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A Koopman operator‑based 
prediction algorithm and its 
application to COVID‑19 pandemic 
and influenza cases
Igor Mezić 1,4, Zlatko Drmač 2, Nelida Črnjarić 3, Senka Maćešić 3, Maria Fonoberova 4, 
Ryan Mohr 4*, Allan M. Avila 1,4, Iva Manojlović 5 & Aleksandr Andrejčuk 4

Future state prediction for nonlinear dynamical systems is a challenging task. Classical prediction 
theory is based on a, typically long, sequence of prior observations and is rooted in assumptions on 
statistical stationarity of the underlying stochastic process. These algorithms have trouble predicting 
chaotic dynamics, “Black Swans” (events which have never previously been seen in the observed 
data), or systems where the underlying driving process fundamentally changes. In this paper we 
develop (1) a global and local prediction algorithm that can handle these types of systems, (2) a 
method of switching between local and global prediction, and (3) a retouching method that tracks 
what predictions would have been if the underlying dynamics had not changed and uses these 
predictions when the underlying process reverts back to the original dynamics. The methodology 
is rooted in Koopman operator theory from dynamical systems. An advantage is that it is model‑
free, purely data‑driven and adapts organically to changes in the system. While we showcase 
the algorithms on predicting the number of infected cases for COVID‑19 and influenza cases, 
we emphasize that this is a general prediction methodology that has applications far outside of 
epidemiology.
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Ability for prediction of events is one of the key differentiators of homo sapiens. The key element of prediction 
is reliance on collected data over some time interval for estimation of evolution over the next time period. 
Mathematicians have long worked on formal aspects of prediction theory, and separate streaks such as the Wie-
ner–Kolmogorov,1,  Furstenberg2 and Bayesian  prediction3 have emerged. However, all of these are concerned 
with prediction of future events based on a, typically long, sequence of prior observations. This is rooted in 
assumptions on statistical stationarity of the underlying stochastic process.

Furthermore, classical methods have difficulty in predicting chaotic systems due to their sensitivity to initial 
conditions leading to large divergence of initially close-by initial conditions (“Butterfly effect”). There have been 
some work in the machine learning literature that seek to make arbitrarily long prediction, such as Fan et. al.4. 
In that paper, the authors combine reservoir computing systems with an infrequent data assimilation step to 
extend the prediction window past one Lyapunov time. However, the paper considers predictions models for 
single systems, assuming they do not change, and do not consider the case where the underlying dynamics can 
fundamentally change.

In contrast to the Butterfly effect, which is an inherent property of some nonlinear, deterministic dynamical 
systems, another difficulty for classical prediction algorithms is a “Black Swan” event (a hard-to-predict and rare 
event beyond the realm of normal expectations) or in the dynamical context a sudden fundamental change in 
the underlying driving process. For typical learning algorithms these type of events are devastating; the learning 
algorithm has to be restarted as otherwise it would learn the deviation as normal.

This paper develops a model-free, purely data-driven prediction algorithm that can handle both the “Butter-
fly” effects and “Black Swan” events. The point of view on prediction in this paper is quite different: we view the 
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process over a short (local) time scale and extract its coarse-grained ingredients. We proceed with prediction of 
the evolution based on these, learning the process and building a global time-scale on which such prediction is 
valid. Then, we monitor for  the change in such coarse-grained ingredients, detect if a substantial change is hap-
pening, and switch back to local learning and prediction. In this way, we accept the limitations on predictability 
due to, possibly finite time, nonstationarity, and incorporate them into the prediction strategy.

