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Fractional order memcapacitive 
neuromorphic elements reproduce 
and predict neuronal function
Patricia Vazquez‑Guerrero 1, Rohisha Tuladhar 1, Costas Psychalinos 2, Ahmed Elwakil 3,4, 
Maurice J. Chacron 5 & Fidel Santamaria 1*

There is an increasing need to implement neuromorphic systems that are both energetically and 
computationally efficient. There is also great interest in using electric elements with memory, 
memelements, that can implement complex neuronal functions intrinsically. A feature not widely 
incorporated in neuromorphic systems is history‑dependent action potential time adaptation which 
is widely seen in real cells. Previous theoretical work shows that power‑law history dependent spike 
time adaptation, seen in several brain areas and species, can be modeled with fractional order 
differential equations. Here, we show that fractional order spiking neurons can be implemented 
using super‑capacitors. The super‑capacitors have fractional order derivative and memcapacitive 
properties. We implemented two circuits, a leaky integrate and fire and a Hodgkin–Huxley. Both 
circuits show power‑law spiking time adaptation and optimal coding properties. The spiking dynamics 
reproduced previously published computer simulations. However, the fractional order Hodgkin–
Huxley circuit showed novel dynamics consistent with criticality. We compared the responses of 
this circuit to recordings from neurons in the weakly‑electric fish that have previously been shown 
to perform fractional order differentiation of their sensory input. The criticality seen in the circuit 
was confirmed in spontaneous recordings in the live fish. Furthermore, the circuit also predicted 
long‑lasting stimulation that was also corroborated experimentally. Our work shows that fractional 
order memcapacitors provide intrinsic memory dependence that could allow implementation of 
computationally efficient neuromorphic devices. Memcapacitors are static elements that consume 
less energy than the most widely studied memristors, thus allowing the realization of energetically 
efficient neuromorphic devices.

Neuronal and artificial intelligence benefit from history-dependent self-adapting  systems1–16. History-dependence 
explains neuronal dynamics from the movement of synaptic receptors to the generation of complex patterns of 
action potentials or  spikes2,4,17–22. Our fractional order leaky integrate-and-fire (LIF) and Hodgkin–Huxley (HH) 
computer models reproduced a wide range of results of power-law history dependent firing rate and spike timing 
 adaptation21. A fractional order differential equation is a non-local operator that involves intrinsic memory from 
previous  activity23. Since power-law history-dependence in neurons show optimal coding  properties5,7, it would 
be of importance to build neuromorphic circuits that implement such non-linear self-adapting mechanism. 
However, implementing a fractional order derivative in an electric circuit has been elusive, primarily due to the 
lack of electric elements with such  properties24.

Electrical elements with memory, or memelements, are theoretic electric components whose intrinsic char-
acteristics change with previous  activity25. The most studied memelement for neuromorphic applications is the 
memristor, which has been realized with different  materials26–29. A less studied element is the  memcapacitor30. 
Memcapacitors could theoretically consume lower static power than memristors, see analysis  in31 and other 
 results32–34. Theoretical work shows that memelements can be described with fractional order integro-differential 
 equations35. Within the physical foundations of the LIF and HH, the fractional order derivative corresponds to 
a fractional order capacitor. Thus, we propose that neuromorphic systems could be implemented using memca-
pacitors with fractional order differentiation properties.
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In this work, we show that a particular electric element known as a super-capacitor36 has both, fractional 
differentiation and memcapacitive properties. Using super-capacitors we implemented a fractional LIF  circuit37. 
The fractional LIF circuit replicates all the properties of our computer model that are also found in multiple brain 
 areas5,38–40. We also implemented a fractional order HH circuit. This circuit showed distinct dynamics that were 
not previously described with our models, but that we were able to replicate. Under some input current conditions 
the circuit generated spiking dynamics consistent with a system in criticality. Both, the fractional LIF and HH 
circuits showed optimal coding properties. We found out that the critical dynamics of the fractional HH circuit 
reproduces the spontaneous and evoked activity of pyramidal neurons from the electro-sensory line lobe (ELL) 
in live immobilized weakly-electric fish (Apteronotus leptorhynchus). We used the fractional HH circuit to predict 
changes in spiking activity after prolonged stimulation, which we replicated experimentally. We also reproduced 
our results using a CMOS implementation of a fractional order  capacitor41. Taken all together, our work shows 
that we can use fractional order memcapacitors to implement neuromorphic elements with intrinsic firing rate 
adaptation and optimal coding properties. This firing rate adaptation is the result of intrinsic memory and not 
a simple relaxation of the spiking mechanism. The realization of memcapacitive based neuromorphic elements 
could provide a platform for the implementation of systems that are energy and computationally efficient.

