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Application of machine 
learning with large‑scale data 
for an effective vaccination 
against classical swine fever 
for wild boar in Japan
Satoshi Ito 1,2,3*, Cecilia Aguilar‑Vega 1,2, Jaime Bosch 1,2, Norikazu Isoda 4,5 & 
José Manuel Sánchez‑Vizcaíno 1,2

Classical swine fever has been spreading across the country since its re‑emergence in Japan in 
2018. Gifu Prefecture has been working diligently to control the disease through the oral vaccine 
dissemination targeting wild boars. Although vaccines were sprayed at 14,000 locations between 
2019 and 2020, vaccine ingestion by wild boars was only confirmed at 30% of the locations. Here, 
we predicted the vaccine ingestion rate at each point by Random Forest modeling based on vaccine 
dissemination data and created prediction surfaces for the probability of vaccine ingestion by wild 
boar using spatial interpolation techniques. Consequently, the distance from the vaccination point 
to the water source was the most important variable, followed by elevation, season, road density, 
and slope. The area under the curve, model accuracy, sensitivity, and specificity for model evaluation 
were 0.760, 0.678, 0.661, and 0.685, respectively. Areas with high probability of wild boar vaccination 
were predicted in northern, eastern, and western part of Gifu. Leave‑One‑Out Cross Validation results 
showed that Kriging approach was more accurate than the Inverse distance weighting method. 
We emphasize that effective vaccination strategies based on epidemiological data are essential for 
disease control and that our proposed tool is also applicable for other wildlife diseases.

Classical swine fever (CSF), caused by classical swine fever virus of the genus Pestivirus of the family Flaviviridae, 
is an infectious viral disease of domestic and wild pigs. The disease is considered one of the most important 
transboundary swine diseases, along with ASF and Foot and Mouth Disease, because of its potential to severely 
impact the swine industry. The most common mode of transmission is through direct contact between a healthy 
susceptible host and infected  animals1. The disease can also be spread through the discharge of infected animals 
and contaminated pork products, thus contaminated food residues, vehicles, and clothing are important sources 
of indirect transmission  routes2. The disease has acute and chronic forms, ranging from severe with high mortal-
ity to mild or no symptoms. Clinical signs are known to be very similar to those of African swine fever (ASF)3. 
Geographically, CSF is distributed in parts of Latin America, Europe, Asia, and Africa. According to the World 
Organisation for Animal Health (WOAH), vaccination can prevent the spread of the disease in areas where the 
disease is  endemic1.

Japan has successfully eradicated CSF through vaccination efforts in the twentieth century, owing to the 
availability of highly effective  vaccines4,5. However, since the re-emergence of CSF in 2018, the infected area has 
expanded, notably due to large outbreaks in wild boar populations along with sporadic outbreaks at pig  farms6. 
The current CSF virus epidemic strain in Japan is considered moderately virulent, with a mix of individuals 
dying from infection and those  surviving7, contributing to the large-scale expansion of  infection8. Vaccination of 
domestic pigs and wild boars began in October and March 2019,  respectively9. While vaccination is encouraged 
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across most regions in Japan, the lack of control of the epidemic among wild boars remains a major challenge. 
As of August 31, 2023, CSF infections have been reported in 24 prefectures for domestic pigs and 35 prefectures 
for wild boars, covering all regions except Hokkaido (Honshu, Shikoku, Kyushu, and Okinawa)10.

Wild boars, which are omnivorous and have a wide range of food choices, are widely distributed in Japan and 
appear in rice paddies and farmlands adjacent to their  habitat11,12, and are known to selectively visit broadleaf 
forests, abandoned farmlands, and bamboo forests in  particular13,14. In addition to digging up the ground and 
feeding on plant roots and rhizomes, they also eat acorns and prey on insects and reptiles. They feed on bamboo 
shoots in spring, rice in summer, hard fruits in autumn, and an increasing proportion of plant roots and tubers 
in  winter14–16. A study by the Ministry of the Environment found that the distribution range of wild boars has 
expanded about 1.9 times over the past 40  years17, indicating that CSF could further expand and have a more 
serious impact on the Japanese swine industry.