The developed algorithm is rooted in Koopman operator  theory5–10 in its recently developed form that is 
applicable to nonstationary stochastic  processes11,12. The Koopman operator theory is predicated on existence 
of a composition operator that dynamically evolves all the possible observables on the data, enabling the study 
of nonlinear dynamics by examining its action on a linear space of observables. The key ingredients of this 
approach become eigenvalues and eigenfunctions of the Koopman operator and the associated Koopman Mode 
Decomposition (KMD) of the observable functions, which is then approximated numerically using Dynamic 
Mode Decomposition (DMD). The numerical approach used in this work relies on lifting the available data to 
higher dimensional space using Hankel–Takens matrix and on the improved implementation of DMD algorithm 
for discovering the approximations of the Koopman modes with small residuals. The obtained Koopman mode 
approximations and the related eigenvalues, called Ritz pairs, are crucial for obtaining satisfactory predictions 
using KMD.

The contributions of this paper are three-fold: (1) Development of purely data-driven global and local predic-
tion algorithms, (2) a method of switching between the two, and (3) a “retouching” algorithm that tracks what 
predictions would have been if the underlying dynamics had not changed and uses these predictions when the 
underlying process reverts back to the original dynamics. While we show the application of the methods on 
epidemiology examples (e.g. predicting COVID-19 number of infected) in the main text, we emphasize that this 
is a general method with applications well outside of epidemiology. We refer the reader to the Supplementary 
Information for mathematical details and additional examples.

Methods
Our starting assumption is that observed data is generated by a dynamical process realized on some underlying 
state space. This is a broad enough assumption to cover data generated by both deterministic and stochastic 
dynamical  systems9. The (internal) state is often inaccessible; instead, an observable (output) is given as a func-
tion f (x(t)) of the state vector x(t).

The Koopman operator and the KMD
The Koopman operator family U t , acts on observables f by composition U t f (x) = f (x(t)) . It is a global lin-
earization tool: U t is a linear operator that allows studying the nonlinear dynamics by examining its action on 
a linear space F of observables. In data analysis, for the discrete time steps ti , the discrete sequence zi ≈ x(ti) , 
generated as numerical software output, is then a discrete dynamical system zi+1 = T(zi) , for which the Koop-
man operator reads U f = f ◦ T.

The key of the spectral analysis of the dynamical system is a representation of a vector valued observable 
f = (f1, . . . , fd)

T as a linear combination of the eigenfunctions ψ j of U . In a subspace spanned by eigenfunctions 
each observable fi can be written as fi(z) ≈

∑∞
j=1 ψ j(z)(vj)i and thus (see e.g.6,13)

then, since U ψ j = �jψ j , we can envisage the values of the observable f  at the future states T(z) , T2(z), . . . by

The numerical approximation of KMD can be computed using for example DMD algorithms. Different versions 
of the algorithm used in this work are described in details in Supporting Information-Methods.

Finite dimensional compression and Rayleigh–Ritz extraction
For practical computation, U is restricted to a finite dimensional space FD spanned by the dictionary 
of suitably chosen functions D = {f1, . . . , fd} , and we use a matrix representation U of the compression 
�FD

U|FD
: FD → FD , where �FD

 is a L2 projection e.g. with respect to the empirical measure defined as 
the sum of the Dirac measures concentrated at the zi’s. Since U is the adjoint of the DMD matrix A associated 
with the snapshots zi , the approximate (numerical) Koopman modes and the eigenvalues are the Ritz pairs (Ritz 
eigenvalues and eigenvectors) of A , computed using the Rayleigh–Ritz method. The residuals of the Ritz pairs 
can be computed and used to check the  accuracy14. See Supporting Information-Methods.

The Hankel‑DMD (H‑DMD)
The data snapshots (numerical values of the observables) can be rearranged in a Hankel–Takens matrix structure: 
for a subsequence (window) of w successive snapshots fb, fb+1, . . . , fw−1 , split w = mH + nH and then define 
new snapshots as the columns hi of the nH ×mH Hankel–Takens matrix  (see15–17, and Supporting Information)
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Then, for this data we compute the KMD and use (2) for prediction. Predictions of the observables fi are then 
extracted from the predicted values of the observables hi.

