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Automatic monitoring of neural 
activity with single‑cell resolution 
in behaving Hydra
Alison Hanson 1,2,4*, Raphael Reme 3,4, Noah Telerman 1,4, Wataru Yamamoto 1, 
Jean‑Christophe Olivo‑Marin 3, Thibault Lagache 3,5 & Rafael Yuste 1,5

The ability to record every spike from every neuron in a behaving animal is one of the holy grails of 
neuroscience. Here, we report coming one step closer towards this goal with the development of an 
end‑to‑end pipeline that automatically tracks and extracts calcium signals from individual neurons 
in the cnidarian Hydra vulgaris. We imaged dually labeled (nuclear tdTomato and cytoplasmic 
GCaMP7s) transgenic Hydra and developed an open‑source Python platform (TraSE‑IN) for the 
Tracking and Spike Estimation of Individual Neurons in the animal during behavior. The TraSE‑IN 
platform comprises a series of modules that segments and tracks each nucleus over time and extracts 
the corresponding calcium activity in the GCaMP channel. Another series of signal processing modules 
allows robust prediction of individual spikes from each neuron’s calcium signal. This complete pipeline 
will facilitate the automatic generation and analysis of large‑scale datasets of single‑cell resolution 
neural activity in Hydra, and potentially other model organisms, paving the way towards deciphering 
the neural code of an entire animal.

A major goal in neuroscience is to record the activity of all neurons in a behaving animal with single-neuron 
resolution to capture the emergent properties of neural  circuits1. This remains a significant technological chal-
lenge in complex systems such as  rodents2,  monkeys3, and  humans4 in which whole brains can currently only be 
recorded with low spatiotemporal resolution. To overcome these challenges, neuroscientists have used simpler 
systems, including  zebrafish5–8, Drosophila9,10, and C. elegans11,12, which contain far fewer neurons but exhibit 
more limited behavioral repertoires. However, even these simpler systems are still quite complex and present their 
own unique imaging challenges. Here, we have chosen to focus on a small freshwater cnidarian, Hydra vulgaris, 
with one of the simplest known nervous  systems13–16. Hydra has key advantages, including a transparent body, 
small size, a limited number of neurons belonging to only a dozen cell  types17, distributed nerve net lacking a 
true brain or ganglia, remarkable regenerative  capacity18, and a behavioral repertoire that can be automatically 
quantified using machine  learning19. Unfortunately, Hydra is also a highly deformable organism and is therefore 
one of the most difficult test cases for identifying and tracking single neurons in a moving animal.

Despite much progress, monitoring of single-cell resolution whole-body neural activity in a behaving animal 
remains a significant challenge, even among simpler systems. Indeed, even if high-resolution imaging of whole-
body neural activity can be achieved, identifying and tracking individual neurons in a moving animal over 
time remains a major hurdle. Moreover, the robust prediction of individual spikes from each neuron’s calcium 
signal also requires advanced processing of tracked calcium signals. Several approaches have been employed to 
facilitate the tracking of single neurons, including fixing the head of the animal to the  microscope8–10,20, moving 
the microscope to keep the brain of the freely behaving animal in the center of the  objective7,11, or immobiliz-
ing the entire  animal5,21,22. In the first two cases, neural imaging is limited to the head only and does not allow 
organism-wide neural recording while behaving. In the last case, neural imaging is limited solely to immobilized, 
non-behaving animals.

New approaches in transgenic animals, hardware, and software have been developed to overcome these chal-
lenges. For example, a new transgenic C. elegans line was generated that expresses two fluorophores in the nuclei 
of neurons: a calcium-insensitive fluorophore (red fluorescent protein) and a calcium-sensitive fluorophore 
(GCaMP), which allows continuous visualization of the location of the neurons even when they are  inactive23. 
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These dually labeled animals make it significantly easier to detect and track individual neurons over time while 
the worm behaves. Novel imaging modalities include light sheet microscopy approaches, such as swept confocally 
aligned planar excitation (SCAPE)24, which has allowed fast whole-organism imaging with higher signal-to-noise 
and less photobleaching than widefield microscopy, and less photobleaching but poorer signal-to-noise than 
confocal microscopy approaches. On the software side, the advent of deep-learning algorithms has drastically 
improved the accuracy of single cell segmentation, a fundamental prerequisite for the tracking of neuronal activ-
ity with calcium fluorescent indicators. However, the monitoring of neuronal activity requires their robust track-
ing over time, which consists of pairing the neurons segmented at different time points into coherent  tracks25. 
Tracking is a difficult task due to animal motion, occlusions, and intermittent activity of calcium probes. It is 
still performed manually or semi-automatically in many systems. Many advanced algorithms have also been 
developed for the accurate estimation of neuronal activity (spikes typically) from recorded calcium  activity26–30. 
However, all these methods usually require signal pre-processing to attenuate imaging noise and remove non-
linear fluorescence baseline that could bias the estimation of neurons’ spikes from fluorescent calcium traces. 
Therefore, there is a need for a robust and versatile tool that can track individual neurons in deforming bodies, 
accurately estimate the neuronal activity from calcium fluorescence, and could also be applied to more simple 
cases where animals are fixed or minimally moving.

Here, we developed TraSE-IN, an end-to-end pipeline (Fig. 1) that allows the automatic tracking and signal 
extraction of individual neurons in behaving Hydra. This novel pipeline entails both hardware and software 
improvements over existing tools to create a versatile, robust, and accurate way to automatically detect and track 
individual neurons in a highly deformable organism while behaving. These improvements include the genera-
tion of a two-color transgenic Hydra and imaging method that allows the simultaneous recording of both nuclei 
and neural activity, and the development of an open-source Python platform (https:// github. com/ rapha elreme/ 
trase- in). This platform consists of a tracking module to monitor the calcium activity of individual neurons in 
the behaving animal, and a series of signal processing modules for the robust extraction of spikes from calcium 
traces, paving the way for the analysis of the functional correlates underpinning animal behavior.

Altogether, hardware and software developed in the pipeline will significantly enhance our ability to correlate 
individual neural activity with behavior under different conditions, analyze large data sets over longer time scales, 
and bring us closer towards the goal of cracking the neural code of an entire animal.