Results
A super‑capacitor with fractional order differentiator and memcapacitive properties
The fractional order LIF model  is21:

where v is voltage; Gm is the membrane conductance; i is current; t  is time; and Dη is the Caputo definition of a 
fractional order derivative of order η:

The (t − u)−η term is the intrinsic memory trace. The voltage resets at threshold ( vTh ) and has a refractory 
period ( tr ). The memory trace continuously integrates past activity.

The classic LIF is a model of current through a resistor and an ideal capacitor in parallel (Eq. 1 with  η = 1)
42. The current, ic , through the capacitor with capacitance Co is:

By analogy, in the fractional LIF model this corresponds to a fractional order capacitor:

Furthermore, real capacitors have an associated conductance ( Gc)43:

Using a Laplace transform on both sides, re-arranging and applying an inverse Laplace transform the response 
of this circuit to a constant input current, ic(t) = I , is:

With τC = Co/Gc , and Eη(z) the Mittag–Leffler function. At asymptotic times, Eq. 6 converges to a power-law:

When η = 1 and Rc = 1/Gc = 0 the equation reduces to the ideal capacitor:

The charging and discharging properties of some super-capacitors follow fractional order  dynamics44. Super-
capacitors have capacitances orders of magnitude larger than traditional electrolytic capacitors because these ele-
ments are mainly designed for energy storage  applications45. We connected in series four 22mF super-capacitors 
to reduce their capacitance ( 5.5mF equivalent). Using Eq. 7 we determined that the super-capacitor stack had 
a fractional derivative order, η = 0.82± 2.20× 10−3 95% CI (Fig. 1A)43.

A memcapacitor is defined  as25,30:

where q is electric charge; C is capacitance with units of F/x · t ; and x is an internal variable (such as the flux, 
ϕ ). From the definition of flux:

If we assume that C(ϕ, v, t) = C0ϕ , then

(1)D
η
v = Gmv + i(t)

(2)Dηv =
1

Ŵ(1− η)

∫ t

0

D1v(t)

(t − u)η
du

(3)ic(t) = CoD
1v(t)

(4)ic(t) = CoD
ηv(t)

(5)ic(t) = vC(t)Gc + CoD
ηvc(t)
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)
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Equation 11 results in a hysteresis curve pinched at the origin. Indeed, the measured q vs.V  curve of the super-
capacitors (Fig. 1B) shows hysteresis pinched at the origin and a frequency dependent amplitude, both properties 
of  memcapacitors25. Thus, the super-capacitors have fractional order derivative and memcapacitive properties.

A fractional order leaky integrate‑and‑fire analog circuit
We implemented an analog circuit of a LIF  neuron37 (Fig. 2A). The circuit generates spikes of less than 0.1ms 
with vth = 2 V  . We substituted C1 = 0.1 µF with the super-capacitor stack. When using an electrolytic 5mF 
capacitor the LIF circuit failed to generate action potentials ( 0.1− 10mA input), not shown. However, the cir-
cuit with the super-capacitor stack generated spikes with the same vth but with higher amplitude (Fig. 2B). This 
could be because the charging of super-capacitors is much slower than electrolytic capacitors thus allowing the 
circuit to function.

The classic LIF generates action potentials at a constant rate when stimulated with constant current (not 
shown). By contrast, the fractional LIF shows a delay in generating the first spike, followed by a power-law 
decrease in the inter-spike intervals (ISIs, Fig. 2C,D). The combination of slowed onset in firing and acceleration 
of the ISI affects the calculation of the firing rate from the time of onset of the first spike (Fig. 2E)21. However, 
at longer stimulation times, the firing rate of the fractional LIF circuit becomes faster than for the classical case. 
We have described this process with our computer model in which the intrinsic memory trace acts as a feedback 
mechanism that feeds into increasing firing  rates21.

We wanted to test how previous activity affected the firing rate adaptation of the fractional LIF  circuit5. 
We injected square-wave inputs of different frequencies into the fractional LIF circuit (Fig. 3A). The DC and 
amplitude of input signal were adjusted to always generate action potentials. We calculated the time constant 
of instantaneous firing rate adaptation for the positive and negative parts of the cycle as a function of period 
length by fitting a single exponential to each phase of the cycle (Fig. 3A black). This resulted in a time constant of 
adaptation that depended on the previous period length, a non-linear phenomenon observed in real  neurons5,38 
(Fig. 3B black). The fractional LIF model reproduced this behavior ( η = 0.2 , Fig. 3B gray). Thus, the firing rate 
of the fractional LIF shows history dependence.

We wanted to determine if the fractional order properties of the super-capacitors were reflected in the firing 
rate activity of the neuron. If the firing rate, f  , of a neuron encodes the input, In = Asin(2πωt), as a fractional 
order derivative,  then46:

We injected a sinusoidal input to the fractional LIF neuronal circuit. The amplitude and DC components 
were set to generate spikes at all input values. We varied the input wavelength ( � = 1/ω ) from 0.1 s to 40 s and 
fitted a sine function to the instantaneous firing rate (Fig. 3C). This shows that the firing rate amplitude decays 
as a power-law, ηG = 0.39± 0.07 95% CI , and the phase shift is fixed ηφ = 0.32± 0.04 SEM , Fig. 3D. Thus, 
the spiking of the fractional LIF circuit has fractional order derivative properties.