The introduction of Hankel–Takens matrix alleviates issues that arise from using a basis on a potentially high 
dimensional space: namely, taking products of basis elements on 1-dimensional subspaces—for example Fourier 
basis on an interval in R . Such constructions lead to an exponential growth in the number of basis elements, 
and the so-called curse of dimensionality. The Hankel–Takens matrix is based on the dynamical evolution of 
a one or more observables—functions on state space—that span a Krylov subspace. The idea is that one might 
start even with a single observable, and due to its evolution span an invariant subspace of the Koopman operator 
(note the connection of such methods with the Takens embedding theorem  ideas16–18). Since the number of basis 
elements is in this case equal to the number of dynamical evolution steps, in any dimension, Krylov subspace-
based methods do not suffer from the curse of dimensionality.

Global/local Koopman prediction and “Black Swan” detection
We briefly describe at a high level the Global Koopman Prediction algorithm (GKP), detection of “Black Swan” 
events, and the local prediction algorithm. For full details, we refer the reader to the Supplementary Material 
(S1.4, S1.7, S1.7.2). We start we Global Prediction algorithm which relies on a sliding window Hankel DMD. 
Set an active window size w. If the present time moment is tp−1 , take the snapshots {fp−w , . . . , fp−1} and form a 
Hankel–Takens matrix as in (3). Using an algorithm such as DMD19 which returns a set of Ritz pairs {�i , vi}ni=1 , 
and their associated residuals {ri} , we can obtain the approximate decomposition of the considered dynamics 
using a truncated version of (1). If the residuals of the Ritz pairs are small, we can have an accurate decomposi-
tion, which can be used for the prediction far out this active window.

Detection of “Black Swan” events or major disturbances to the system are based on the spectral information 
computed above. In the absence of disturbances, one would expect that the spectral radius for the Ritz values 
corresponding to the active window would not change too much. Furthermore, the DMD algorithm should 
compute Ritz pairs with reasonably small residuals. Choosing thresholds I and η , one can flag the active window 
as possibly containing a Black Swan event if the spectral radius is greater than I or, alternatively, if all residuals 
are greater than η . If the Black Swan event is detected, to successfully predict after it, some retouching process is 
applied to the data so that original dynamics is decoupled from this disturbance.

In some cases, the global prediction algorithm is not feasible. For instance, when we just start collecting 
the data, we have not enough information for a GKP analysis. The other situation is when GKP recognizes the 
beginning of a Black Swan event. In that case, due to the fact that dynamics changed, the available data can not 
be used for prediction since there will be not enough Ritz pairs with small residuals that can give the accurate 
decomposition. Thus one can switch to Local prediction algorithm with much smaller active window size. In the 
Local Koopman Prediction LKP algorithm we change the size of the active window depending on the success 
of the previous prediction. The idea is to assimilate as much acquired data as possible, so we set Hankel matrix 
dimension variable with prediction moment. We start with a minimum Hankel size. If the error between the 
prediction and the actual value are below a certain threshold, we assimilate the newly acquired data into the 
active window by increasing the size of the Hankel matrix by 1 in each dimension.

Results
We apply our algorithms to a few case studies in epidemiology: Influence epidemics and COVID-19. We do 
emphasize that the techniques are general and can be applied to any system that experience a drastic change in 
its fundamental behavior.

Case study: influenza epidemics
As first example for showing our prediction methodology, we use the set of data associated with influenza epi-
demics. Clearly, not driven by an underlying deterministic dynamical system, the influenza time series exhibits 
substantial regularity in that it occurs typically during the winter months, thus enabling coarse-grained predic-
tion of the type “we will see a very small number of cases of influenza occurring in summer months”. However, 
predicting the number of influenza cases accurately is a notoriously hard  problem20, exacerbated by the possibility 
that a vaccine designed in a particular year does not effectively protect against infection. Moreover, the H1N1 
pandemic that occurred in 2009 is an example of a Black Swan event.