Vaccination is a key preventative measure for both individuals and communities against infectious diseases, 
crucial for preventing future infections and controlling disease spread. In wildlife populations where inter-
ventionist management is more challenging compared to livestock, the introduction of oral vaccines has been 
recognized as a key strategy for controlling  diseases18. Gifu Prefecture, where there have been ongoing outbreaks 
since the first introduction, is one of the municipalities that has been working diligently to control the disease 
through oral vaccine dissemination for wild boars. Based on the insights of local hunters and wild boar experts, 
the oral vaccine was dispersed at a total of about 14,000 sites over three seasons each year from 2019 to 2020. At 
each site, 10 or 20 vaccines were spread and buried in holes dug about 10–15 cm deep. In each hole, one or two 
vaccines were buried together with lure food consisting of compound feed and pressed corn, and the surface of 
the hole was covered with lure food. To measure the effectiveness of the vaccination application, the remaining 
vaccine or vaccine packet was collected 5 days after application and the presence or absence of feeding by wild 
boar was determined based on the shape of the remaining vaccine  packet19. Consequently, vaccine ingestion by 
wild boars was confirmed in approximately 30% of the dispersal  sites20. The expansion of infected areas and the 
prolonged infection period will burden the economy, as will the cost of control measures. Therefore, the develop-
ment of effective vaccination strategies is an urgent priority in the current epidemic situation.

In the previous study, we performed a generalized linear mixed model (GLMM) analysis based on data from 
sensor cameras installed at approximately 10% of all vaccine dispersal points to identify areas where wild boar 
was most likely to appear. We found a positive correlation between the emergence of other wildlife (raccoon, 
raccoon dog, and crow) and the emergence of wild  boar20. In addition, road density and vegetation were also 
estimated to influence wild boar emergence. However, areas of high wild boar emergence may not coincide with 
areas of high vaccine feeding. Estimation of areas with high potential for vaccine feeding by wild boars based on 
accumulated large-scale data would be useful for an efficient selection of vaccine application sites.

Machine learning algorithms can analyze large, complex data sets and identify patterns and trends that are 
difficult to be detected by humans. For this reason, an increasing number of studies in recent years have applied 
them to predict infectious disease  outbreaks21. Random  Forest22 is one of the most commonly used and most 
powerful machine learning techniques or this  purpose21. It is an algorithm that combines several randomized 
decision trees and aggregates the predictions by  averaging23.

In this study, we first predicted the wild boar vaccine ingestion rate at each vaccine dissemination site based 
on a Random Forest model. The obtained results were then combined with spatial interpolation techniques to 
output a prediction surface showing the vaccine ingestion probability of wild boars in Gifu Prefecture. Effective 
vaccination strategies for wild animals can be summarized in two aspects: high efficacy of the vaccine itself and 
efficient vaccine delivery to each individual. This study aimed to contribute to the control of CSF in wild boars 
by focusing on the latter.

Materials and methods
Characteristics of the study area and data collection: Gifu Prefecture
The selected study area, Gifu Prefecture, is located in central Japan (Fig. 1). This is the area where the re-
emergence of CSF was reported in 2018. Forests cover 82% of the prefectural land, and the northern part of the 
prefecture is covered with mountains over 3000 m in elevation, while the southern part is covered with plains. 
Because of the large difference in elevation and climate within the prefecture, a wide variety of plant communities 
can be observed, including evergreen broad-leaved forests in the warm temperate zone, deciduous broad-leaved 
forests in the cool temperate zone, coniferous forests in the subarctic zone, and alpine  plants24–26. The estimated 
wild boar population in the prefecture was about 16,000 at the end of March 2019, and then halved for a time 
due to the CSF epidemic. However, it has recently been gradually recovering, and as of the end of March 2022, 
approximately 17,600 animals are estimated to be present in a wide range of  areas27.