The power-spectrum of multiple natural signals have a power-law structure ( 1/f β ) also known as pink-
noise7,47–56. From Eq. 12 if β = η and A= (2πω)−β then the power spectrum of the firing rate should be flat, 

(11)q = C0
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Figure 1.  A super-capacitor has fractional order and memcapacitive properties. (A) Voltage versus Time 
Response to a 20 µA step current for a super-capacitor stack (black) and fit to analytical solution (gray). (B) 
Voltage versus Charge plot in response to a voltage saw-tooth input at different frequencies. The stack consisted 
of four super-capacitors in series with an equivalent capacitance of 5.5 mF.
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ηLIF ∼ 0 , also known as spectrum whitening which is a tale-tale of optimal coding  computations57,58. The same 
additive properties predict a constant shift in the exponent of the firing rate power spectrum, �ηLIF = ηLIF − β . 
We calculated �ηLIF to inputs with pink-noise (range 0.01 to 1.00 Hz) and varying β values. (Fig. 4A–D). This 
analysis shows that for β = [−0.2,−0.4,−0.6] the value �ηLIF is constant. For values of β < −0.6  the system 
becomes less sensitive to the input. The same analysis shows that the firing rate spectrum is flat when β = −0.2 
( ηLIF = −0.09± 0.14 95% CI).

The fractional differentiation properties of the leaky integrate‑and‑fire circuit depend on the 
fractional order of the super‑capacitors
We used an analogue circuit simulation platform to study the effect of fractional oder super-capacitors of dif-
ferent orders on the responses of the fractional LIF circuit (see Methods). To do this we used an available 
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super-capacitor  model59,60 (Fig. 5A). We systematically varied the values of the resistances in the model and 
characterized the resulting fractional order (Fig. 5B). We then built an analog circuit simulation of the fractional 
LIF. The model showed spike latencies (Fig. 5C), firing rate adaptation to square inputs (Fig. 5D), and fractional 
derivative properties (Fig. 5E) as a function of the fractional order of the super-capacitor (Fig. 5F).
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A fractional order Hodgkin–Huxley circuit shows criticality and optimal coding
Criticality in the fractional order Hodgkin–Huxley circuit
Voltage activated membrane conductances show history-dependence61. To study history-dependence in a bio-
physical model of neuronal activity we implemented a circuit of the classic HH  model62 (Fig. 6A). The circuit 
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generated spikes that closely matched the HH model (Sup. Mat. Fig. S1). Following on our previous studies of a 
fractional HH computer  model20 we added to the n-gate part of the circuit a stack of five super-capacitors ( 47mF 
each) in series ( 9.40mF equivalent) with fractional order of  η2 = 0.93± 0.01 95% CI (Sup. Mat. Fig. S2). The 
fractional and classic circuits had the same vth . At high currents ( > 0.25mA ) the fractional HH circuit showed 
increased variability and reduction in firing rate (Fig. 6B). This was because the circuit generated a mixture of 
normal and complex spikes, spikes containing a plateau potential of varying periods (Fig. 6C) that lasted for as 
long as the stimulus was on (not shown).

The fractional HH computer model replicated the complex spikes (Sup. Mat. Fig. S3) using η = 0.2− 0.3 for 
the n-gate. A phase plane plot of the measured and modeled complex spikes shows mixed mode oscillations with 
a smaller attractor representing the plateau (Sup. Mat. Fig. S4)20 known as a  canard63,64. Thus, the complex spikes 
emerge from the internal dynamics of the system and not from some saturation in the circuit.

We hypothesized that the apparent random nature of the complex spikes was because the circuit was at 
 criticality65. We defined an avalanche as the number of simple spikes between two complex spikes. The histogram 
of avalanches follows a power-law, consistent with a system in criticality (Fig. 6D). This was also replicated in 
the model with the fractional order of the n-gate linearly related to the avalanche structure (Fig. 6E,F). Thus, 
complex spikes emerge when the system is at criticality.
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Diffusion entropy analysis characterizes stochastic processes with  memory66–68. This analysis shows that the 
classical and fractional HH at low-input current have no memory. By contrast, the circuit at criticality shows 
history-dependence (Fig. 6G). The difference in dynamics in the fractional HH circuit is probably due that at low 
input current the dynamics are controlled by the electrolytic capacitor and at higher input current (and voltages) 
the super-capacitors dominate the dynamics.

Instead of super-capacitors we used a CMOS implementation of fractional order  capacitors41, see Supple-
mentary Material Fig. S5. For the three different values of fractional order implemented in the chip the HH 
circuit generated avalanches and the spiking activity showed diffusion entropy history-dependence (Fig. 6H–K).