Results
Imaging dually labeled transgenic Hydra
A major hurdle in recording neural activity in a behaving Hydra is the faithful tracking of individual neurons 
over time as the animal moves. The initial transgenic Hydra created in our lab expressed GCaMP6s in all neu-
rons, which allowed wide-field calcium imaging of whole animal neural activity while  behaving16. However, each 
neuron had to be painstakingly tracked and analyzed manually. Despite the development of advanced tracking 
software  (EMC2) that iteratively estimated the local deformation of the animal using spatial key points, and 
approximated the position of neurons when they were not firing and did not emit fluorescent  signals25, tracking 
errors accumulate over time, which hinders the analysis of neural activity over long time-lapse sequences. To 
overcome this bottleneck, we developed a novel transgenic Hydra line that expresses two fluorescent indicators 
in its neurons: cytoplasmic GCaMP7s and nuclear tdTomato (Fig. 2, see Methods section for more details). 
GCaMP7s is a genetically encoded calcium indicator (GECI) that allows visualization of the calcium dynamics 
of each  neuron31 and tdTomato is a calcium insensitive  molecule32 used for single cell labelling. tdTomato is a 
high brightness indicator with emission in the red end of the spectrum (581 nm) ideal for use with the green 
emission spectrum of GCaMP7s (511 nm) with minimal cross talk between the fluorophores. Our transgenic 
strain allows for the spatial tracking of the continuous signal from tdTomato, facilitating the tracking of individual 
neurons, and the extraction of GCaMP7s signal whenever neurons fire.

To confirm all neurons are indeed labeled in the double transgenic line, fixed animals were co-stained with 
anti-Hydra cadherin antibody that labels Hydra  neurons33 and anti-tdTomato antibody (Figure S1). In these ani-
mals, 96.53% ± 2.49% (std) cadherin positive cells also expressed nuclear tdTomato. Because some neurons might 
not have stained with anti-cadherin or anti-tdTomato during the immunostaining protocol, we conclude that 
essentially all neurons in the transgenic animal are expressing nuclear tdTomato. To confirm that each neuron 
that expresses nuclear tdTomato also expresses cytoplasmic GCaMP7s in the transgenic animals, calcium imaging 
movies were scored for the presence of nuclear tdTomato in active GCaMP7s neurons. This analysis showed that 

Figure 1.  Overview of the pipeline. (I) The pipeline includes generation of a novel dually labeled (nuclear 
tdTomato and cytoplasmic GCaMP7s) transgenic Hydra imaged on a custom built simultaneous two-color 
spinning disc confocal microscope, allowing high spatiotemporal resolution imaging of behaving animals. (II) 
Each nucleus is segmented using the StarDist deep learning algorithm. (III) Each segmented nucleus is then 
tracked over each frame in the movie by first using probabilistic temporal linking to form short tracklets, which 
are then stitched together using a cost-based method to determine the final full-length tracks. (IV) A region 
of interest (ROI) is then drawn around the center position of each nucleus and a sub-ROI method is used to 
detect the most likely corresponding neuronal cell body from which to extract GCaMP7s signal. (V) Both the 
extracted nuclear tdTomato and cytoplasmic GCaMP7s signals are used for signal processing to account for 
motion artifacts. Independent component analysis, followed by detrending and smoothing is run to remove 
imaging artifacts from the GCaMP7s signal. Neurons’ spikes are predicted from the pre-processed calcium 
signal using FOOPSI. The final output is a raster plot with the spike predictions from individual neurons in a 
behaving animal. See text for further details.

▸

https://github.com/raphaelreme/trase-in
https://github.com/raphaelreme/trase-in
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100% of GCaMP7s positive neurons also express nuclear tdTomato (Figure S1). Given that nearly all neurons 
co-stain with anti-cadherin and anti-tdTomato, and that all GCaMP7s neurons express nuclear tdTomato, we 
conclude that essentially all neurons in the transgenic animal expressed the dual cytoplasmic GCaMP7s-nuclear 
tdTomato plasmid. In addition to neurons, the interstitial cell lineage of Hydra produces germ cells, gland cells, 
and  nematocytes34–37. Indeed, these cell types could also express the dual reporter plasmid in the transgenic 
animals, although in our experiments the only cell type clearly expressing the transgenes were nematocytes 
(Figure S1). The signal collected from these non-neuronal cells can be removed computationally in the analysis 
pipeline, if desired (see section “Measuring the activity of individual neurons”).

The novel dually labeled transgenic Hydra was prepared for imaging as previously  described16. In this 
mounted preparation, Hydra is placed in media between two coverslips separated by a 100 μm spacer, creating 
a single-plane imaging object while allowing the animal to exhibit a variety of  behaviors38. The animal was then 
imaged on a custom-built spinning disc confocal microscope that allows simultaneous two-color imaging of 
both GCaMP7s and tdTomato activity (see Methods). Spinning disc confocal microscopy was adopted due to its 
superior performance over widefield, light sheet, and two-photon microscopy approaches in terms of its ability 
to perform simultaneous two-color recordings with sufficient spatiotemporal resolution and optimal signal-to-
noise ratio. The fastest behaviors in Hydra occur at 5 Hz. Thus, to minimize motion blur in a rapidly contracting 
Hydra, images were acquired at 10 Hz. Recorded images were processed and adjusted for brightness and contrast 
using ImageJ analysis software.

Segmenting and tracking individual neurons
Despite the calcium insensitiveness of nuclear tdTomato, the motion and deformation of the animal, the high 
density of neurons in some parts of the animal (peduncle and hypostome typically), and the potential occlusion 
or disappearance of neurons from the microscope focal plane due to axial motion of tissues, called for the 
development of a state-of-the-art pipeline for segmenting and tracking neurons’ nuclei.

With the exception of C. elegans, where neurons’ positions along time can be mapped and compared to an 
initial known atlas of positions after having corrected the deformation of the  worm39, monitoring the calcium 

Figure 2.  Generation of transgenic animals and imaging setup. (A) Transgenic animals were created by 
injecting the plasmid (right) into a fertilized Hydra vulgaris egg (left). Image on left modified with permission 
 from16. (B) Dually labeled transgenic animals were placed in Hydra media in the center of a 100 µm silicon 
spacer sandwiched between two coverslips and imaged with a custom-built simultaneous two-color (488 nm 
and 571 nm) spinning disc confocal microscope. (C) Representative image of a dually labeled (nuclear tdTomato 
and cytoplasmic GCaMP7s) Hydra imaged with the simultaneous two-color spinning disc confocal microscope 
setup shown in (B). Scale bar: 1 mm.
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activity of individual neurons in other model systems requires the development of standard single-particle-
tracking (SPT) that consists of two distinct steps: first, the fluorescent spots of individual particles (neurons) are 
automatically segmented, and the positions of detected neurons are extracted in each time frame of the movie. 
The second step of SPT algorithms is the robust linking of extracted positions into coherent tracks representing 
the trajectories of individual particles.

