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Evaluating the lifetime 
performance index of omega 
distribution based on progressive 
type‑II censored samples
N. M. Kilany * & Lobna H. El‑Refai 

Besides achieving high quality products, statistical techniques are applied in many fields associated 
with health such as medicine, biology and etc. Adhering to the quality performance of an item to the 
desired level is a very important issue in various fields. Process capability indices play a vital role in 
evaluating the performance of an item. In this paper, the larger‑the‑better process capability index for 
the three‑parameter Omega model based on progressive type‑II censoring sample is calculated. On the 
basis of progressive type‑II censoring the statistical inference about process capability index is carried 
out through the maximum likelihood. Also, the confidence interval is proposed and the hypothesis 
test for estimating the lifetime performance of products. Gibbs within Metropolis–Hasting samplers 
procedure is used for performing Markov Chain Monte Carlo (MCMC) technique to achieve Bayes 
estimation for unknown parameters. Simulation study is calculated to show that Omega distribution’s 
performance is more effective. At the end of this paper, there are two real‑life applications, one 
of them is about   high‑performance liquid chromatography (HPLC) data of blood samples from 
organ transplant recipients. The other application is about real‑life data of ball bearing data. These 
applications are used to illustrate the importance of Omega distribution in lifetime data analysis.

Keywords Process capability indices, Omega distribution, Progressive type-II censored sample, Lifetime 
performance Index, Markov Chain Monte Carlo, Bayes estimation

To guarantee the precision, dependability, and utility of data, quality control is an essential procedure. In order to 
detect and reduce biases, errors, and inconsistencies in data collection, processing, and interpretation, a variety of 
methods and instruments are used. To achieve quality control, a variety of methods and instruments are available, 
including process control charts and capability analysis. The three key process variables that control charts track 
are mean, range, and standard deviation. Any significant deviations from normal patterns indicate potential issues 
requiring investigation and corrective action. There are many articles related to this point. Conditional mean- and 
median-based cumulative sum control charts were calculated for Weibull data by Raza et al.1. Ali et al.2 showed 
the effect of estimation error for the risk-adjusted Charts,(see also Refs.3–5 and Ref.6). Rather than assessing the 
process’s overall quality, a control chart tracks the consistency of the product quality generated inside a certain 
manufacturing process. Although control charts are widely used in the industry, real-time process capability 
estimation and quality monitoring are not possible with them.

Because products differ in terms of specifications and units, managers must first determine target values and 
associated tolerances in order to assess process capabilities. Process capability indices are essential instruments for 
evaluating a process’s capacity to produce a good that complies with requirements. The industry’s most popular 
method for evaluating process quality is these indicators.  This paper dealt with one of the process capability 
indices to test its conformity with quality specifications, which is the lifetime performance index.

Many services under certain specifications (desired level) are desired from customers. Modern institutes assess 
the quality performance of items to provide special needs to their customers. Statistical methods are used to 
control and promote the quality performance of items. Therefore, process capability indices (PCIs) are employed 
to detect whether the quality performance of an item reaches the desired level.  Montgomery7 and  Kane8 illustrate 
various PCIs in literature. CL is utilized by assessing the performance of electronic components lifetime, where L 
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is the lower specification limit. The performance of electronic components lifetimes is determined by employing 
the larger-the-better process capability index CL.