The World Health Organization’s FluNet is a global web-based tool for influenza virological surveillance. 
FluNet makes publicly available data on the number of specimens with the detected influenza viruses of type A 
and type B. The data have been collected from different countries, starting with the year 1997, and are updated 
weekly by the National Influenza Centers (NICs) of the Global Influenza Surveillance and Response System 
(GISRS) and other national influenza reference laboratories, collaborating actively with GISRS. We use the 
weekly reported data for different countries, which consist of the number of received specimens in the labora-
tories, the distribution of the number of specimens with confirmed viruses of type  A.

The Koopman Mode Decomposition was used in the context of analyzing the dynamics of the flu epidemic 
from different—Google Flu—data  in21. We remark that the authors of that paper have not attempted prediction, 
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and have analyzed only “stationary” modes—e.g. the yearly cycles, thus making the paper’s goals quite different 
from the nonstationary prediction pursued here.

We first compare the global and the local prediction algorithms. The KMD is computed using active win-
dows of size w = 312 , and the 208× 104 Hankel–Takens matrices. In Fig. reff1a, we show the performances of 
both algorithms, using the learning data from the window April 2003–April 2009 (shadowed rectangle). In the 
global prediction algorithm the dynamics is predicted for 104 weeks ahead. The first type of failure in the global 
prediction algorithm and forecasting appears after the Black Swan event occurred in the years 2009 and 2010. 
This is recognized by the algorithm, so that it adapts by using the smallest learning span and, with this strategy, 
it allows for reasonably accurate forecasting, at least for shorter lead times. This data, in addition to those from 
Supplementary Information section S2.4 show the benefits of monitoring the prediction error and switching to 
local prediction. The initial Hankel–Takens matrix is 3× 2 , and the threshold for the local prediction relative 
error in Supplementary Information Algorithm S4 is 0.005.

Retouching the Black Swan event data
Next, we introduce an approach that robustifies the global algorithm in the presence of disturbances in the data, 
including the missing data scenario. We use the data window July 2004–July 2010, which contains a Black Swan 
event in the period 2009–2010. As shown in Fig. 1b, the learned KMD failed to predict the future following the 
active training window. This is expected because the perturbation caused by the Black Swan event resulted in 
the computed Ritz pairs that deviated from the precedent ones (from a learning window before disturbance), 
and, moreover, with most of them having large residuals. This can be seen as a second type of failure in the 
global prediction.

The proposed Black Swan event detecting device, built in the prediction algorithm (see Supplementary Infor-
mation Algorithm S3), checks for this anomalous behaviour of the Ritz values and pinpoints the problematic 
subinterval. Then, the algorithm replaces the corresponding supplied data with the values obtained as predictions 

Figure 1.  Influenza data (USA). (a) The data are collected in the window April 2003–April 2009 (shadowed 
rectangle) and then the dynamics is predicted for 104 weeks ahead. The local prediction algorithm recovers 
the prediction capability by forgetting the old data and using narrower learning windows. The local prediction 
algorithm delivers prediction for one week ahead. (b) The active window (shadowed rectangle) is July 2004–July 
2010, and the dynamics is predicted for 104 weeks ahead. The global prediction fails due to the Black Swan 
data in the learning window. (Some predicted values were even negative; those were replaced with zeros.) The 
global prediction algorithm recovers after the retouching the Black Swan event data, which allows for using big 
learning window. Compare with positions of the corresponding colored rectangles in Fig. 2.
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based on the time interval preceding the Black Swan event. Figure 1b shows that such a retouching of the dis-
turbance allows for a reasonable global prediction.

Note that in a realistic situation, global predictions of this kind will trigger response from authorities and 
therefore prevent its own accuracy and induce loss of confidence, whereas local prediction mechanisms need 
to be deployed again.