Fractional order capacitance is also found in skin, fruits, and vegetables, due to their fractal cellular 
 structures69–71. To generalize our results, we implemented the circuit using dried fruit, η = 0.67± 0.03 95% CI . 
Under such arrangement the HH circuit generated spikes and power-law ISIs (Sup. Mat. Fig. S6). Thus, col-
lectively, our results show that fractional order capacitance, independent of its physical nature, is sufficient to 
generate fractional order spiking activity.

Transition from simple to complex spiking suggests a change in coding
We characterized the firing rate of the circuit to sinusoidal input with fixed amplitude ( AC = 0.05mA ) and fre-
quency ( 1 Hz ) and varying DC (Fig. 7A). The amplitude of the firing rate decreases and flips signs as DC values 
increase while the phase switches from negative to positive (Fig. 7B,C). The flipping of the firing rate amplitude 
is because of widening of the spikes without becoming complex spikes ( < 0.22mA ). In the presence of complex 
spikes, there was no phase lag (not shown). We called the regime where there is positive phase in the absence 
of complex spikes the sub-critical phase. The reversal in amplitude can be interpreted as a change in coding the 
input from the firing rate to the ISI (Eq. 12).

The fractional Hodgkin–Huxley circuit reproduces and predicts sensory processing and critical 
dynamics of neurons from the live weakly‑electric fish
Fractional differentiation, optimal coding, and criticality in fish and circuit
Neurons in weakly-electric fish perform a fractional differentiation of modulated electrical stimulation with a 
gain characterized by ηELLg = 0.26± 0.09 95% CI , and phase advance of ηELLφ = 0.43± 0.02 SEM (Fig. 8A) 
mediated by a potassium  conductance48. We replicated this behavior in the fractional HH circuit in the sub-
critical state with an input current with DC of 2.4 µA and amplitude of 0.05mA over a range of 0.25 to 2.00 Hz 
(Fig. 8B). The power-law gain, ηHHg = 0.33± 0.08 95% CI , and the phase advance ηHHφ = 0.26± 0.03 SEM 
had values very close to those measured experimentally.

The same neurons that perform a fractional order differentiation show spectrum whitening of pink-noise 
signals. When some LS neurons from the ELL are stimulated with pink-noise with βIn = −0.83 the power-
spectrum of the firing rate is flat, ηELLout = 0.02± 4x10−3 95% CI , Fig. 8C 7. We stimulated the fractional HH 
circuit with pink-noise with β = [−0.2,−2] . It was when we used a pink-noise with β = −0.2 that the exponent 
of the firing rate was flat, ηHHout = −0.07± 0.21 95% CI . We also calculated the power-spectrum to pink-noise 
with β = −0.75 expecting a power-spectrum ηHHout = −0.55 , the experimental results were close to this value, 
ηHHOut = −0.41± 0.07 95% CI (Fig. 8D).

Without changing any parameters in the fractional HH circuit, we tested if we could reproduce other prop-
erties of ELL neurons. For example, neurons that show fractional order differentiation can be classified as ON 
or OFF cells. The ON cells follow the input, while OFF cells decrease their firing when the input is high. Our 
fractional HH circuit at low input current ( DC = 1.0mA , amplitude 0.05mA ) reproduces the ON behavior and 
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without fractional order differentiation. In the sub-critical regime ( DC = 2.4mA , amplitude 0.05mA ), the circuit 
shows fractional differentiation and OFF behavior (Fig. 8E).
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At rest, the neurons of the ELL generate spiking  bursts72. We hypothesized that the burst were equivalent to 
complex spikes observed in the circuit. Indeed, the avalanches, number of spikes between bursts, in the weakly-
electric fish have a power-law distribution with an exponent of −0.92± 0.06 95% CI (Fig. 8F).

The fractional HH circuit predicts long‑term spike time adaptation
History-dependence should result in inputs affecting the spiking of the neuron for periods of time longer than 
its characteristic time constants. Using the circuit in normal, sub-critical, or critical regimes we delivered a 
stimulus (lower the input current for 30 s but high enough to keep firing) and monitored the spiking for 10 min. 
We calculated the relative cumulative spikes between the post- and pre-stimulus times (see Methods). The clas-
sical (Fig. 9A) and fractional sub-critical (not shown) circuits showed no changes in spiking activity (horizontal 
lines). By contrast, when we performed the measurements with the stimulus the circuit showed a prolonged and 
robust decrease in firing (Fig. 9B,C).

While recording from the live fish, we delivered a masking electric stimulus that inhibit ELL cells, similar to 
the ‘low’ input current in the HH circuit. We calculated the cumulative spikes in control and stimulus condi-
tions. This shows that ELL neurons respond to the masking stimulus with a robust increase in the cumulative 
spikes (Fig. 9D). The neurons continue to respond to subsequent stimulus over multiple repetitions. After the 
8th period, the neurons show no change in cumulative spiking with respect to control (Fig. 9E).