The present study was conducted based on CSF oral vaccine dissemination data administered by Gifu Prefec-
ture from March 24, 2019 to November 12, 2020. These data are not available to the public and were provided by 
Gifu Prefecture on a conditional basis. In 2019, oral vaccine dissemination was performed six times, twice each in 
spring (March and May), summer (July and August), and winter (December 2019 and February 2020). In 2020, 
the vaccine was dispersed once each in spring (April), summer (June), and autumn (October–November). Dur-
ing this period, oral vaccine was disseminated to a total of 14,131 locations in Gifu Prefecture. Of these, data for 
10,879 locations available as Excel data were used in this study. These data included geographic XY coordinates of 
distribution points, dates of vaccine dissemination and collection, number of vaccines disseminated, number of 
vaccines remaining at the time of collection, number of vaccines with evidence of feeding by wild boars, number 
of vaccines with evidence of bites by other animals, and presence of traces of wild boars in the surrounding area.
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Classification tree random forest: variable selection
Random Forest is an ensemble learning algorithm that integrates multiple decision trees. Each tree is trained 
on a random subset of the data, allowing the model to capture a broad spectrum of data characteristics. Predic-
tions from individual trees are aggregated, typically through majority voting for classification or averaging for 
regression, to produce the final output. This approach effectively reduces overfitting, making Random Forests 
well-suited for handling complex datasets with numerous input  variables23. To perform classification tree-based 
Random Forest in the R programming environment, we used the ranger package, which is particularly suitable 
for high-dimensional data and can be implemented at high  speed28.

The response variable was set as "vaccine ingestion by wild boars at each oral vaccine application site (1 for 
ingestion, 0 for non-ingestion). Although the number of vaccines ingested by wild boars has been quantitatively 
recorded, the possibility of duplicate counts by the same individual cannot be excluded. The following explanatory 
variables were selected based on the ecological characteristics of wild boars and authors’ previous experience 
with wild boar-related studies: season of vaccination (spring, summer, autumn, and winter), presence or absence 
of vaccine feeding by other animals, presence or absence of wild boar traces in the surrounding area, elevation, 
slope, road density, distance from water sources, human footprint (a measure of human activity area indicator), 
vegetation, and bioclimatic factors (Table 1). Vaccine feeding status is presumably influenced by the behavioral 
patterns and available food resources of wild boars, which vary by season. The variable of vaccine dissemination 
season, a categorical variable, was subjected to a label encoding process. Our previous study found a correlation 
between the emergence of other animals and wild  boar20, and therefore it may also influence the vaccine uptake 
rate of wild boar. The vaccine ingestion variable by other animals was treated as binary data for the same reasons 
as in the response variable setting. If vaccine dissemination sites overlap with wild boar activity zones, the uptake 
rate is expected to be higher. Therefore, the presence or absence of wild boar traces in the surrounding area may 
be related to vaccine uptake. In a previous study, elevation and slope were identified as factors affecting wild boar 
 habitat29, and these factors may have influenced the response variable in Gifu, where there is a large elevation 
difference. These data were downloaded as shapefiles from the National Land Numerical Information Download 
Service (NLNIDS) provided by the Ministry of Land, Infrastructure, Transport and  Tourism30. The information 
corresponding to the distribution points was then extracted using the Intersect tool in ArcGIS 10.8.1 (Esri)31. 
As wild boars are inherently cautious  animals32, areas of human activity and road density can be associated with 
vaccine feeding rates. Human Footprint data representing areas of human activity were downloaded from the 
SEDAC  database33, and values for each distribution point were obtained using the Extract Multi Values to Points 
tool in  ArcGIS34. Road density data were obtained as shapefiles from NLNIDS and values were extracted for 