Monitoring and restoring the Ritz values
We now discuss the effect of the Black Swan event and its retouching to the computed eigenvalues and eigen-
vectors. We have observed that, as soon as a disturbance starts entering the training windows, the Ritz values 
start exhibiting atypical behavior, e.g. moving deeper into the right half plane (i.e. becoming more unstable), 
and having larger residuals because the training data no longer represent the Krylov sequence of the underlying 
Koopman operator.

This is illustrated in the panels (a) and (b) in Fig. 2, which show, for the sliding training windows, the real 
and the imaginary parts of those eigenvalues for which the residuals of the associated eigenvectors are smaller 
than ηr = 0.075 . Note the absence of such eigenvalues in time intervals that contain the disturbance caused by 
the Black Swan event.

On the other hand, the retouching technique that repairs the distorted training data restores the intrinsic 
dynamics over the entire training window. The distribution of the relevant eigenvalues becomes more consistent, 
and the prediction error decreases, see panels (c) and (d) in Fig. 2, and in Supplementary Information Figure S16.

Discussion
Our proposed retouching procedure relies on detecting anomalous behavior of the Ritz values; a simple strategy 
of monitoring the spectral radius of active windows (absolutely largest Ritz value extracted from the data in that 
window) is outlined in Supplementary Information. Note that this can also be used as a litmus test for switching 
to the local prediction algorithm. In Supplementary Information, we provide further examples, with the influenza 
data, that confirm the usefulness of the retouching procedure. In general, this procedure can also be adapted to 
the situation when the algorithm receives a signal that the incoming data is missing or corrupted.

Figure 2.  The real and imaginary parts of Ritz values with residuals bellow ηr = 0.075 for sliding active 
windows. The color intensity of eigenvalues indicates the amplitudes of the corresponding modes. Pink 
rectangles mark ends of training windows with no acceptable Ritz values. Note how the unstable eigenvalues 
( ℜ(�) > 0 ) impact the prediction performance, and how the retouching moves them towards neutral/stable—
this is shown in the yellow rectangle in panels (a) and (c). Also influenced by the disturbance are the eigenvalues 
in the light blue rectangles in panels (a), (b); retouching moves the real parts of eigenvalues towards neutral/
stable and rearranges them in a lattice-like  structure22, as shown in panels (c), (d). Compare with Fig. 1b.
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COVID‑19 prediction
The second set of data we consider is that associated with the ongoing COVID-19 pandemic. Because the virus 
is new, the whole event is, in a sense, a “Black Swan”. However, as we show below, the prediction approach 
advanced here is capable of adjusting quickly to the new incoming, potentially sparse data and is robust to inac-
curate reporting of cases.

At the beginning of the spread of COVID-19, we have witnessed at moments rather chaotic situation in 
gaining the knowledge on the new virus and the disease. The development of COVID-19 diagnostic tests made 
tracking and modeling feasible, but with many caveats: the data itself is clearly not ideal, as it depends on the 
reliability of the tests, testing policies in different countries (triage, number of tests, reporting intervals, reduced 
testing during the weekends), contact tracing strategies, using surveillance technology, credit card usage and 
phone contacts tracking, the number of asymptomatic transmissions etc. Many different and unpredictable 
exogenous factors can distort it. So, for instance the authors  of23 comment at https:// ourwo rldin data. org/ coron 
avirus- testi ng that e.g. “The Netherlands, for instance, makes it clear that not all labs were included in national 
estimates from the start. As new labs get included, their past cumulative total gets added to the day they begin 
reporting, creating spikes in the time series.” For a prediction algorithm, this creates a Black Swan event that may 
severely impair prediction skills, see section “Retouching the Black Swan event data”.

This poses challenging problems to the compartmental type models of (SIR, SEIR) which in order to be 
useful in practice have to be coupled with data assimilation to keep adjusting the key parameters, see e.g.24. 
Our technique of retouching (section “Retouching the Black Swan event data”) can in fact be used to assist data 
assimilation by detecting Black Swan disturbance and thus to avoid assimilating disturbance as normal.

