. Essential symbionts 
comprise key microorganisms that occur in every minimal community of MAGs needed to satisfy one specific 
metabolic function through metabolic cooperation of these bacteria in colon lumen. In contrast, alternative 
symbionts comprise those microorganisms that occur only in some of these minimal communities of interact-
ing microbes. Therefore, any of the alternative symbionts can complete the missing metabolic pathways of the 
minimal microbial community.

Essential symbionts (n = 30) from healthy controls included bifidobacterial like B. pseudocatenulatum and 
B. bifidum, P. distasonis, F. prausnitzii and novel species Lachnospira sp000437735 and Lachnospirales CAG-
274 sp900545305 and AM51-8 sp003478275. Among Alternative symbionts (n = 6) from this group of samples 
included R. D bicirculans, Gemmiger forcimicilis, CAG-115 sp00351585, Prevotella sp000434975, Clostridium A 
leptum and Dialister sp003486385. On the other hand, essential symbionts (n = 28) from outpatients comprised 
different symbiotic species than those found for controls including novel species Firmicutes bacterium CAG-568 
sp000434395, Lachnospiraceae CAG-882 sp003486385 and Oscillospiraceae CAG-170 sp000432135. Alternative 
symbionts (n = 4) from outpatients included Parasutterella excrementihominis, Dialister succinatiphilus, Coproba-
cillus cateniformis and Agathobacter rectalis. It should be noted that there were no common alternative symbionts 
between both groups of samples.

These symbiotic relationships were calculated by determining the number of genes associated to different 
microbial metabolic activities in MAGs. This parameter was calculated according to Belcour et al19, ranging 
from 194 to 2047 in outpatients recovered from AL, and from 264 to 1991 in healthy controls. Interestingly, 
the producibility of myo-inositol, tartrate and fructoselysine phosphate was observed only in healthy controls. 
To illustrate these metabolic interactions, a metabolic network of symbiotic bacteria comprising essential and 
alternative symbionts is provided in Fig. 5.

With regard to the healthy control group, two main microbial communities were observed. The vast majority 
of bacteria showed equivalent and complementary metabolic functions and potential synergistic relationships 
with Ruminococcus E bromii B and Veillonella parvula A. Interestingly, Ruminococcus bicirculans, Gemmiger 
formicilis, Prevotella sp000434975, Prevotella sp000434975 and novel Eubacterium species CAG-115 sp003531585 
comprised one equivalent metabolic community complementary to Dialister sp000434475 (Fig. 5A). This com-
munity showed potential synergistic interactions with the rest of microbes. On the other hand, similar communi-
ties were observed in the outpatient group. In this regard, Coprobacillus cateniformis and Agathobacter rectalis, 
and Parasutterella excrementihominis and Dialister succinatiphilus comprised two equivalent communities that 
showed complementary metabolic capabilities with the rest of MAGs. In addition, other species like V. parvula 
and Levyella massiliensis showed potential interactions with multiple communities (Fig. 5B).

Discussion
This study shows how the administration of treatments such as intensive chemotherapy affects the microbiota 
composition in the gut of outpatients with AL. One of the limitations of the study is the disparity in the moments 
in which the samples were collected. However, 75% of the samples were collected two years after the last chem-
otherapy cycle was administered, indicating that the abnormalities in the microbiota persist even when the 
mucosal damage has stopped. These results are consistent with other studies showing a decrease in taxonomic 
diversity of gut microbiome in the outpatient  group28, although microbiome composition was more variable in 
outpatient samples than in healthy controls. Remarkably, a decrease of gut microbiota diversity is generally associ-
ated with a high-risk of infectious diseases and was proposed as a marker to predict the potential complications 
associated with intensive chemotherapy in AL  patients29.

It should be noted that the samples included in this study correspond to outpatients with AL treated with 
intensive chemotherapy decolonized from an infection with Enterobacteriaceae producing ESBL and/or carbap-
enemases. Carbapenems, cefepime, and piperacillin/tazobactam are established front-line empiric treatments 
for febrile neutropenia in patients with hematologic malignancies. In relation to this, other authors have seen 
that treatment with carbapenems is related to the greatest decrease in Blautia30–32, as we have observed. Recent 
studies suggest that the Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, Prevotellaceae, and Clostridiaceae 
families, widely distributed in the intestinal tract, were predominant in healthy  individuals33, but the current 
study indicates that Bacteirodaceae, Bifidobacteriaceae and Lachnospiraceae families were predominant in our 
control samples, while the rest of the predominant families were found in lower proportions.

The greatest composition differences were detected from outpatient samples. In this samples, we detected 
an increase in the relative abundance of Prevotella and Escherichia to a lesser extent, Alistipes. Compared to 
healthy controls, in the cancer patient’s gut microbiota were reported with increased levels of Fusobacterium 
and Proteobacteria (especially Providencia), and decreased abundance in the Clostridiales order of the Firmicutes 
phylum (Lachnospiraceae, Ruminococcaceae, and Faecalibacterium prausnitzii), and in the Bacteroidales order of 
the Bacteroidetes phylum (Bacteroides, Rikenellaceae)34.