The first module of the TraSE-IN platform consists of a tracking pipeline, that we call ByoTrack (https:// 
github. com/ rapha elreme/ byotr ack) (Fig. 3), which is a series of functions enabling the automatic detection of 
neurons’ nuclei and their tracking along the time-lapse sequence.

Segmentation of nuclei
In fluorescence microscopy, the objects of interest (neurons here) appear as spots brighter than the noisy 
background. When the signal-to-noise ratio (SNR) is low, objects’ spots can be hardly distinguishable. Therefore, 
elaborated detection algorithms have been developed over the  years40. Most of the analytical detection methods 
consist of image denoising (e.g., Gaussian smoothing, wavelet denoising), signal enhancement (e.g., background 
subtraction with top-hats or h-dome), and signal thresholding. Analytical methods have proven to be robust 
and fast for moderate to high signal-to-noise ratios. However, they usually require tweaking a few user-defined 
parameters, and, more importantly, they usually fail at separating closely apposed spots.

Since their recent introduction, deep-learning (DL) approaches have demonstrated a much-increased 
accuracy and robustness for detecting cells in noisy and cluttered images. Among DL approaches, StarDist is 
particularly well suited for segmenting and separating roundish objects such as cell nuclei as it uses a star-convex 
representation of objects’ contours and a non-maximum-suppression (NMS) post-processing for separating 
touching  cells41. However, DL approaches usually require manual annotation of data for model training.

In the first part of ByoTrack, we implemented different algorithms for neurons’ segmentation and detection 
(Fig. 3A). In particular, we used an algorithm that executes the DL method StarDist, the training of the model 
being performed using the open-source Python code of  StarDist41 . We also implemented an analytical method 
based on undecimated wavelet transform and statistical thresholding of the  image42. The wavelet thresholding 
approach has demonstrated a good performance on images with medium to low  SNR43.

Using tdTomato images extracted from two-color time-lapse sequences, we trained a StarDist model and 
compared its performance with the analytical wavelet method (Fig. 4A). As manual annotation of cell nuclei 
can be tedious and time-consuming, we trained a StarDist model for an increasing number of tdTomato images 
(from 2 to 15, corresponding to a maximum of 9422 neurons’ nuclei, see Methods) and measured how model 
accuracy increased with the size of the training dataset (Fig. 4B). In this manner, we could determine how to 
optimally balance model accuracy and training.

Wavelet thresholding is specifically designed for the detection and localization of fluorescent spots, rather than 
for their accurate segmentation. Thus, the comparison metrics (f1-score) between detected spots was computed 
using a distance threshold d between the center-of-mass of detected objects, rather than the commonly used 
intersection-over-union (IOU) between segmented spots. In other words, we considered that a predicted spot’s 
detection was valid if its center-of-mass was at a distance less than d from the center-of-mass of a ground truth 
detection. Moreover, using the position of detected nuclei rather than their shape to assess the accuracy of the 
detection method is more meaningful for tracking, as we only use the position of each detected instance.

Using a distance threshold d = 1 pixel we obtained, for trained StarDist, a f1-score of 84.9% (number of 
predicted spots npred = 2946 with tp = 2656 true positives and fp = 290 false positives). The number of true 
instances (cell nuclei) was ntrue = 3283 over 5 testing images, the number of false negatives being equal to 
fn = 627 (Fig. 4B). The hyperparameters of the analytical wavelet thresholding method (scale and threshold) were 
tuned (grid search) by maximizing the method accuracy over 1 to 15 annotated images. With the same distance 
threshold d = 1 pixel, we obtained a decreased f1-score of 72.0% ( npred = 2747withtp = 2171andfp = 576 ). 

Figure 3.  Tracking pipeline. The implemented tracking pipeline can be divided into three main steps: (A) the 
automatic detection of nuclei spots in tdTomato sequences using analytical methods such as wavelet transform 
and thresholding or deep learning methods such as StarDist detection, followed by (B) the robust linking of 
segmented nuclei in coherent tracklets with a state-of-the-art SPT method. Here, the probabilistic method 
enhanced Multiple-Hypothesis-Tracking (eMHT) method is called from the Icy software. (C) Finally, tracklets 
corresponding to the same neuron are stitched using a cost-based method. The cost here corresponds to the 
minimal distance between the forward- and backward-propagated positions of undetected nuclei. The optimal 
association between tracklets that minimizes the global cost of association is a linear association problem that 
we solved with the Jonker-Volgenant (JV) algorithm.

https://github.com/raphaelreme/byotrack
https://github.com/raphaelreme/byotrack
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Number of false negatives was equal to fn = 1112 . Therefore, the false negatives and false positives were almost 
two-fold higher using an analytical wavelet-thresholding method compared to the trained DL method. A 
representative image showing superior segmentation of StarDist over wavelet thresholding of nuclei in the foot 
of the animal is shown in Fig. 4C. In particular, StarDist was able to separate close neurons whereas the wavelet 
thresholding cannot.

We highlight that StarDist performances were nearly as good when trained with only 2 annotated images 
(one image used for training, and one used for validation) compared to 15 annotated images. Therefore, we 
conclude that StarDist can be easily trained for other imaging set-ups or conditions and showed a much-increased 
performance compared to more standard, analytical detection algorithms.