Recently, the lifetime performance index CL is used in many research for various fields.  Using data from 
High-Performance Liquid Chromatography (HPLC) of blood samples from organ transplant recipients, Rady 
et al. 9 investigated the statistical inference of the lifetime performance index for the Topp Leone Alpha power 
exponential distribution based on first failure progressive censoring schemes. El-sagheer et al.10 provide an 
assessment for the lifetime performance index of power hazard function distribution. Ahmadi and  Doostparast11 
evaluate CL for Pareto distribution with a new Bayesian approach. Inference of CL for Power Rayleigh distribution 
is provided by Mahmoud et al.12 on progressive first failure censored sample. Hassan and  Assar13 evaluate the 
lifetime performance index of Burr type III distribution under progressive type II censoring.  Hassanein14 
measured CL for Lindley distribution on progressive first failure censoring data. Assessing the lifetime 
performance index of Weighted Lomax distribution under progressive type-II censoring scheme for bladder 
cancer is presented by  Ramadan15. Wu and  Hsieh16 assess CL with Gompertz distribution on Progressive type-I 
interval censored sample. Wu et al.17 calculate the lifetime performance index for Weibull products. Inference 
of CL of Gamma distribution by point and interval estimation is constructed by Shaabani and  Jafari18. A credible 
interval for CL of Rayleigh products based on Bayesian estimation is calculated by Lee et al.19. Also, see Laumen 
and  Cramer20. Statistical inference for the lifetime performance index of products with Pareto distribution under 
general progressive type-II censored sample is measured by Zhang and  Gui21. Ahmad et al.22 investigate the 
lifetime performance index under Ishita distribution based on progressive type II censored data with applications. 
The lifetime performance index for Stacy distribution applied to medical and engineering data by Elhaddad 
et al.23.

Moreover, institutes strive to save costs and time of testing. Censored data can be used for solving these 
problems. In survival analysis, many censoring schemes are proposed. Progressive type-II censoring is the most 
fundamental type in survival analysis. Progressive type-II censored sample can be described as follows,

• Assume that n randomly specified items are set at time zero on a test and at the time of the m− th failure, 
the test finished.

• Ri of the surviving items are removed randomly from the test, when the i − th product fails (i = 1, . . . .,m− 1).
• At the end of the test, all Rm(items which are still surviving) are ejected from the test when the m− th failure 

occurs.

Note that, m and R = (R1, . . . . . . ,Rm) are pre-defined and 
∑m

i=1 Ri = n−m . Also, if Ri = 0 for 
(i = 1, . . . .,m− 1) and thus Rm = n−m, the progressive Type-II censoring scheme is abbreviated to the Type-II 
censoring scheme and if Ri = 0 for i = 1, . . . .,m− 1 , this censoring scheme is simplified to the complete sample; 
see  Balakrishnan24. Figure 1 shows the mechanism of progressive type-II censored data.

In this paper, the items lifetime distribution may not obey the normal distribution. The omega distribution 
is a relatively new probability distribution with three parameters (α,β , andγ ) that can be used to model various 
hazard function shapes, including the bathtub shape. We compare the omega distribution’s performance with 
other models to show its effectiveness and potential advantages in modeling bathtub-shaped hazard function. 
Omega distribution introduced by Dombi et al.25 is used to measure CL to detect if the quality of the item meets 
the desired level or not. Assume that X be random variable which satisfy omega model with three parameters 
α,β , γ > 0 . The probability density function (pdf) and the cumulative distribution function (cdf) of the Omega 
distribution are constructed as follows,

Figure 1.  The framework of a progressive type-II censoring scheme.
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The rest of this paper, Sect. "The lifetime performance index of Omega distribution" represented the lifetime 
performance index of Omega distribution. The conforming rate is calculated for the items in Sect. "The con-
forming rate". Section "Maximum likelihood estimator of lifetime performance index" introduced the maximum 
likelihood estimation of the CL . Section "Bayesian estimator of the lifetime performance index" introduce Bayes-
ian estimation for unknown parameters and CL . Section "The testing procedure for the lifetime performance 
index" involved testing procedure of the CL . Simulation study is done in Sect. "Simulation study". Two real data 
sets HPLC data and Ball Bearing data are given in Sect. "Applications".

The lifetime performance index of Omega distribution
In order to satisfy customers’ demands, the lifetime of products should exceed the lower specification limit 
known as L, since the products lifetime exhibit the larger-the-better quality characteristic. Suppose that X the 
product lifetime and X constitute by the Omega model with the pdf and cdf shown in Eqs. (1) and (2). Then, CL 
is defined on the next equation,

where L is the lower specification limit, µ is the process mean and σ is the process standard deviation, which 
given by

where B(n,m) and 2F1(n,m; z; x) denote the beta function and the hypergeometric function, respectively. To 
assess the lifetime performance of products,CL for Omega distribution, we can use Eqs. (4) and (5) as,

where

The hazard function h(x) of the Omega distribution is defined as

Figure 2 shows plots of the Omega distribution hazard function. If β < 1 , then h(x) is bathtub shaped.