In addition, results shown an increase of Bacteroides vulgatus in the outpatients gut that increases as treat-
ment time increases. This increase was reported to be caused by treatment with an H2 receptor blocker or proton 
pump inhibitors and could be related with patients whose treatment regimen included omeprazole or, rarely, 
 pantoprazole33,35.

The use of anti-metabolites is common in the treatment of hematological cancers such as leukemias because 
these neoplastic cells are often auxotrophic to specific amino acids, which makes them susceptibility to such 
 treatments36. The anti-metabolites are anticancer drugs with capacity of preventing synthesis or depleting the 
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supply of essential molecules for cancer cell proliferation, such as nitrogenous bases, nucleotides, and amino 
 acids37. The therapeutic use of enzymes has been well studied. Amino acid deprivation therapy (AADT) is one 
such promising strategy characterized by the usage of amino acid depleting enzymes, thus promoting the treat-
ment of cancers. l-asparaginase (l-asparagine amidohydrolase, l-AspL-Asp) was the first microbial enzyme 
used for AADT and is currently available as a drug highly effective against T cell acute lymphoblastic leukemia 
(T-ALL). Since then, other enzymes like arginine deiminase, arginase, glutaminase, methionase, lysine oxidase, 
and phenylalanine ammonia lyase are being explored for cancer  treatment34. l-Asp has been extensively used 
and studied because of its relevant potential as an anti-oncological agent and as an acrylamide mitigation agent 
in the food industry, which is due to its ability to catalyze the hydrolysis of l-asparagine into l-aspartate and 
 ammonia38,39.

l-asparaginase (l-Asp) is an important chemotherapeutic agent in the treatment of ALL, but it is not part 
of the standard chemotherapeutic schemes of AML. However, several in vitro studies have shown that some 
cell lines and primary AML samples are sensitive to l-Asp to the same extent as ALL  cells40,41. This sensitivity is 
partially explained by haploinsufficiency of L asparagine synthetase, which is located in chromosome 7q21.342. 
More importantly, l-Asp depletes AML cells of glutamine, which is an essential  nutrient43. In line with these 

Figure 5.  Metabolic network illustrating potential cross-feeding mechanisms between metagenome-assembled 
genomes (MAGs) recovered from the microbiota of healthy controls (A) and outpatients recovered from acute 
leukemia (AL) (B). MAGs from network (A) include: 1: Bifidobacterium pseudocatenulatum, 2: Caecibacter 
hominis, 3: Acidaminococcus provencensis, 4: Bifidobacterium bifidum, 5: Limosilactobacillus fermentum, 
6: Sellimonas intestinalis, 7: 51–20 sp001917175, 8: PeH17 sp000435055, 9: Lachnospira sp000437735, 10: 
Klebsiella pneumoniae, 11: Fusobacterium A mortiferum, 12: Parabacteroides distasonis, 13: Fusobacterium A 
mortiferum, 14: Enterocloster sp900541315, 15: Escherichia coli, 16: CAG-274 sp900545305, 17: Faecalibacterium 
prausnitzii G, 18: AM51-8 sp003478275, 19: UBA1394 sp900538575, 20: Scatocola faecipullorum, 21: Odoribacter 
splanchnicus, 22: Sutterella wadsworthensis, 23: Ruminococcus D bicirculans, 24: Phascolarctobacterium faecium, 
25: Parabacteroides distasonis, 26: Akkermansia muciniphila B, 27: Mesosutterella multiformis, 28: Gemmiger 
formicilis, 29: Alistipes finegoldii, 30: CAG-115 sp003531585, 31: Prevotella sp000434975, 32: Copromonas 
sp900066535, 33: Clostridium A leptum, 34: Dialister sp000434475, 35: Mitsuokella multacida, 36: Aphodousia 
sp900553105, 37: Ruminococcus E bromii B, 38: Veillonella parvula A. MAGs from network (B) include: 1: 
Streptococcus anginosus, 2: Bifidobacterium piotii, 3: Acetatifactor intestinalis, 4: Streptococcus oralis V, 5: CAG-
568 sp000434395, 6: CAG-882 sp003486385, 7: CAG-267 sp001917135, 8: Klebsiella pneumoniae, 9: Serratia 
liquefaciens, 10: Ruthenibacterium lactatiformans, 11: Escherichia coli, 12: Hungatella effluvii, 13: Enterocloster 
clostridioformis, 14: Duncaniella, 15: Parasutterella, 16: CAG-170 sp000432135, 17: Bilophila wadsworthia, 
18: Lawsonella sp018376445, 19: SFGY01, 20: Jonquetella anthropi, 21: Scatomorpha intestinigallinarum, 22: 
Varibaculum, 23: Fenollaria sp900539725, 24: Parasutterella excrementihominis, 25: Phascolarctobacterium 
faecium, 26: Ezakiella coagulans, 27: Dialister succinatiphilus, 28: ER4 sp000765235, 29: UBA11524 sp000437595, 
30: Pelethousia gallinarum, 31: Coprobacillus cateniformis, 32: Veillonella parvula A, 33: Agathobacter rectalis, 
34: Levyella massiliensis, 35: Ruminococcus D bicirculans, 36: Sutterella sp900762445. Network nodes (i. e. 
circles containing different communities showing equivalent metabolic functions) are connected by black lines 
indicating synergistic relationships between communities. Metabolic functions of MAGs from different nodes 
are needed to achieve the maximum number of end-products from pectin as well as other colonic metabolites 
(this mutualistic relationship is indicated by the conjunction “AND”). MAGs inside the same node play the same 
role and could be replaced by other members from the same community (this similar role is indicated by the 
conjunction “OR”). Essential symbionts are included in the green nodes.
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observations, preliminary reports have demonstrated the benefits of l-Asp in  monotherapy44 or in combination 
with other  drugs45–47 in the treatment of relapsed/refractory AML patients. The detection of this enzyme in a 
high number of MAGs belonging to outpatients who have attained sustained remission allows to hypothesize that 
these specific changes in the microbiome contributed to the control of the underlying neoplasm and supports 
the incorporation of l-asp in the therapeutic arsenal of AML.