Probabilistic tracking and tracklet stitching
To monitor the calcium activity of individual neurons, it is then necessary to link detected nuclei in the different 
time frames into coherent tracks. However, tracking is not trivial because of the errors made during the detection 
of particles (neurons) in each frame, the potential occlusion or undetectability of particles over several frames, 
and the difficult disentanglement of individual trajectories when particles are densely packed. Many elaborated 
algorithms have been developed in the last two  decades44. These algorithms are either based on the global distance 
minimization (GDM) between the set of particles’ positions in successive time frames or use a probabilistic 
framework to compute the most likely trajectories linking the different positions given a model for particles’ 
motion. While requiring a higher computational load, the latter probabilistic framework has demonstrated an 
increased accuracy and robustness than GDM methods, especially in cluttered  environments45. The second step 
of our tracking pipeline consists of linking neurons’ detections with a state-of-the-art probabilistic algorithm 
(eMHT, Fig. 3B). This tracking algorithm is implemented in Icy, an open-source image analysis platform (https:// 
icy. bioim agean alysis. org/)46. ByoTrack directly executes this step in Icy and gets the resulting tracks for post-
processing and signal analysis.

Due to particles’ occlusion, moving out of focus, or intermittent detectability, standard tracking methods, 
such as eMHT, tend to produce multiple small tracks (“tracklets”) for the same particle, hindering the long-term 

Figure 4.  Comparison of a deep-learning approach (StarDist) versus an analytical approach (wavelet 
transform) for segmenting nuclei in tdTomato images. (A) The two methods compared for detection. On top, 
the analytical wavelet transform approach consists of decomposing the image with multiscale a-trou wavelets, 
before applying a statistical threshold on wavelet coefficients to denoise the image and extract the significant 
fluorescent signals (connected components CC). Wavelet decomposition favors the extraction of spotty signals, 
which makes it well-suited for the segmentation of fluorescent roundish objects such as cell nuclei. On the 
bottom, StarDist deep learning (DL) segmentation consists of applying a trained U-net convolutional network, 
followed by a non-maximum suppression (NMS) to segment individual nuclei in the image. (B) We compared 
the accuracy (f1-score, mean ± standard error) of wavelet and DL segmentation algorithms applied to test 
images ( n = 5 images) for different distance thresholds and number of images used for StarDist training (2 (red) 
or 15 (purple)), or for the calibration wavelet method’s parameters (scale and threshold: 1 (blue), 2 (orange) or 
15 (green)). (C) A representative image of tdTomato nuclei in the foot of the animal, ground truth segmentation, 
wavelet segmentation, and StarDist segmentation of those same nuclei are shown.

https://icy.bioimageanalysis.org/)
https://icy.bioimageanalysis.org/)
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identification of particles and, in the case of neurons, the monitoring of individual spiking activities. Indeed, 
when a particle is not detected over a few frames (more than ~ 5 typically), SPT algorithms prematurely end 
tracks, and start a new track when the particle is re-detected.

To stitch the tracklets that represent the same neuron, we implemented the cost-based algorithm  (EMC2)25 
that infers the positions of undetected neurons from neighboring tracklets (Fig. 3C). Briefly, when a neuron 
remains undetected over several frames, the forward position after the premature termination of the neuron’s 
tracklet is estimated using a thin-plate-spline interpolation between neighboring tracklets. On the other hand, 
when a new track begins, the backward position of the tracked neuron is also estimated. Then, to stitch tracklets 
and obtain entire neurons’ tracks, a cost matrix is computed between all the tracklets using the minimal distances 
between the forward and backward-estimated positions, and the corresponding linear association problem is 
solved with the Jonker-Volgenant  algorithm47.

To measure the accuracy of our tracking pipeline on an experimental dataset, we tracked neurons’ nuclei 
using ByoTrack in N = 3 different animals (Fig. 5). The rhythmic longitudinal contractions of Hydra can drasti-
cally hinder the robust tracking of individual neurons. Indeed, the speed of contraction motion can surpass the 
acquisition rate of the movie (10 Hz typically), blurring the images and making the detection and tracking of 
nuclei spots difficult. Thus, for each animal, we determined two time-windows of T = 1, 000 frames where the 
animal contracts or not. For each of these six extracted movies (2 movies per animal, https:// datad ryad. org/ stash/ 
share/ vWz5o bHbrC_ yWiTh tJG8V 7mWTc JfkAd IlN1U VOURb rA.), two independent operators chose randomly 
n = 15 individual neurons throughout the Hydra body (5 neurons in the animal’s peduncle (foot), central body, 
and hypostome (head)) and measured, for each neuron, the percentage of frames where it is correctly tracked. 
Obtained tracking accuracies are reported in Fig. 5 (mean ± standard error), n = 30 neurons per localization 
(foot, body, and head) and animal state (contracting or not). We observe a very good accuracy (> 90%) in all 
parts of the animal, except for the head of contracting animals where the accuracy drops to 70%. This local drop 
is due to the fast tentacle retraction and motion of the head of the animal during contraction cycles.

Altogether, these results indicate that the ByoTrack pipeline is sufficiently versatile and robust to track indi-
vidual neurons in highly deforming Hydra. In particular, the use of a DL segmentation algorithm should be 
preferred to more standard approaches because it does not require extensive training, while showing much 
improved accuracy. Except for the head of the animal that moves faster than the microscope’s acquisition rate 
during contraction phases, the combination of a state-of-the-art probabilistic tracking algorithm (eMHT) and 

Figure 5.  Accuracy of nuclei tracking in non-contracting and contracting Hydra. (A) Accuracy of tdTomato 
nuclei tracking in different parts of a non-contracting Hydra (left), with representative images of nuclear 
tdTomato, cytoplasmic GCaMP7s, and tracked tdTomato nuclei (right). (B) Accuracy of tdTomato nuclei 
tracking in different parts of a contracting Hydra (left), with representative images of nuclear tdTomato, 
cytoplasmic GCaMP7s, and tracked tdTomato nuclei (right) (Each bar is the mean over n = 30 tracks, error bars 
are the 10% and 90% quantiles). Scale bars: 1 mm.

https://datadryad.org/stash/share/vWz5obHbrC_yWiThtJG8V7mWTcJfkAdIlN1UVOURbrA
https://datadryad.org/stash/share/vWz5obHbrC_yWiThtJG8V7mWTcJfkAdIlN1UVOURbrA
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cost-based tracklet stitching applied to DL-segmented nuclei, showed very good performance, paving the way 
to the monitoring of the calcium activity of individual neurons in behaving animals.