The conforming rate
When the lifetime of the product X  is greater than the lower specification limit L , the product is referred to as 
a conforming product. The conforming rate is the realization of the ratio of the conforming product, which is 
described as
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Table 1 show the  CL values v.s. the conforming rate Pr values with (α,β , γ )=(4.28, 2.61, 57.79). Clearly, there 
is a relation between the CL and the Pr . If the lifetime performance index CL increases, the conforming rate Pr 
increases for given α,β and γ . The lifetime performance index CL is given as 2.3 then, Pr is equal to 1 . On the 
other hand, Table 1 support for evaluating the lifetime performance of products in real example of Sect. "Testing 
process for the lifetime performance index".

Maximum likelihood estimator of lifetime performance index
Consider the progressive type II censored sample is denoted by X1:m:n,X2:m:n, . . . . . . .,Xm:m:n  with survival 
products R1,R2, . . . . . . .,Rm  ejected from the life test. The likelihood function of this sample is given as (Casella 
and  Berger26)

where C = n(n− R1 − 1).....(n− R1 − R2 − ......− Rm−1 −m+ 1),
fX
(
xi:m;n|θ

)
 and FX

(
xi:m;n|θ

)
 are the pdf and cdf of X given in Eqs. (1) and (2).

The likelihood function of X1:m:n,X2:m:n, . . . . . . .,Xm:m:n is given as,

Pr = p(X ≥ L) = 1− F(L)
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Figure 2.  Bathtub-shaped omega hazard function plots.

Table 1.  The lifetime performance index CL v.s. the conforming rate Pr.

CL Pr CL Pr CL Pr CL Pr

 − 11 3.3836 × 10−28  − 3 0.00254 0.3 0.59403 0.9 0.80306

 − 10 3.8328 × 10−23  − 2 0.02968 0.4 0.63169 0.95 0.81786

 − 9 9.5215 × 10−19  − 1 0.16438 0.5 0.66861 1 0.83213

 − 8 6.2976 × 10−15  − 0.5 0.30204 0.6 0.70448 1.5 0.94226

 − 7 1.1904 × 10−11  − 0.25 0.38726 0.7 0.73901 2 0.99227

 − 6 6.9219 × 10−9  − 0.00 0.47964 0.75 0.75569 2.1 0.9985

 − 5 1.3370 × 10−6 0.1 0.51769 0.8 0.77195 2.2 0.9997

 − 4 0.00093 0.2 0.55592 0.85 0.78774 2.3 1
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where C = n(n− R1 − 1).....(n− R1 − R2 − ......− Rm−1 −m+ 1).
The form of the log-likelihood function of this sample can be presented as,

By taking the first derivative of the Eq. (11) with respect to parameters α,β and γ and be equal them to zero. 
Then we have these equations,

The invariance property of the MLE is used to obtain the MLE of CL(Zehan27). The MLE of CL can be con-
structed as follows,

Moreover, the asymptotic normal model for the MLEs is stated in the following technique (see  Soliman28). 
From Eq. (12) we have
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The asymptotic normality results of the MLE of θ can be represented as,

where, I(θ) is the Fisher information matrix. The approximate information matrix I0
(
x̂
)
 is given by,

The variance–covariance matrix I0(θ̂ )
−1

 is utilized to estimate I0(θ)−1. Assume that CL ≡ C(θ) , and the 
multivariate delta method identified that the asymptotic normal distribution of C(θ̂ ) is

The approximate asymptotic variance–covariance matrix ψ
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 of C(θ) is utilized to estimate  ψθ and it given by

Bayesian estimator of the lifetime performance index
Bayes estimation is a powerful and versatile technique in statistics that uses prior knowledge and observed data 
to estimate the value of unknown parameters. It’s based on Bayes’ theorem, which provides a framework for 
updating beliefs based on new evidence. The gamma prior density function is shown as

where bi and ci , i = 1, 2, 3  are hyper-parameters which represents our initial beliefs about the possible values 
of the parameters.