In the KMD based framework, the changes in the dynamics are automatically assimilated on-the-fly by recom-
puting the KMD using new (larger or shifted) data snapshot windows. This is different from the compartmental 
type models of infectious diseases, most notably in the fact that the procedure presented here does not assume 
any model and, moreover, that it is entirely oblivious to the nature of the underlying process.

An example: European countries
As a first numerical example, we use the reported cumulative daily cases in European countries. In Supplemen-
tary Information section S1.5, we use this data for a detailed worked example that shows all technical details of 
the method. This is a good test case for the method—using the data from different countries in the same vector 
observable poses an additional difficulty for a data driven revealing of the dynamics, because the countries 
independently and in an uncoordinated manner impose different restrictions, thus changing the dynamics on 
local levels. For instance, at the time of writing these lines, a new and seemingly more infectious strain of the 
virus circulating in some parts of London and in south of England prompted the UK government to impose 
full lockdown measures in some parts of the United Kingdom. Many European countries reacted sharply and 
immediately suspended the air traffic with the UK.

In the first numerical experiment, we use two datasets from the time period February 29 to November 19. 
and consider separately two sets of countries: Germany, France and the UK in the first, and Germany, France, 
UK, Denmark, Slovenia, Czechia, Slovakia and Austria in the second. The results for a particular prediction 
interval are given in Figs. 3 and  4. For more examples and discussion how the prediction accuracy depends on 
the Government Response Stringency Index  (GRSI25,26) see Supplementary Information section S1.5.

In the above examples, the number of the computed modes was equal to the dimension of the subspace of 
spanned by the training snapshots, so that the KMD of the snapshots themselves was accurate up to the errors 
of the finite precision arithmetic. In general, that will not be the case, and the computed modes will span only a 
portion the training subspace, meaning that the KMD of the snapshots might have larger representation error. 
(Here we refer the reader to Supplementary Information section S1.3, where all technical details are given.) This 
fact has a negative impact to the extrapolation forward in time and the problem can be mitigated by giving more 
importance to reconstruction of more recent weights. This is illustrated in Figs. 5 and 6, where the observables 
are the raw data (reported cases) for Germany, extended by a two additional sequence of filtered (smoothened) 
values.

The figures illustrate an important point in prediction methodology, that we emphasized in the introduc-
tion: a longer dataset and a better data reconstruction ability (i.e. interpolation) does not necessarily lead to 
better prediction. Namely, weighting more recent data more heavily produces better prediction results. This was 
already observed  in27 for the case of traffic dynamics, and the method we present here can be used to optimize 
the prediction ability.

An example: USA and worldwide data
We have deployed the algorithm to assess the global and United States evolution of the COVID-19 pandemic. 
The evolution of the virus is rapid, and “Black Swans” in the sense of new cases in regions not previously affected 
appear with high frequency. Despite that, the Koopman Mode Decomposition based algorithm performed well.

In Fig. 7a we show the worldwide forecast number of confirmed cases produced by the algorithm for Novem-
ber 13th, 2020. The forecasts were generated by utilizing the previous three days of data to forecast the next three 
days of data for regions with higher than 100 cases reported. The bubbles in Fig. 7a are color coded according 
to their relative percent error. As can be observed, a majority of the forecasts fell below 15% error. The highest 
relative error for November 13th, 2020 was 19.8% which resulted from an absolute error of 196 cases. The mean 
relative percent error, produced by averaging across all locations, is 1.8% with a standard deviation of 3.36% for 
November 13th, 2020. Overall, the number of confirmed cases are predicted accurately and since the forecasts 
were available between one to three days ahead of time, local authorities could very well utilize our forecasts to 
focus testing and prevention measures in hot-spot areas that will experience the highest growth.