Measuring activity of individual neurons
Linking calcium activity to individually tracked nuclei
The robust, long-term tracking of each neuron is a prerequisite for the monitoring of calcium activity, but addi-
tional signal processing is required for the robust extraction of neurons’ spikes. First, even with perfect tracking 
of nuclei in the red channel, extracting the GCaMP7s signal is not as simple as mapping these tracks onto the 
video from the green channel. Indeed, optical and biological limitations cause misalignment between the two 
channels. Minor differences and imperfections in the optical path along with differing camera orientations cause 
each wavelength of light to be projected differently onto their respective cameras. Additionally, the indicators 
themselves are located in different parts of the cell, with tdTomato expressed in the cell’s nucleus and GCaMP7s 
being expressed in the cell’s cytoplasm. While some of this misalignment can be corrected with image process-
ing software, the non-uniformity across the field of view is more complicated to correct. Moreover, multiple 
neurons often occur in close proximity, meaning the simple solution of taking the average fluorescence over a 
large region of interest (ROI) encompassing the nucleus will often include multiple neurons (Fig. 6A). This can 
create confounding results where the signals from two neurons are superimposed (Fig. 6B).

To handle this misalignment and extract robust single-neuron fluorescence information, a custom sub-
ROI tracking method was developed (Fig. 6) to identify and track the green-channel fluorescence in the area 
surrounding the red-tracked point. This algorithm starts from the pixel locations of tracked nuclei and extracts 
a small ROI around these points in the green channel. The algorithm leverages the fact that cells, even when not 
fluorescing, are brighter than the background. Within the small ROI, the total brightness, proximity to the center, 
and proximity to the previously tracked neuron are weighted and summed to give a prediction of the location 
of the neuron in the green channel (see Methods). This algorithm, implemented as a module on the TraSE-IN 
platform, provides reliable single neuron fluorescence data that can be further processed for spike extraction.

A second major hurdle to monitoring neuronal activity is the extraction of spikes from calcium fluorescence. 
Indeed, the fluorescent calcium traces are usually corrupted by background signal and noise, and the dynamics of 
conformational change of calcium indicators is much slower than actual voltage variations. For all these reasons, 
elaborate deconvolution methods have been developed over the years to robustly extract individual  spikes26–28,48. 
These algorithms show good performance on synthetic and experimental datasets but require an input fluorescent 
signal with good signal-to-noise ratio and no, or moderate, fluctuations of fluorescence baseline. To robustly 
extract neurons’ spikes from fluorescence intensity with these algorithms, we have therefore developed a series 
of pre-processing steps described hereafter (Fig. 7).

Signal processing and spike prediction
Removing non-neuronal cells
Due to imperfect transgenic animals, where labeling occurs across i-cell derived lines, non-neuronal cells express 
tdTomato and GCaMP7s. Most of these cells do not display calcium activity so are simple to remove or ignore. 
Nematocyles, the stinging cells unique to cnidarians, are an exception. These cells produce very bright calcium 
signals and will be incorrectly analyzed by spike extraction methods if not removed.

Although little is known about the spiking activity of nematocytes, initial  studies38 indicate they do not 
spike like most neurons. Once they are activated, their calcium signal remains elevated for long periods of time 
(30 s to minutes). Thus, once activated, the variations of their fluorescence intensity are mostly due to imaging 
noise. Leveraging this fact allows filtering of nematocytes, if desired (Fig. 7B), based on their correlation with 
Gaussian noise (see Methods). It has also been shown that some neurons exhibit similar plateau maintaining 
calcium  signals49, which might also be highly correlated with Gaussian noise. Accordingly, an interactive graphi-
cal interface in the TraSE-IN pipeline allows the user to visualize each cell that is highly correlated with Gaussian 

Figure 6.  Linking tracked tdTomato nuclei to GCaMP7s neuronal cell bodies. (A) A small region of interest 
(ROI) is drawn around the center position of the tracked tdTomato nucleus (left). The brightest pixel nearest 
the center in the corresponding GCaMP7s image (middle) is used to detect the most likely neuron in the full 
ROI, around which a sub-ROI is drawn (right) and GCaMP7s signal extracted (see text for further details). 
(B) Example GCaMP7s activity when using the full ROI versus the sub-ROI linking method. In the full ROI 
method, the signal from two neurons in the same ROI is erroneously reported, whereas in the sub-ROI method 
only the signal from one neuron is extracted.
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noise in the timelapse movie and decide whether or not to keep that cell for further downstream analysis (see 
Methods for further details).

Motion artefact removal
Motion artifacts occur when Hydra moves axially during imaging. Due to the narrow focal plane of confocal 
microscopy, and occlusion of light from outside this focal plane, any motion in Z will result in a significant 
change in intensity, and as Hydra is especially deformable, this type of motion occurs somewhat often in behaving 
animals. Additionally, due to the non-uniformity of Hydra motion, these artifacts do not apply to the entire frame 
at once, making some general motion correction algorithms useless.

Motion artifacts are notoriously challenging to correct algorithmically as they are highly sporadic, and 
the intensity and duration of their effect varies at random. However, we can leverage our simultaneous two-
color imaging to provide some measure of correction. Since motion occurs in both the red and green channels 
identically, any large signal occurring in both channels is likely to be a motion artifact and we can use a variety 
of methods to remove it.

The standard method for removing motion artifacts in a two-color experiment is ratiometric correction. 
However, this method can lead to erroneous spikes being recorded: when both signals approach low values, the 
ratio between them can be very large even if the absolute difference is  small50. Therefore, ratiometrically corrected 
signals can show a large increase in intensity when both signals are actually decreasing in intensity.

Thus, we used independent component analysis (ICA) (Fig. 7C) to separate the motion artifacts from changes 
in fluorescence due to calcium dynamics, as has previously been shown to perform better than ratiometric 
correction in C. elegans neurons expressing both GCaMP and  RFP50. This method allows source separation by 
directly looking for common signals between the channels. ICA assumes that the only signals present in both 
the red and green channels are motion artifacts and calcium signals and seeks to find two component signals 
that can be recombined in differing proportions to reconstruct the original red and green channels. In practice, 
this method produces two signals: one mostly composed of motion signal, and the other composed of calcium 
signal. Noise is distributed equally between the outputs. As ICA is a stochastic algorithm, our implementation 
runs multiple times and selects the best resulting signals (see Methods). The calcium signal is identified from 
the outputs via its higher correlation with the original green channel signal.