These enzymes are synthesized by a large number of microorganisms present in the human gut, including 
patient samples, as demonstrated in this study. Interestingly, novel l-asparaginases with anti-leukemic effect 
have been discovered via in silico screening of prokariotic genomes and  metagenomics48, highlighting the poten-
tial of next-generation sequencing and bioinformatic methods to elucidate microbial metabolism on leukemia 
treatment. The present work describes novel applications of metagenome assembly and metabolic modelling 
to elucidate biological interactions in the microbiota of outpatients recovered from AL, revealing cross-feeding 
interactions between health-promoting bacteria including Ruminococcus, novel Lachnospiraceae species and 
Veillonella among others. It has been reported that members of the Ruminococcaceae and Lachnospiraceae fami-
lies were still depleted in pediatric survivors of ALL while the abundance of Ruminococcus species tended to 
increase during the chemotherapy regimen in pediatric patients of  ALL17,49. Metabolic interactions presented 
in this work constitute a first approach to elucidate microbial metabolism and dynamics in the context of AL. 
Metabolic synergies between cooperating bacteria could be used to design novel microbiota-oriented interven-
tions to modulate the growth of health promoting microbial communities that may alleviate some of the adverse 
side effects of chemotherapy.

In conclusion, the present work sheds light on what happens to the microbiota of outpatients once they have 
finished the antineoplastic treatment in terms of microbial composition, diversity and metabolic interactions. 
We show that, even when the outpatients were able to be decolonized of MDR bacteria, profound changes 
were still present in their microbiota. Some of these changes are related to adverse outcomes. For example, the 
predominance of Prevotella species has been associated with acute graft versus host disease, a life-threatening 
complication following allogeneic stem cell transplant (SCT)50. Considering that almost half of the AL patients 
will experiment a relapse, which is treated with further chemotherapy and SCT, the permanence of these spe-
cies poses the patients at risk of a GVHD in the event of a relapse. Therefore, the development of strategies for 
the recovery of the normal microbiota should be a priority in the treatment of patients with AL. The long-term 
consequences of gut microbiome alterations are unknown. Therefore, further studies including a larger number 
of patients are required, but the results of the present work may constitute a good starting point for this purpose.

Material and methods
Samples collection
A total of 28 samples (21 rectal swabs and 7 faecal samples) from outpatients under follow-up by the Haematol-
ogy Department of the “Hospital Universitario Central de Asturias” (HUCA) who recovered from AL or high-
risk myelodysplastic syndrome treated with intensive chemotherapy, were collected. In this regard, outpatients 
comprised 19 female and 9 male individuals who were 31 to 72 years old. Outpatients enrolled in this study 
were diagnosed with ALL (n = 2), AML (n = 25) and high-risk MDS (n = 1). The median time elapsed between 
the study sample and the last chemotherapy cycle administered was 849 days (interquartile range 564–1290). 
Metagenomics analysis was performed, for which DNA was extracted from the samples with the QIAamp Fast 
DNA Stool Mini Kit (Qiagen, Hilden, Germany) and sequenced in a NovaSeq 6000 platform with Illumina tech-
nology, to generate 150 bp paired-end reads, as described a previously study by our group (PRJNA914091)22;. 
Besides, outpatient metagenomes were compared to healthy control metagenomes (n = 14) reported by Yachida 
et al51. These control metagenomes (study accession code PRJDB4176) were paired by sex and age and retrieved 
from the standardised database  HumanMetagenomeDB52. Control samples were sequenced in a HiSeq2500 
platform (Illumina) to generate 150 bp paired-end reads. A table summarising the accession codes of metage-
nome sequences and demographic characteristics of AL outpatients and healthy controls can be found in Sup-
plementary Material Tables S1 and S2.