Figure 1.  Location of Gifu Prefecture. Gifu is located in the center of Japan. The map was depicted in ArcGIS 
10.8.1 (Esri).
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each location using the Intersect tool in ArcGIS. Water is an essential element for sustaining life and is closely 
related to feeding behavior. Therefore, distance from the water source is assumed to have some influence on the 
response variable. Here, rivers, streams, and lakes were defined as water sources, and geographic information 
was downloaded from NLNIDS. The Euclidean distance from each vaccine dispersal point to the nearest water 
source was calculated using the Near tool in  ArcGIS35. Vegetation and bioclimatic factors are frequently used 
in species distribution models and are often included in studies to predict ASF epidemics in wild boars and to 
elucidate risk  factors36–39. Indeed, these factors are assumed to have a significant influence on the behavioral 
patterns of wild boars and the availability of food resources. In this study, vegetation information, including 58 
vegetation classifications, was downloaded as shapefiles from the Biodiversity Center of  Japan40. To fit these data 
quantitatively to each vaccine distribution point, Gifu Prefecture was first divided into a 1 km × 1 km grid using 
the Fishnet tool in  ArcGIS41. The Tabulate Intersection tool in ArcGIS and the pivot function in Excel were then 
applied to calculate the percentage of each vegetation type in each  grid42. Finally, the Extract values to points 
tool was used to link the data for each dispersal point to the percentage of vegetation composition in the grid to 
which it belongs. To avoid model complexity, an approach was applied in which only the main vegetation types 
that comprise Gifu Prefecture were retained as explanatory variables. Specifically, vegetation types that do not 
exist in Gifu Prefecture and vegetation types with less than 1% of the total number of dispersal points to which 
they belong were eliminated in this process. We downloaded the standard 19 bioclimatic variables for WorldClim 
version 2, representing the average values from 1970 to 2000. Based on our knowledge and experience, the fol-
lowing variables were selected for our analysis. bio4 (seasonality of temperature), bio5 (maximum temperature 
in warm months), bio7 (annual range of temperature), bio8 (average temperature in wettest quarter), bio13 
(precipitation in wettest month), bio15 (precipitation in driest quarter), bio16 (precipitation in driest quarter), 
bio17 (precipitation in driest quarter), bio18 (precipitation in the warmest quarter), bio19 (precipitation in the 
coldest quarter)43. The geographic dataset used was a 1 km × 1 km spatial resolution in ArcGIS.

Classification tree random forests: model implementation
Initially, the number of samples with a response variable of 0 was adjusted to equal the number of samples with 
a response variable of 1, using the sample_n function from dplyr package in  R44. Then, multicollinearity among 
the explanatory variables was checked with respect to the Pearson correlation coefficient of the cor function in R. 
Only one of the variable pairs with a correlation greater than 0.6 was retained, based on the authors’ knowledge 
and experience.

Random forests were classified into a supervised learning algorithm, thus 80% and 20% of the data were 
assigned as training and test data, respectively. The algorithm is known to give good results with default settings, 
but performance can be improved by adjusting the hyperparameter  values30. To evaluate all possible combina-
tions of parameter space based on RMSE (Root Mean Squared Error), various combinations of hyperparameter 
values were attempted using the expand.grid function (Table 2).

The model was trained using the optimal hyperparameter combination with the lowest RMSE, and the impor-
tance of the variables was quantified by the vip function from the vip package in  R30. Predictive performance 
was evaluated using the measure of area under the curve (AUC) of the receiver operating characteristic (ROC) 
curve on the test dataset with the pROC package auc function in  R45. The sensitivity and specificity of the model 
were further assessed using the confusionMatrix function of the caret package in  R46.

Table 1.  List of variables included in Random Forest model.