Past work shows that fractional order optimal coding properties of ELL pyramidal cells are strongly influ-
enced by both feedback input from nucleus praeminentialis (nP) as well as serotonergic  input73. We bilaterally 
blocked feedback signals and repeated the experiment showing no change in cumulative firing (Fig. 9F). Taken 
together, our results show that primary sensory neurons show long lasting intrinsic memory that is consistent 
with their fractional order properties.

Discussion
In this work, we showed that an off-the-shelf super-capacitor is a memcapacitor and a fractional order dif-
ferentiator. We then used our theoretical framework of fractional order  neurodynamics20,21,74 to implement 
fractional order LIF and HH circuits. These circuits replicate non-linear properties of single neurons observed 
in multiple brain areas and animal species. Of particular importance is that fractional order dynamics provides 
a natural mechanism for optimal coding of signals characterized by power-laws, which are common in natural 
and constructed  environments53,75–81. Remarkably, we did not tune any of the parameters of our circuits to any 
particular experimental results. Thus, showing that fractional order differentiation could be a robust neuromor-
phic implementation that encompasses the history-dependence properties of real neurons.

Super‑capacitors as fractional order memelements and a platform for efficient neuromorphic 
systems
Super-capacitors are distinct from electrolytic capacitors due to their large energy  density82. The large majority 
of super-capacitors achieve high capacitances due to the use of porous materials like activated carbon obtained 
from natural  sources82. The super-capacitors employed in this work use this technology. These super-capacitors 
have an electric double-layer between a solid electrode and an aqueous electrolyte (for a review refer  to83). A 
parameter of great importance for super-capacitors is the minimum voltage necessary to activate the electro-
lytic reaction, known as the cell voltage. Our super-capacitors have a cell voltage of 1.7 V84. This is the voltage at 
which fractional order differentiation and then the appearance of complex spikes is observed in the fractional 
HH circuit (Fig. 7B, transforming the DC applied voltage). Thus, the emergence of history dependent properties 
of the circuit is explained by the activation of the super-capacitors.

The super-capacitors had a fixed fractional order intrinsic to their physical properties. While this is a cur-
rent challenge in fabrication, there are promising new  technologies41,44,85–88, including their  miniaturization86. 
In any case, we analyzed the dependence of the fractional differentiation of the firing rate with respect to the 
fractional order of the super-capacitor using circuit models or CMOS implementations. In both cases, we linked 
the properties of the memcapacitor to the coding properties of the neuron. Our research supports efforts to 
develop fractional order super-capacitors with varying orders and miniaturized to allow the implementation of 
neuromorphic  devices31.

We demonstrated that the fractional order properties of the circuit are not exclusive to electric implementa-
tions. Instead, by using a CMOS circuit, we showed that any fractional order dielectric could provide the dynam-
ics necessary to implement fractional order neuromorphic systems. We consider our results using dried fruit 
as a further demonstration that any dielectric with fractional order properties could provide functionality to 
neuromorphic devices; however, we are well aware that these measurements have low precision and uniformity 
due to the nature of the natural product. In any case, our work supports research in the development of biomi-
metic  memcapacitors89,90.

Memcapacitors can consume lower static power than memristors, and thus have the potential for building 
neuromorphic systems orders of magnitude more energy-efficient31–34. This is because capacitors are electric field 
based, instead of current based. Initial work with neural networks not only supports this idea, but also suggests 
that they could be computationally  efficient91–93. Thus, fractional-order memcapacitros could be a platform for 
energetically and computational efficient neuromorphic systems.

Further development of fractional order LIF and HH systems
The fractional order LIF reproduced all the properties of our previously published computer  model21. However, 
there were some limitations. The fractional differentiation required that the input current had a relatively small 
amplitude, suggesting that some other parts of the circuit dominate its dynamics at larger input amplitudes. 
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It was not our objective to maximize the effect of any part of the circuit, but to demonstrate the possibility of 
implementing fractional neurodynamics in neuromorphic circuits. In any case, our work using the circuit model 
analysis provides the building blocks to optimize parameters for particular input ranges and tasks.

The fractional HH circuit has three states: normal, sub-critical, and critical. Our previous computational 
work suggested the emergence of complex patterns and complex spikes as a function of input current and  time20. 
However, computational limitations did not allow us to investigate our computer model for periods comparable 
to what we reported here. Thus, showing another advantage of a neuromorphic approach.

The classical regime is consistent with low input current that does not engage the super-capacitor properties. 
This requires further study in relation to super-capacitor physical properties and design. Another area of study 
is the sub-criticality regime where we showed fractional order differentiation. In this regime we interpreted 
that the signal was being encoded by the ISI instead of the firing rate. This requires experimental corroboration 
and an understanding of how neuromorphic systems could operate in this regime. Finally, at higher input cur-
rents, the circuit generated simple and complex spikes. The complex spikes were reproduced by our models and 
are consistent with the emergence of a canard. This dynamics requires further study in the context of chaotic 
 systems94–96 and the physical and intrinsic memory properties of the super-capacitors44. In all cases, it is necessary 
to determine the energy consumption of the circuits and compare to other implementations.