Assembly‑free analysis
Raw metagenome sequences were analysed using TORMES v1.3.053, a software tool which implements a compre-
hensive pipeline for meta-genomics analysis (including quality control of the reads, de novo genome assembly, 
and screening of antimicrobial resistance encoding genes, among others). Quality filtering was accomplished 
by Prinseq v0.20.454. Reads with a quality score lower than 25 or with less than 125 bp were excluded from the 
analysis.

An assembly-free analysis of metagenome sequences was first performed to better characterise low-abundance 
taxa that might not be assembled. For this purpose, metagenomic clean reads generated by TORMES v1.3.053 
were concatenated and analysed following MetaPhlAn 3.0 (v3.0.4) and HUMAnN 3.0 (v3.0.0)  pipelines55,56. In 
this regard, ChocoPhlAn (version "mpa_v30_ChocoPhlAn_201901") database containing clade-specific marker 
genes and UniRef90 (version "uniref90_201901") protein database, were used to perform taxonomic and func-
tional analyses. The abundances of gene families and metabolic pathways were re-normalized and expressed in 
units of copies per million.

Statistical analyses were performed on R (v.4.2.2). To characterize microbial diversity within a sample and 
between individuals, alpha and beta diversity estimators were computed using  Phyloseq57 and Microbiome R 
 packages58. Principal Coordinate Analysis (PCoA) and composition barplots were generated using Microbiome 
R package to illustrate major differences in the microbiota of outpatients and healthy controls. Statistically signifi-
cant differences  (padj < 0.05) in microbiota composition and microbial gene families and metabolic pathways were 
calculated using multiple statistical methods designed for microbiome analysis (aldex, ANCOM. ANCOMBC, 



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5585  | https://doi.org/10.1038/s41598-024-56054-w

www.nature.com/scientificreports/

LEfSe, metagenomeSeq and DESeq2) implemented in microbiomeMarker R  package59–65. Taxonomic clades and 
functions classified as significantly differential microbes (microbiome markers) by any of these methods were 
selected for further analysis.

Metagenome assembly
A complementary assembly-based analysis of metagenome sequences was carried out to perform a comprehen-
sive characterisation of microbial metabolic activities. The assembly of the filtered reads was performed with 
MEGAHIT v1.2.966. Maximum k-mer size was set at 127 in order to generate the following series of k-mers: 
k-21, k-31, k-41, k-51, k-61, k-71, k-81, k-91, k-101, k-111, k-121, k-127). Then, metagenome reads were mapped 
against the assembly using Bowtie2 v.4.567. Output bam files generated were sorted and indexed. Contigs larger 
than 1.5 kilobases were binned separately using Metabat2 v.2.2.1568. MAGs completeness and contamination 
was determined using CheckM v.1.1.3 lineage-specific  workflow69. In this regard, MAGs showing completeness 
lower than 50% and contamination higher than 5% were discarded according to previous  works18,70. Taxonomic 
classification of MAGs was performed using GTDB-Tk v2.1.1  software71. Open reading frames (ORFs) of MAGs 
were determined using Prodigal v.2.6.3 and annotated using HMMER software and Pfam  database72.

Further statistical analyses were performed on R (v.4.2.2). Hierarchical clustering of MAGs was carried 
out considering the distribution of Pfam domains corresponding to enzymes that are positively associated to 
leukemia remission according to previous  studies26,27: PF00491 arginase; PF04960 and PF17763 glutaminases; 
PF01112, PF00710 and PF06089 l-asparaginases; PF06838 methionine γ-lyase; and PF00221 phenylalanine 
ammonia lyase / tyrosine phenol lyase. Clusters illustrating the presence and absence of these Pfam domains in 
MAGs were calculated by the complete linkage method using the basic R function “hclust”.

Metabolic modelling
The last step of the bioinformatic analysis involved metabolic modelling of MAGs recovered from AL outpatients 
and healthy controls to elucidate potential metabolic interactions between microbial communities. MAGs were 
first annotated using Prokka v1.14.6 and standard Genbank files (.gbk) files containing sequences and annotations 
were used as input for metage2metabo v1.5.0 software. A “seeds” file containing different nutrients that may be 
present in human gut according to previous studies was provided to perform the simulations in given nutritional 
 conditions18,19. Different simulations were performed for AL outpatients and healthy controls.
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