https://ourworldindata.org/coronavirus-testing
https://ourworldindata.org/coronavirus-testing
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A video demonstrating the worldwide forecasts for March 25, 2020–November 29, 2020 is provided in the 
Supplementary Information online (Fig. 7a is a snapshot from that video). Lastly, it is well known that the 
ability to test people for the virus increased throughout the development of the pandemic and thus resulted in 
changes in the dynamics of reported cases. Although it is impossible for a data-driven algorithm to account for 
changes due to external factors, such as increased testing capabilities, it is important that the algorithm be able 
to adjust and relearn the new dynamics. For this reason, we encourage the reader to reference the video and 
note that although periods of inaccuracy due to black swan events occur, the algorithm is always able to stabilize 
and recover. In contrast, since this is at times a rapidly (exponentially) growing set of data, methods like naive 
persistence forecast do poorly.

In Fig. 7b, c we show the performance of the prediction for the cumulative data for the US in March-April 
2020. It is of interest to note that the global curve is obtained as a sum of local predictions shown in Fig. 7a, rather 
than as a separate algorithm on the global data. Again, the performance of the algorithm on this nonstationary 
data is good.

Discussion
In this work, we have presented a new paradigm for prediction in which the central tenet is understanding of the 
confidence with which the algorithm is capable of predicting the future realizations of a non-stationary stochastic 
process. Our methodology is based on Koopman operator  theory6. Operator-theoretic methods have been used 
for detection of change in complex dynamics in the past, based on both  Koopman18,28 and Perron–Frobenius 
 operators29. Other methods include variational finite element techniques combined with information theoretic 
measure (Akaike’s information criterion) and maximum entropy  principle30.

Our approach to the problem of prediction of nonstationary processes has several key ingredients. First, the 
Koopman operator on the space of the observables is used as a global linearization tool, whose eigenfunctions 
provide a coordinate system suitable for representation of the observables. Second, in a numerical computation, 
we lift the available snapshots to a higher dimensional Hankel–Takens structure, which in particular in the case of 
abundance of data, allows for better numerical (finite dimensional) Rayleigh–Ritz approximation of eigenvalues 
and eigenvectors of the associated Koopman operator, as well as the KMD. Third, using our recent implementa-
tion of the DMD, we select the Koopman modes that have smallest residuals, and thus highest confidence, which 
is the key for the prediction capabilities of the KMD. In the absence of enough modes with reasonably small 
residuals, i.e. low confidence, we switch to local prediction, with narrower learning windows and shorter lead 
time. By monitoring the prediction error, the algorithm may return back to global prediction.

Our methodology is entirely consistent with the typical training/test dataset validation techniques in machine 
learning. Namely, the globally learned model on the training data is applied to test data for the next time interval. 
The novelty in our approach is that we constantly check for how well the learned model generalizes, and if it does 
not generalize well, we restart the learning. One can say that we implemented a feedback loop, within which the 
machine learning algorithm’s generalizability from training to test dataset is constantly checked, and the system 
adapts to new conditions. Evidence for effectiveness of this procedure is presented for the COVID-19 prediction 
example, where we show how the generalization error diminishes over time.

We emphasize that this a general method that is model-free and completely data-driven. It adapts organi-
cally to changes in the underlying system. Contrast this in the context of epidemiology where SIR-type models 
are used. For a changing driving dynamics, the SIR modeling approach would need to be coupled with a data-
assimilation approach to offer the same adaptability as our method.

Data availability
The raw COVID-19 data is made publicly available by the Center for Systems Science and Engineering (CSSE) at 
Johns Hopkins University at https:// github. com/ CSSEG ISand Data/ COVID- 19 . The raw Influenza data is made 
publicly available by the World Health Organization at https:// www. who. int/ tools/ flunet The raw geomagnetic 
storm data is made publicly available by the National Aeronautics and Space Administration at https:// omniw 
eb. gsfc. nasa. gov/ form/ omni_ min. html.
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