Detrending and smoothing
Although ICA can reduce artifacts that occur in both channels identically, it cannot completely attenuate them, 
nor can it process artifacts that occur differently in each channel such as photobleaching, which occurs at different 

Figure 7.  Schematic of signal processing and spike prediction steps. (A) Raw cytoplasmic GCaMP7s and 
nuclear tdTomato signals are extracted from individual neurons in each frame. (B) Nematocytes can be filtered 
based on their correlation with Gaussian noise. (C) Independent component analysis (ICA) is used to extract 
the motion corrected GCaMP7s signal. (D) The motion corrected GCaMP7s signal is detrended with frequency 
filtering. (E) The detrended GCaMP7s signals from individual neurons are smoothed and (F) spikes are 
predicted using FOOPSI with a custom adaptive clustering and thresholding algorithm. (G) The final output is a 
raster plot of the predicted spikes from each individual neuron.
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rates in tdTomato and GCaMP7s. Additionally, spike identification algorithms are fragile. Baseline drift or 
abundant noise can drastically hinder their performance and cause them to miss or to incorrectly predict spikes, 
making downstream analysis far less reliable.

To improve the performance of our spike extraction, two additional preprocessing steps were performed: 
detrending to remove baseline drift (Fig. 7D) and smoothing (Fig. 7E) to clean the signals by reducing noise. 
Detrending was applied via frequency filtering. We deleted from each signal the frequencies smaller than a 
threshold tuned with user feedback. Smoothing was applied using a rolling average filter and was again tuned 
with user feedback to allow for optimal reduction of noise without removal of signal (see Methods).

Calcium signal and spike-time extraction
After filtering and preprocessing the extracted fluorescence signals, we utilized the FOOPSI spike extraction 
method (Fig. 7F) implemented in the CaImAn Python  package30. This package is intended for use with mouse 
two photon calcium imaging data. However, since our data has low background noise and uses the same indicator 
used in mouse studies, we found this method was reliably able to extract spikes from our processed data with 
only minor tuning.

FOOPSI fits an autoregressive model to the provided signal and, using an underlying model of the expected 
calcium signal dynamics from GCaMP indicators, can predict the underlying fluorescence of GCaMP7s while 
ignoring the accompanying noise. In addition to extracting fluorescence, the FOOPSI algorithm provides spike 
times predicting the underlying electrical activity of the neuron from its calcium activity.

Spike time information from FOOPSI is provided as a probability of a spike having occurred at any given 
point in time. To extract robust spike times, a custom clustering and thresholding algorithm was developed (see 
Methods). The final output of the signal processing module is a raster plot (Fig. 7G) with predicted spikes for 
all tracked individual neurons.

Methods
Generation of transgenic Hydra
Following the method previously  described51–53, a transgenic Hydra vulgaris (strain AEP) line was established 
to express GCaMP7s in the cytosol and tdTomato in the nucleus of cells derived from the interstitial stem cell 
lineage. The plasmid (Addgene catalog no. 102558)16 was modified by replacing the actin promoter with the EF1-
alpha promoter and inserting DsRed downstream of the GCaMP6s sequence. To ensure the nuclear localization 
of DsRed, a P2A self-cleaving peptide sequence containing a nuclear localizing signal (cccaagaagaagaggaaggtg) 
was inserted between GCaMP6s and DsRed. The nuclear localization of DsRed was confirmed by electroplating 
the plasmid into Hydra. To enhance fluorescence intensity, GCaMP6s was replaced with jGCaMP7s and DsRed 
was replaced with tdTomato. Finally, for microinjections, the EF1-alpha promoter was replaced with the Actin 
promoter. All fluorescent reporter gene sequences were codon optimized specifically for Hydra. Standard embryo 
microinjection of this plasmid was performed and transgenic hatchlings expressing cytoplasmic GCaMP7s and 
nuclear tdTomato in the interstitial cell lineage were isolated. Transgenic animals were bred until all neurons were 
expressing both cytoplasmic GCaMP7s and nuclear tdTomato. Transgenic Hydra were cultured using standard 
 methods54 in Hydra medium (1 mM calcium chloride dehydrate, 0.33 mM magnesium sulfate anhydrous, 0.5 mM 
sodium bicarbonate, 0.03 mM potassium chloride) at 18 °C on a 12 h light/12 h dark cycle. They were fed freshly 
hatched Artemia nauplii twice per week.

Imaging
Dual-labeled transgenic Hydra were prepared for imaging as  described16. Imaging was performed using a custom 
dual-channel spinning disc confocal microscope (Solamere Yokogawa CSU-X1) with a sCMOS camera for each 
channel (Teledyne-Photometrics Prime-BSI). Samples were simultaneously illuminated with both 488 nm and 
561 nm lasers (Coherent OBIS). Emission light was split with a dichroic mirror sending green light to one camera 
and red light to the other. Cameras were aligned with pinholes and images were registered during processing. 
Images were captured with a frame rate of 10 frames per second using a 6X objective (Navitar HR Plan Apo 
6X/0.3) and Micro-Manager software.

Immunostaining
Immunostaining was performed using the previously established protocol optimized for double-labeling 
experiments in Hydra with the anti-Hydra cadherin  antibody33, using the following antibodies: Primary 
antibodies: Hydra cadherin antibody (rabbit) 1:1000 (Thomas Holstein, Heidelberg), anti-tdTomato (goat) 1:200 
(Origene, AB8181-200); Secondary antibodies: Alexa 488 donkey anti-rabbit 1:1000 (ThermoFisher A-21206), 
Rhodamine Red-X donkey anti-goat 1:250 (Jackson 705–295-147). Fixed and stained animals were imaged on 
the same spinning disc confocal setup described above. Image stacks were taken with a 40X objective (Olympus 
LUMPlanFl/IR 40X/0.8 W) every 0.5 μm and processed with ImageJ. Images shown are maximum intensity 
projections of short stacks (5–20 μm).

Segmentation and tracking of nuclei (ByoTrack)
Segmentation of neuronal nuclei
To learn a segmentation model and validate our experiments, we sampled 20 tdTomato images of Hydra on 
various positions of the animal (e.g., contracted, elongated). We manually annotated these images using the 
ImageJ draw tool resulting in 12,705 segmented neurons (~ 600/image).
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To measure the segmentation performance, 5 random images were kept as a testing dataset. To account for 
performance variability, we repeated this process 5 times with different seeds, resulting in different training and 
testing images. We measured the performance with each seed and report the results as (mean ± std).