Explanatory variables Original data type

Vaccine-disseminated season Point

Vaccine ingestion by other animals Point

Presence or absence of wild boar traces in the surrounding area Point

Distance to the water source Point

Altitude Polygon

Slope Polygon

Road density polygon

Human Footprint Raster

Vegetation types Raster

bio4(Temperature Seasonality) Raster

bio5(Max Temperature of Warmest Month) Raster

bio7(Temperature Annual Range) Raster

bio8(Mean Temperature of Wettest Quarter) Raster

bio13(Precipitation of Wettest Month) Raster

bio15(Precipitation Seasonality) Raster

bio16(Precipitation of Wettest Quarter) Raster

bio17(Precipitation of Driest Quarter) Raster

bio18(Precipitation of Warmest Quarter) Raster

bio19(Precipitation of Coldest Quarter) Raster
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Spatial interpolation: inverse distance weighting (IDW) and Kriging
According to our previous work, two spatial interpolation methods (IDW and Kriging) were applied for inter-
polating spatial data between wild boar vaccine intake probabilities at each location given by a Random Forest 
 model40. The IDW method is called deterministic interpolation, where ambient measurements determine the 
smoothness of the output surfaces and directly affect the  results43. This approach assumes that values closer to one 
value being interpolated are more relevant than values farther away, and the values are obtained by a weighted 
average with the inverse of the distance as the weight. All calculations were performed with the idw function of 
the gstat package in  R43, and the predicted surface output was performed in ArcGIS 10.8.1.

Kriging is a multi-step approach based on a geostatistical method that considers spatial autocorrelation. It 
evaluates the characteristics of the spatial probability field based on measured data and performs spatial inter-
polation from observed values considering the estimated spatial probability  field43. At a specific distance (range), 
autocorrelations between data points become independent, meaning that when their variation stabilizes (sill), 
spatial autocorrelation among the data points’ proximities ceases to exist. The following calculations were per-
formed to estimate parameters (sill, range, nugget) representing spatial autocorrelation and range of variance. 
First, a variogram cloud was created using the variogram function of the gstat package to evaluate sample value 
pairs. Next, an experimental variogram was created using the variogram function. The nugget represents the 
variogram’s y-intercept, attributed to measurement errors or spatial variations occurring at distances shorter 
than the sampling interval. It signifies the smallest scale of spatial variation that the study’s sampling approach 
can detect. In the step of generating the variogram model using the vgm function, the best model was selected 
from the three models “Sph”, “Exp”, and “Gau” by the fit.variogram function. Based on the obtained model and 
the default values of the parameters (sill, range, nugget), both the experimental variogram and the model were 
overlaid and plotted to evaluate the initial model. The model was then fitted using one of the fit criteria, and 
ordinary kriging was performed with the krige function of the same package. Predictive surface mapping was 
performed on ArcGIS.

The Leave-One-Out Cross Validation  method43 was applied to evaluate the prediction accuracy of the two 
spatial interpolation methods, and the final results were obtained as a table containing the observed and pre-
dicted values for all points. Validation was performed for each method using the gstat.cv function from the gstat 
package. The columns of predicted and observed values in the resulting table were used to calculate the  RMSE43.

Results
Classification tree random forest: variable selection
Of the 58 vegetation taxa in the vegetation variable selection process, 18 were chosen as individual explanatory 
variables (Supplementary Table 1). A total of 10,245 vaccine spread sites remained throughout this process and 
were used in subsequent Random Forest implementations. Since the test data set contained 2227 samples with 
response variable of 1, an equivalent number of samples with a response variable of 0 were randomly selected 
by the sample_n function in R and used for further analysis. Of the variable combinations that had Pearson’s 
correlation coefficients greater than 0.6, bio4, 5, 8, and 18 were excluded as candidate explanatory variables due 
to multicollinearity.

Classification tree random forest: model implementation
A grid search resulted in an optimal Random Forest model based on the following combination of hyperparam-
eter values with the lowest OOB (Out of Bag) RMSE of 0.419; mtry: 9, minimum node size: 15, replace: False, 
sample fraction: 0.55, number of trees: 2000 sample fraction: 0.55, number of trees: 2000.

The top 15 variables of importance in this model were shown in Fig. 2. Distance from the vaccine distribu-
tion point to the water source was the most important variable, followed by elevation, season, road density, and 
slope (Fig. 2). The AUC for assessing model performance was 0.760 (Model accuracy = 0.678, sensitivity = 0.661, 
specificity = 0.685) (Fig. 3).