The rich dynamics shown by the fractional HH circuit reminded us of the spiking properties of ELL neurons 
in the weakly-electric fish. These neurons show fractional differentiation and optimal coding properties in the 
live animal receiving naturalistic stimulation. The fractional HH circuit was not capable to reproduce all prop-
erties of all the neurons in only one of its states. However, we were able to match the behavior of different real 
neurons with the circuit in the classical, sub-critical, or critical state. While the matches were not identical, the 
overall properties are captured by our neuromorphic element. The important point is that the response to the 
dynamical input depends on the bias constant current in which this is mounted, opening the possibility of using 
the same neuron to perform different computational tasks dynamically.

Instead of using the circuits to replicate published work, we used the fraction HH circuit to predict the behav-
ior of ELL neurons in the live fish. Our results show that the spiking activity of these neurons retain the effect 
of a stimulus for multiple minutes. Furthermore, our experimental results show that this adaptation is over tens 
of minutes and reflects adaptation at much larger scales that previously thought. These results challenge current 
models of primary sensory  neurons97,98. Traditionally, these neurons are expected to transmit input reliably and 
fast to the rest of the nervous system. The fact that they show long-term adaptation to previous input calls into 
question current ideas of coding in which these neurons are assumed, essentially, memoryless.

Recent directions in neuromorphic spiking circuit is to reduce the use of capacitor or fully eliminate  them99. 
However, systems made on memcapacitive technology could be at least 8 × more energetically efficient that with 
resistive  devices31 while other theoretical work suggest that memcapacitive reservoir computing could be efficient 
computationally  efficient91. Future work should address the trade-offs between the computational properties 
of fractional order capacitors against their impact on area efficiency in circuit design and operation speed of 
complex neuromorphic hardware.

Perspective
A grand challenge of Artificial Intelligence and engineering is to build systems that are concurrently energeti-
cally and computationally  efficient100. Our work further supports the use of memcapacitors by focusing on those 
elements that also implement a fractional order differentiation. By combining memcapacitive and fractional 
differentiation properties these systems could be energy efficient and computationally optimal for the types of 
signals commonly found in nature. Our results also show that neuromophic elements that reproduce fractional 
order neurodynamics can be used to predict the responses of real neuronal systems, thus providing a promising 
platform for brain-machine  interfaces101.

Methods
Super‑capacitors, circuits, and computer models
Super‑capacitors
For all of our circuits we used NEC/TOKIN (TOKIN, Japan) super-capacitors. For the LIF circuit we used 22 
mF super-capacitors (part # FS0H223ZF) rated at 5.5 V and 60 Ω maximum equivalent series resistance (ESR) 
at 1 kHz. Similarly, for the HH circuit we used 47 mF super-capacitors (part # FYH0H473ZF) also rated at 5.5 V 
but with 100 Ω maximum ESR at 1 kHz. Both types of super-capacitors show fractional order  dynamics44.

The fractional leaky integrate‑and‑fire model and circuit
The fractional order LIF   is21 (Eq. 5):

where vm is the membrane voltage, vr is the resting voltage,  τm = rmcm is the membrane time constant, with rm 
the membrane resistance and  cm the membrane conductance. The conductance is gm = 1/rm . The input current 
is I . The neuron generates a spike when vm ≥ vTh and the voltage is clamped to vr for a refractory period, tr . The 
fractional order of the derivative is 0 < η ≤ 1.

We used the Grunwald–Letnikov integration of the fractional derivative

(13)Dηvm = −(vm − vr)/τm
η + I/cm
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With the integration time �t = 0.1ms . The memory weights are

With cη0 = η . The system can also be solved using the L1 scheme (see below). We determined that a memory 
window longer than 10 s did not change the results.

The original LIF circuit is the well-known design by Carver Mead (Fig. 2A). The circuit uses MOSFET 
transistors. Transistors T1 , T2 , T3 and T6 were p-channel; and T4 and T5 were n-channel. The T1 and  T2 transis-
tors implement a resetting of the voltage,  Vm, that is due to charge accumulation of capacitor  C1. The transistor 
circuits T3 − T4  and T5 − T6  implement current mirrors that generate the spike. The original circuit had the 
following characteristics C1 = 0.1 µF ; C2 = 22 µF ; Vb = 5 V  . The source of T4 and T5 were at 5 V  . The spiking 
traces analyzed were measured from Vm . As described in the results, C1 was substituted with a stack of super-
capacitors in series.