We used standard instance segmentation metrics (precision, recall, f1-score). But we did not base these 
metrics on IOU association, where a predicted instance is considered to be a true positive if it overlaps with 
a ground truth on a sufficiently large area. We rather based these metrics on distance association, where a 
predicted instance (spot) is considered valid if its mass-center is sufficiently close to the mass-center of a ground 
truth instance. This has two benefits: first, it is more meaningful for tracking as we only use the position of each 
detected instance. Second, it allows fair comparison with detection methods that do not try to produce a faithful 
segmentation or bounding box of the instances like the wavelet thresholding method.

The remaining 15 images were used to train and tune all the parameters of the segmentation model. We 
also measured the impact of the training data quantity by training the model with fewer images, from 1 to 15.

We compared two detection methods: an analytical method based on wavelet decomposition and thresholding, 
and a deep learning approach, StarDist.

Calibrating wavelet thresholding method
The method has only two hyperparameters: the scale of the spots and the noise threshold. Both can be easily 
tuned by hand on a single image. Nonetheless, to be fully autonomous, the system performs a grid search on the 
training images and chooses the best performing ones. No further training is required. Moreover, to reduce the 
number of false positives, the neurons with less than 5 pixels area were filtered out.

Training DL method (StarDist)
The deep neural network must be trained and the hyperparameters tuned. We therefore split the training images 
into training and validation as most standard deep learning approaches do. 20% of the training images were 
used as validation images. With less than 5 training images, one image was kept for validation. Therefore, the 
procedure that we show here requires at least 2 training images, one to train the weights of the network, the 
other to validate the hyper parameters.

The official implementation of StarDist (https:// github. com/ stard ist/ stard ist) was used to train, validate, and 
evaluate the performances with our dataset. For tracking, we provide a wrapper to perform the detection process 
using a trained StarDist model (https:// parta ge. imt. fr/ index. php/s/ npwHJ HZebx qGMPi).

Generating tracklets with probabilistic eMHT
The eMHT algorithm is implemented on the open-source imaging platform Icy (plugin Spot Tracking), which 
is coded in Java language. Instead of translating all the code into Python, we decided to directly call the Spot 
Tracking plugin in Icy in a headless mode from the TraSE-IN platform. To ensure compatibility with Icy, we 
implemented different functions for inputs (detections) and outputs (tracks) wrapping.

We believe that calling implemented tracking solutions in major imaging platforms such as Icy and ImageJ is 
an efficient and sustainable solution because the main imaging platforms are open-source, the tracking plugins 
(e.g., Spot Tracking in Icy, Trackmate in ImageJ) are regularly updated by developers, wrapping input and output 
variables in TraSE-IN is much less tedious and prone to implementation errors than translating all the Java code 
of tracking methods in Python, and TraSE-IN will easily integrate new tracking solutions developed on other 
platforms, if needed.

Stitching tracklets
To stitch tracklets obtained with eMHT tracking, we implemented a cost-based algorithm. Briefly, a cost between 
all the tracklets is computed, and stitched tracklets correspond to the minimal global cost of all tracklets’ linking. 
Computing the minimum global cost corresponds to a linear assignment problem that we solved using the 
Jonker-Volgenant  algorithm47. The cost between tracklets was computed following the  EMC2  algorithm25. Input 
parameters of the stitching function (byotrack.implementation.refiner.stitching.emc2) are the smoothness α 
of the Thin Plate Spline interpolation and the non-linking cost η (paid for unlinked tracklets). In our tracking 
scenario (Fig. 4C), we set α = 10 to provide enough regularization to be robust to eMHT linking errors and set 
non-linking cost η = 5 pixels.

Linking calcium activity to tracked nuclei
To solve the misalignment between nuclei and calcium signal, we implemented a sub-ROI tracking method. 
For each nucleus, we extracted a 25 × 25 pixels ROI centered on each tracked nucleus. Then, to find neuronal 
candidates in the GCaMP7s channel, we iteratively computed n local maxima within each ROI ( n = 5 typically) 
and identified the most probable calcium signal. For this, we first applied a gaussian smoothing ( σ = 1 pixel) 
and first identified the global maximum in the ROI. We then deleted the pixels in the neighborhoods of this 
maximum and reiterated the process n times. To bias extracted maxima towards the nucleus position (and avoid 
selecting an outlier GCaMP7s signal) we weighted the ROI intensities with Gaussian prior centered on the 
nucleus position ( σ = 5 pixels).

In the first frame, the selected position of the calcium spot is the global maximum of the ROI (after having 
applied a Gaussian prior to bias intensities towards the nucleus position). For the following frames, we selected 
the closest maximum to the previous calcium position and updated the calcium position with an exponential 
moving average to attenuate the potential consequence of a wrong association. Finally, we extracted the calcium 
intensity for each neuron as the mean intensity within the 5 pixels radius circle centered on the tracked calcium 
position.

https://github.com/stardist/stardist
https://partage.imt.fr/index.php/s/npwHJHZebxqGMPi
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Signal processing
Removing non-neuronal cells
We compared extracted calcium signals with a normal Gaussian distribution using the scipy.stats.normaltest 
method. Any signal whose normality can be rejected with p-value lower than a user-defined threshold was kept. 
The other signals that might correspond to non-neuronal cells are displayed in an interactive feedback step to 
allow users to decide which cells they want to keep or discard from the analysis. This feedback step allows the 
user to visualize each cell corresponding to a Gaussian fluorescent signal. Then, by observing the cell’s location, 
size, shape, and activity over the timelapse movie, users can decide if they would like to discard the cell or keep 
it for further downstream analysis.

Motion artefact removal
We used the tdTomato intensity (extracted as the mean intensity in a 5 pixels radius circle centered on the nucleus 
position in the red channel) as a control signal. ICA between the control signal and the raw calcium signal was 
used to remove motion  artefacts50. ICA relies on scikit-learn FastICA  method55 (we used a tolerance of 0.5). 
As the ICA algorithm is stochastic, we ran it several times and selected the best outcome as the one with the 
minimum correlation with the control signal.

Detrending and smoothing
To remove the remaining baseline in the calcium signal, we applied frequency filtering using a  5th order 
Butterworth filter and a critical period of 100 frames. In addition, we smoothed the signal using a rolling average 
of size 5. Both the average size and critical period can be adapted with user feedback.