Spatial interpolation: inverse distance weighting (IDW) and Kriging
Wild boar vaccine intake probability maps interpolated by the IDW method were depicted on ArcGIS 10.8.1. 
Areas of high probability were identified from northeastern to southeastern Gifu Prefecture and also in the 
western part of the prefecture (Fig. 4).

In the Kriging method, the empirical semivariogram was approximated by a model, and “Sph” was chosen as 
the best model, with values of 0.133, 0.189, and 35.68 for Nugget, Sill, and Range, respectively. Using these values, 
a predictive surface of wild boar vaccine intake probability in Gifu Prefecture was depicted (Fig. 5). The overall 

Table 2.  Hyperparameter adjustment of random forest model.

Hyperparameters Test conditions

Number of features considered at each split (mtry) Number of variables × (0.05, 0.15, 0.25, 0.33, 0.4)

Minimum node size 1, 3, 5, 10, 15

Replace True or False

Sample fraction 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8

Number of trees 250, 300, 350, 400, 450, 500, 550, 600, 800, 1000, 2000
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Figure 2.  Importance rank of explanatory variables. Variable importance scores of the top 15 features from the 
random forest model are visualized using the vip package in R.

Figure 3.  Model evaluation by ROC curve. The ROC curve of the model was plotted using the roc and auc 
functions of the pROC package on R programming and AUC = 0.760 was calculated.
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spatial distribution of probability is similar to the IDW results, but the high probability areas tend to be more 
aggregated compared to the IDW results, where high probability areas are scattered throughout the entire area.

Finally, the prediction accuracy of the IDW and Kriging methods was evaluated using Leave-One-Out Cross 
Validation. The results showed that the RMSE for IDW and Kriging were 0.179 and 0.168, respectively, indicating 
that Kriging was more accurate in prediction in this analysis.

Discussion
In this study, we employed machine learning models on large-scale oral vaccine distribution data to identify 
key factors influencing wild boar vaccine uptake. Spatial interpolation techniques were integrated to predict 
areas of high vaccine uptake probability, aiming to improve CSF management strategies among wild boars. 
Although the Random Forest modeling achieved fairly good predictive  accuracy47 with an AUC of 0.760, there 
is potential for improvement, especially in accurately reflecting wild boar population density and the human 
impact on vaccine distribution. The research underscores the necessity for effective vaccination strategies and 
the challenges in managing disease spread among wildlife. The comprehensive approach combining machine 
learning and spatial analysis offered significant insights for disease management in wild boar populations and 
the protection of the swine industry.

The results of the optimized random forest model identified important variables including distance to water 
sources, elevation, season, road density, and slope. Distance to the water source was chosen as the most important 
variable. This result seems logical given the relationship between food resources and water, which is essential 
for sustaining life. Wild boars should have a water source in the vicinity of their living area, which may make 
it easier for bait vaccines to be found as a food source when wild boars move around the area. Previous studies 
have reported that the distribution and abundance of resources significantly influence the movement patterns of 
wild boars. The presence of high-quality and abundant food and water sources tends to reduce the home range of 
wild boars. Conversely, poor nutritional conditions lead wild boars to move more extensively in search of food 
and  water48. Elevation and slope would shape the flow of water and furthermore affect vegetation distribution 
and temperature changes. These variables were selected as important variables because they indirectly affect the 
ecology of wild  boars49. The relationship between environmental factors and wild boars’ behavioral patterns is 
frequently addressed in epidemiological studies identifying ASF risk factors. While interpreting behavior pattern 