Hodgkin–Huxley model and circuit
The Hodgkin–Huxley model is:

where  gK  is the total potassium conductance; gNa is the total sodium conductance;n
is the activation potassium gate; m is the sodium activation gate; and h is the sodium inactivation gate. The 

general form of the gating variables is

where x = [n,m, h] , the function αx is the forward rate, and βx is the backward rate. The functional forms of n , 
m , and h are

The fractional order gating dynamics is

In this work we concentrated in studying the effects of fractional order in the potassium n-gate.
The normal parameter values were cm = 0.47 µF , gNa = 120mS , gk = 36mS , gm = 0.3mS , ENa = 50mV  , 

EK = −77mV  , and vr = −65mV  . However, to replicate the criticality behavior (Fig. 6E) we modified the 
model with the following parameters: cm = 1 µF,gNa = 70mS , gk = 5mS , and EK = −77mV , vr = −54.4mV.

For these simulations we used a Runge–Kutta level 4 for the integer derivative equations and an L1 scheme 
for the fractional order potassium gate:

with

We used a previously published design of a circuit that can replicate the Hodgkin–Huxley  model62, Fig. 6A. 
This circuit has four branches where each part of the circuit is equivalent to a part of the model. The two 
branches in the middle correspond to the sodium and potassium conductances. The original circuit has the fol-
lowing parameter values Cm = 0.1 µF , rl = 100 k� , El = 0 V ,ENa = 5 V  , R1 = 100� , R2 = 100� , R3 = 1 k� , 
R4 = 674 � , EK = 1.1 V  . The capacitor that controlled the potassium conductance had an original value of 
Cn = 0.1mF . For the fractional HH circuit, we connected Cn in series with five super-capacitors.

(14)vm(tN+1) = (�t)η
(−(vm(tN )− vr)+ rmI(tN ))

τm
+

N
∑

k=0

c
η

k vm
(

tN−k

)

(15)c
η

k =

(

1−
1+ η

k

)

c
η

k−1

(16)cmD
1vm = −

(

gm(vm − vr)+ gKn
4(vm − EK )+ gNam

3h(vm − ENa)
)

+ I

(17)D1x = αx(V)(1− x)− βx(V)x

(18)

αn(V) =
0.1− 0.01(V − V0)

e1−0.1(V+V0)) − 1

βn(V) = 0.125e−
V−V0
80

αm(V) =
2.5− 0.1(V − V0)

e2.5−0.1(V−V0)) − 1

βm(V) = 4e−(V−V0)/18

αh(V) = 0.07e−
V−V0
20

βh(V) =
1

1+ e(3−0.1(V−V0)))

(19)Dηx = αx(V)(1− x)− βx(V)x

(20)

n(tN+1) = (�t)ηŴ(2− η)
(n∞(vm(tN ))− n(tN ))

τn(vm(tN ))
−

N
∑

k=0

(

(N + 1− k)1−η − (N − k)1−η
)

(n(tN )− n(tN−1))

(21)n∞ =
αn

αn + βn
; τn =

1

αn + βn
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Measurements
We controlled the delivery of current or voltage and data acquisition with a National Instruments card (DAQ, 
PCI-6071E). We provided the current to our circuit with the DAQ connected to an Analog Stimulus Isolator 
(A-M Systems, model 2200). The membrane potential was acquired with an analog input of the same DAC, and 
the information was processed using LabVIEW (National Instruments, TX).

Weakly‑electric fish experiments
Animals
All animal procedures were approved by McGill University’s animal care committee and were performed in 
accordance with the guidelines of the Canadian Council on Animal Care. The study is reported in accordance 
with ARRIVE guidelines (https:// arriv eguid elines. org). Specimens of either sex of the wave-type weakly electric 
fish Apteronotus leptorhynchus (N = 7) were used exclusively in this study. Animals were purchased from tropical 
fish suppliers and were housed in groups (2–10 individuals) at controlled water temperatures (26–29 °C) and 
conductivities (100–800 µS*cm−1) according to published  guidelines102. It was not possible to determine the age 
of the specimens used.

Surgery
Surgical procedures have been described in detail  previously103,104. Briefly, 0.1–0.5 mg of tubocurarine (Sigma) 
was injected intramuscularly to immobilize the animals for electrophysiology experiments. The animals were 
then transferred to an experimental tank (30 cm x 30 cm x 10 cm) containing water from the animal’s home 
tank and respired by a constant flow of oxygenated water through their mouth at a flow rate of 10 mL*min−1. 
Subsequently, the animal’s head was locally anesthetized with lidocaine ointment (5%; AstraZeneca), the skull 
was partly exposed, and a small window (~ 5  mm2) was opened over the hindbrain as well as bilaterally over both 
midbrains in order to access nucleus praeeminentialis (nP) for drug application as described  elsewhere103,104.