Calcium signal and spike-time extraction
We used the constrained FOOPSI implementation in the CaImAn Python library (OASIS method of order 
2)30. In Hydra, calcium spikes correspond to single action  potentials16. Therefore, we added a clustering step to 
aggregate the action potentials (electrical spikes) predicted with the previous deconvolution FOOPSI algorithm 
(less than 5 frames away). The clustering consists of first temporal Gaussian blurring ( σ = 5 frames) of the 
estimated electrical spikes, followed by local maxima extraction. Finally, we filtered out electrical spikes with 
low probability/intensity using a user-defined threshold to reduce the number of erroneous predictions. Since 
these computed probabilities/intensities vary wildly between different signals, using a fixed threshold would not 
work across different signals. To rectify this, an adaptive threshold defined as the maximum probability minus 
2 standard deviations was used. This method provided robust results across all cells, allowing spike extraction 
to be applied simultaneously across an entire dataset with minimal user input.

Discussion
Here, we present TraSE-IN, an open access end-to-end protocol for single-neuron resolution calcium imaging 
in behaving animals. To our knowledge, this pipeline is the first to allow automatic detection, tracking, signal 
extraction, and spike prediction from individual neurons in a highly deformable organism such as Hydra.

Hardware improvements implemented in this pipeline include a novel dually labeled transgenic Hydra that is 
imaged with simultaneous two-color spinning disc confocal microscopy to allow high spatiotemporal resolution 
imaging of the entire animal in the field of view while behaving. The novel transgenic Hydra presented here is 
labeled with a calcium-insensitive fluorophore (tdTomato) in the nucleus and calcium-sensitive fluorophore 
(GCaMP7s) in the cytoplasm of each neuron. The presence of the calcium-insensitive fluorophore in the nucleus 
of each neuron allows visualization of each neuron even while it is inactive and significantly increases accuracy 
of tracking individual neurons over time. The high-resolution spinning disc confocal imaging also increases 
the accuracy of tracking individual neurons longitudinally because they are easier to detect in each frame due 
to the high spatial resolution, and easier to track frame-to-frame due to the high temporal resolution. Software 
improvements include more accurate segmentation of neurons in each frame using a machine learning algorithm 
 (StarDist41) specifically trained to detect Hydra nuclei, an accurate single neuron tracking protocol using a state-
of-the-art probabilistic algorithm  (eMHT45) that is directly executed on the native open-source platform  Icy46, 
tracklet  stitching25, and, finally, a user-friendly Python pipeline for signal extraction, signal processing, and spike 
prediction for individual neurons in a behaving animal.

While the development of this pipeline is a major step forward towards the goal of automatic detection, 
tracking, signal extraction, and spike prediction from single neurons in behaving animals over longer timescales, 
multiple areas for future improvements remain. First, although the novel dually labeled transgenic Hydra 
line allows visualization of neurons even while inactive, transgenic expression is not specific to neurons. The 
fluorescent proteins are also expressed in the interstitial cell lineage of the animal, which is a stem cell lineage 
that makes four cell types: neurons, nematocytes, gland cells, and germ  cells34–37. Thus, all these cell types could 
express the label in the transgenic animals. In the current pipeline, the non-neural cell types can be filtered out in 
the signal processing step of the pipeline. Instead of filtering out these different cell types during signal processing, 
it would be ideal to generate an animal with neuron-specific labeling using neuron-specific  promoters17. In 
addition to more specific labeling of neurons in animals, it would be ideal to use different optical approaches 
that allow volumetric imaging of the entire animal during behavior. Here, Hydra is only imaged in a thick two-
dimensional plane, which captures most of its neurons, but this method results in some neurons coming in and 
out of the imaging plane, so some neurons are lost over time. This is especially problematic for the tentacles, 
which move more than the body column of the animal. At present, current volumetric approaches are too slow 
to allow high spatiotemporal resolution imaging of an entire rapidly moving  organism24. However, as fluorescent 
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labels and optics improve, shorter exposure times and higher frame rates may be possible to allow whole animal 
volumetric imaging while Hydra is behaving.

In addition to hardware improvements, multiple improvements can also be implemented on the software side. 
In terms of segmentation, even if StarDist provides accurate detection with relatively few manual annotations 
( ∼ 2 image patches for a total of ∼ 1,000 segmented nuclei), transfer learning from pre-annotated public 
datasets would be a very valuable resource for the segmentation of cells in various imaging set-ups. In terms 
of tracking, we designed TraSE-IN so it does not code for a specific method, but rather executes state-of-the-
art tracking algorithms directly from their native platform. In the present version, TraSE-IN is executing the 
eMHT probabilistic algorithm in Icy (https:// icy. bioim agean alysis. org/), but future versions of the platform could 
implement other well-established tracking methods such as TrackMate in  ImageJ56. For the tracklet stitching, 
the cost between tracklets corresponds to the minimal distance between the predicted forward- and backward-
propagated positions of tracklets’ ending- and starting-points,  respectively25. This cost could also include visual 
features of tracklets, which should further improve the accuracy and robustness of tracklets’ stitching, as recently 
 shown57. In terms of signal extraction, many putative improvements reside in spike extraction. Indeed, the robust 
estimation of spiking times from noisy fluorescence traces is an active field of research, and recent developments 
in Bayesian  analysis26,48 might improve the accuracy of spike estimates compared with previous constrained 
deconvolution  methods27,29,58.

In sum, we have created a robust, adaptative end-to-end pipeline that allows single-neuron resolution imaging 
of behaving Hydra followed by automatic detection, tracking, signal extraction, signal processing, and spike 
prediction of individual neurons. While room for future improvement remains, this new tool takes us one step 
closer towards the goal of automatically extracting every spike from every neuron in a behaving animal. Such 
data will allow visualization and analysis of the emergent properties of an entire nervous system under different 
conditions, making it possible to eventually crack the neural code of a whole animal.

Data availability
Source code and documentation for the plugin are available at https:// github. com/ rapha elreme/ trase- in. Movies 
are available on the Dryad platform at https:// doi. org/ 10. 5061/ dryad. h9w0v t4q3. Our trained StarDist model for 
nuclei segmentation is available at https:// parta ge. imt. fr/ index. php/s/ npwHJ HZebx qGMPi.
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