Figure 4.  Probability of wild boar vaccine intake by IDW (Inverse distance weighting) method. Surfaces of 
wild boar oral vaccine intake probability in Gifu Prefecture was created using the IDW method and depicted in 
ArcGIS. The probabilities take the range 0–1, with blue areas showing a lower probability of intake and red areas 
showing a higher probability of intake. The gray-colored areas represent regions within Gifu Prefecture that 
couldn’t be analyzed using spatial interpolation due to the absence of nearby vaccine distribution points.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5312  | https://doi.org/10.1038/s41598-024-55828-6

www.nature.com/scientificreports/

changes due to infection requires caution, the close association between habitat-related factors, including water 
and vegetation, and wild boar behavior has been highlighted in various  studies50,51. Seasonal changes would have 
affected the reproductive cycle and availability of food resources for wild boars, which would have led to changes 
in their feeding behavior patterns. Wild boars usually conceive once a year, either in spring or autumn, and give 
birth to about four young per  litter43. As mentioned earlier, staple foods also vary by season, and the availability 
of these resources is not always constant. The bioclimatic factors listed as important variables (16,7,19,13,17,15) 
(see Table 1) have an indirect impact on life-sustaining resources (like water and food), vegetation, and the life 
cycle of wild boars. Thus, they would have been considered important. Vegetation types 54 (Plantation), 57 (cul-
tural land), and 42 (Evergreen coniferous secondary forest) were identified as the important variables affecting 
the model in the present results. Cultural land has been identified as a preferred area for wild  boars43. Cedar and 
cypress are planted in plantation in Gifu Prefecture, and the coniferous forest zone is one of the major vegetation 
types that comprise the forest area in the prefecture. It is interesting that coniferous forest zone was identified 
as an important variable in this study, even though broadleaf forest zone, which is considered favorable for wild 
boar, is also widely distributed. Road density and Human Footprint variables can be considered anthropogenic 
factors influencing wild boar habitat. According to the previous study, wild boar are less likely to appear in 
urban areas with high road density and high human  activity52. Rather, wild boars tend to appear in areas where 
road density is not very dense and human activity is not frequent, i.e., areas with diverse landscapes are highly 
important, such as at the boundary between mountainous areas and human settlements, where they are more 
likely to forage for  food53.

The results obtained in this Random Forest modeling (AUC of 0.760) were fairly good prediction accuracy. 
The study incorporates all currently available information based on previous findings. However, the sensitivity 
and specificity results obtained still suggest issues with prediction accuracy and aspects that need to be improved. 
A similar study conducted previously in Gifu Prefecture indicated a correlation between vaccine intake and 
population  density54. Information on the density distribution of wild boars is expected to improve the prediction 
accuracy of this model, but challenges remain to reflect actual conditions. Detailed population density data would 
be difficult to be obtained as it is highly variable and heavily influenced by CSF epidemic status and depopulation 
control. There are also several aspects that are difficult to be quantified in the data because vaccine dissemination 
is conducted manually by human operators. Wild boars are generally very cautious and prefer to live in moun-
tain forests where there is little human access. The smell and traces left by humans around the dissemination 

Figure 5.  Probability of wild boar vaccine intake by Kriging method. Surfaces of wild boar oral vaccine intake 
probability for Gifu Prefecture was created using the Kriging method and depicted in ArcGIS. Probabilities 
take the range 0–1, with blue areas indicating a lower probability of intake and red areas indicating a higher 
probability of intake. The gray-colored areas represent regions within Gifu Prefecture that couldn’t be analyzed 
using spatial interpolation due to the absence of nearby vaccine distribution points.
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point during vaccine application operations may have an impact on the appearance of wild boars as well as on 
vaccine uptake. If this information can be quantified in some way, the prediction accuracy of the model will be 
improved. The wild boar trace variable was not selected as the top important variable in this analysis. Given that 
this work was done visually by field operators, the accuracy of the information is dependent on their experience 
and skill. A vaccine packet that has been chewed and has not retained its original shape is regarded as a feeding 
by wild boar. However, it is difficult to make an accurate evaluation based on this alone, and therefore, a certain 
degree of bias due to human factors cannot be excluded at the stage of response variable selection. A more reli-
able judgment can be made if the presence or absence of foraging behavior is confirmed. In our previous study, 
we found a significant positive correlation between the appearance rate of wild boars and that of other animals. 
Contrary to our assumption that these animals could be competitors for vaccine uptake by wild boars, it was not 
selected as a key variable in the model. Regardless of the presence or absence of vaccine ingestion by wild boars, 
vaccine ingestion or removal by other animals was documented at the majority of dispersal sites. This poses a 
major challenge for effective vaccine dissemination. Based on our previous results, it is highly likely that small 
and medium-sized animals such as raccoon dogs, raccoons, and crows are involved. As a countermeasure, Gifu 
Prefecture has taken steps to place stones at dispersal points that can only be moved by wild boars.