Stimulation
The electric organ discharge of Apteronotus leptorhynchus is neurogenic, and therefore is not affected by injection 
of curare. All stimuli consisted of amplitude modulations (AMs) of the animal’s own EOD and were produced 
by triggering a function generator to emit one cycle of a sine wave for each zero crossing of the EOD as done 
 previously105. The frequency of the emitted sine wave was set slightly higher (~ 30 Hz) than that of the EOD, 
which allowed the output of the function generator to be synchronized to the animal’s discharge. The emitted sine 
wave was subsequently multiplied with the desired AM waveform (MT3 multiplier; Tucker Davis Technologies), 
and the resulting signal was isolated from the ground (A395 linear stimulus isolator; World Precision Instru-
ments). The isolated signal was then delivered through a pair of chloritized silver wire electrodes placed 15 cm 
away from the animal on either side of the recording tank perpendicular to the fish’s rostro-caudal axis. This 
stimulation protocol has been used by multiple previous studies (see, e.g.,106,107). We used stimuli consisting of a 
5–15 Hz noise (4th order Butterworth) carrier waveform (i.e., AM) whose amplitude (i.e., envelope) was further 
modulated sinusoidally at 0.05, 0.1, 0.25, 0.5, 1, 2 Hz to mimic the envelope signals due to relative movement 
between two  fish108–110. Alternatively, we delivered a step increase in EOD amplitude lasting 30 s and repeated 
20 times at intervals of 300 s. The data in Fig. 8 was extracted from the plots in their corresponding  publication7.

Recordings
The data presented in Fig. 8A,D,G were performed with simultaneous extracellular recordings from ELL pyrami-
dal cells within the lateral segment using metal-filled micropipettes as described  previously7,103–105,111,112. We used 
CED 1401-plus hardware and Spike II software (Cambridge Electronic Design, Cambridge, UK) to record the 
resulting signal with resolution 0.1 ms.

For the experiments in Figs. 8F and 9 simultaneous extracellular recordings from ELL pyramidal cells were 
made using Neuropixels probes (Imec Inc.) as done  previously113–116. The probe was angled at approximately 
15 deg. with respect to vertical and advanced between 1500 and 2000 µm into the ELL with reference to the 
probe tip. Neurons were recorded at depths between 200 and 1400 µm from the brain surface and as such most 
likely included neurons within the lateral and centrolateral  segments117. Recordings were digitized at 30 kHz 
using spikeGLX (Janelia Research Campus) and stored on a hard drive for further analysis. Spikes were sorted 
using  Kilosort118 and subsequently curated using the phy application (https:// github. com/ cortex- lab/ phy) 118,119.

Pharmacological inactivation
To study the effects of descending pathways, we recorded ELL pyramidal cells and behavior for control in con-
junction with their responses after bilateral lidocaine (1 mM) injection into nP. Drug application pipettes were 
made using single-barrel borosilicate capillary glass tubes (OD 1.5 mm, ID 0.86 mm, A-M Systems) and pulled 
by a vertical micropipette puller (Stoelting) to a fine tip that was subsequently broken to attain a tip diameter of 
approximately 5 μm. All pharmacological injections were performed approximately 1250–1750 μm below the 
surface where the nP is located using a duration of 130 ms at ~ 20 psi using a Picospritzer (General Valve) as 
done  previously103,104,120. It is important to note that the effects of such inactivation start within at most 30 s after 
injection and last throughout the experiment.

Code and analysis
We developed custom made MATLAB (Natick, MA) code to simulate the spiking models, and to analyze all the 
simulations and experiments. We stimulated and acquired the data from the circuit with a National Instruments 

https://arriveguidelines.org
https://github.com/cortex-lab/phy
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data acquisition card (DAQ, PCI-6071E). We provided the current to our circuit with the DAQ connected to 
an Analog Stimulus Isolator (A-M Systems, model 2200). The membrane potential was acquired with an analog 
input of the same DAC, and the information was processed using LabVIEW. We report 95% confidence intervals 
(95% CI) and Standard Error of the Mean (SEM).

Diffusion entropy analysis
Diffusion Entropy Analysis (DEA) was originally introduced by Allegrini et al.66. Modified versions of DEA have 
been applied  recently67,68. We consider a diffusion process given by

This trajectory is converted into many diffusional trajectories using a moving window ‘l’ to record 
�x(t) = x(t + l)− x(t) . For different values of t, it is equivalent to generating many Gibbs copies from which 
we can get the probability distribution function (PDF) p(x,l). We can then evaluate the Shannon entropy of the 
process using,

If the PDF is a Gaussian function, then δ = 0.5. If it is a Lévy function, it fits the scaling property,

where δ is the anomalous scaling δ > 0.5.  Using Eq. 24 and 25 in the asymptotic limit l → ∞ we get,

where A is a constant. Note that when the PDF departs from the ordinary Gaussian case, it has slow tails with 
an inverse power-law function.

Data availability
All data collected and data analyses are available in GitHub (Github.com/SantamariaLab) or by request to Dr. 
Fidel Santamaria (fidel.santamaria@utsa.edu).
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