When the data contains information that can be attributed only to individual points, the application of spa-
tial interpolation is useful for interpolating between points and creating prediction surfaces. In this respect, the 
current approach, combining machine learning techniques and spatial interpolation, is unique. Both two spatial 
interpolated wild boar oral vaccine intake probability maps estimated high probability areas in the northeast-
ern and southeastern parts of Gifu Prefecture, as well as in the western region. The difference in output surface 
smoothness may be originated from algorithmic differences, but the spatial distribution of high probability 
areas in both maps is very similar. The results of the RMSE cross-validation test concluded that the prediction 
accuracy of Kriging was slightly higher, consistent with our previous study  results55. As previously mentioned, 
the probability of wild boar appearances and vaccine feeding rates may not always coincide, suggesting external 
influences on their feeding habits besides individual factors. Consequently, the presence of wild boars does not 
guarantee vaccine intake. Environmental effects, along with the vaccine distribution technique and the charac-
teristics of the vaccine itself, may also play significant  roles56. Compared to the wild boar emergence map created 
in the previous study (Supplementary Fig. 1), both analyses observed high probability areas in the northern 
and southeastern parts of the prefecture. On the other hand, there are differences between the two analyses in 
the western and central parts of the prefecture. Although the data, methods, and objectives used are different 
and cannot be compared, analyzing the similarities and differences between the two studies may be useful in 
prioritizing vaccine application sites. For example, in the western part of the prefecture, the probability of wild 
boar emergence is not very high, but the oral vaccine uptake rate is relatively high. Conversely, the southeastern 
border area of the prefecture has a high probability of wild boar emergence but not a very high probability of 
vaccine uptake, so it will be necessary to rethink measures in terms of cost-effectiveness. The results obtained 
here should be shared with experts familiar with local geography and wild boar ecology and utilized effectively 
for implementing countermeasures.

Several studies have already been conducted on the development of effective vaccination strategies for wild 
boars in Japan, including our previous study. Ikeda et al.57 identified factors influencing wild boar vaccine uptake 
rates from biological, environmental, and geographical perspectives using spatial Bayesian generalized linear 
model. Endo et al.53 used a generalized linear mixed model to investigate landscape factors correlated with 
vaccine uptake. These studies analyzed causal relationships modeled by regression analysis. On the other hand, 
machine learning can be a powerful tool when high predictive accuracy is required, and its use in veterinary 
public health surveillance has expanded in recent  years58. Our study focused on a specific local authority holding 
more than 10,000 data accumulated over several years. Additional incorporation of spatial interpolation allows 
the results to be shared visually, facilitating the prioritization of vaccination points. In the same region, changes 
in antibody prevalence against CSF due to vaccine campaigns in wild boar populations and the amount of vac-
cination required to eliminate CSF have been estimated based on mathematical  modeling59. Accordingly, both 
studies can be taken into account for more appropriate selection of vaccination strategy.

Although this study focused on oral vaccination of wild boars against CSF, the proposed tool may also be use-
ful in controlling other diseases. As the prevalence of CSF in Japan has shown, control of the disease in wildlife is 
very difficult, even when an effective vaccine is available. A similar disease, ASF, has recently caused a large-scale 
epidemic on a global level. In Europe, the disease continues to spread mainly among wild boars, and in Asia, 
both domestic pigs and wild boars have suffered from ASF. It is important to remember that early disease control 
requires effective vaccination strategies based on epidemiological studies as well as vaccine efficacy.

Data availability
The data that support the findings of this study are available from Gifu prefecture, but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 
Data are however available from the authors upon reasonable request and with permission of Gifu prefecture.
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