By combining the prior distribution with the likelihood function using Bayes’ theorem, you obtain the pos-
terior distribution. The posterior is denoted by h∗(α,β , γ |x) . When we combine Eqs. (10) and (26), we get 
posterior function as following,

Square error loss (SEL) function is crucial for guiding model training towards better performance. We used 
the SEL for θ = (α,β , γ ) which is given by,
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In statistical analysis and prediction problems, a symmetric loss function, the linear exponential (LINEX) 
loss function is very helpful in many respects see Ref.29. It is derived as,

where ǫ is a loss function scale parameter. LINEX loss function penalizing overestimation only linearly. This 
makes it suitable for situations where underestimation is considered more harmful than overestimation. The 
LINEX loss function can take positive or negative values for ǫ and it is close to zero.

The Bayesian estimate for α,β , γ is denoted by π(α,β , γ ) under the LINEX function. π(α,β , γ )  is derived 
as the following equation.

And,

Markov chain Monte Carlo (MCMC) is a powerful and versatile technique used in statistics and computa-
tional physics to sample from probability distributions. It is particularly useful for complex distributions where 
direct sampling is difficult or impossible. In this paper, the calculation of likelihood function is impossible. Hence, 
we must construct the joint posterior density function in order to the Bayesian estimation for CL by applying 
MCMC approach. The implementation of MCMC, a specific approach called Gibbs sampling within Metropolis 
is chosen. The joint posterior is computed from Eq. (27)

The conditional posterior densities of α,β and γ is calculated as follows:

The methodology of M-H is shown in the following steps,

• Step 1: Start with the first proposal (α(0),β(0), γ (0)),
• Step 2: Assign j = 1.
• Step 3 :  Produce α(j),β(j)  and γ (j) f rom h1∗

(
αj−1|β j−1, γ j−1, x

)
, h2

∗(β j−1|αj−1, γ j−1, x
)
 and 

h3
∗(γ j−1|αj−1,β j−1, x

)
 from the M-H method with the normal distribution

N
(
αj−1|var(α)

)
,N

(
β j−1|var(β)

)
 and N

(
γ j−1|var(γ )

)
.

 (1) Derive α∗ from N
(
αj−1|var(α)

)
,β∗ from N

(
β j−1|var(β)

)
 and γ ∗ from N

(
γ j−1|var(γ )

)
.

 (2) Detect the probability of acceptance,

(30)Eα,β ,γ |x
(
g(α,β , γ )

)
=

∫∞0 ∫∞0 ∫∞0 g(α,β , γ )h(α)h(β)h(γ )L(α,β , γ |x)dαdβdγ
∫∞0 ∫∞0 ∫∞0 h(α)h(β)h(γ )L(α,β , γ |x)dαdβdγ

.

(31)L(�) =
(
eǫ� − ǫ�− 1

)
,

(32)π̂BS(α,β , γ |x) =
−1

ǫ
log

[
E
(
e−ǫπ(α,β ,γ )|x

)]
, ǫ �= 0

(33)E
(
e−ǫπ(α,β ,γ )|x

)
=

∫∞
0

∫∞
0

∫∞
0
e−ǫπ(α,β ,γ )h(α)h(β)h(γ )L(α,β , γ |x)dαdβdd∫∞

0

∫∞
0

∫∞
0
h(α)h(β)h(γ )L(α,β , γ |x)dαdβdγ

.

(34)

h∗(α,β , γ |x) ∝ αm+b1−1βm+b2−1γ b3−1e
−c1α−c2β−c3γ

m∏

i=1

xi:m;n
β−1 γ 2β

γ 2β − x2β i:m:n
(
γ β + xβ i:m:n
γ β − xβ i:m:n

)

−αγβ

2 (Ri+1)

(35)h1
∗(α|β , γ , x) ∝ αm+b1−1e−c1α

m∏

i=1

(
γ β + xβ i:m:n
γ β − xβ i:m:n

)−αγβ

2
(Ri+1)

.

(36)h2
∗(β|α, γ , x) ∝ βm+b2−1e−c2β

m∏

i=1

xi:m;n
β−1 γ 2β

γ 2β − x2β i:m:n

(
γ β + xβ i:m:n
γ β − xβ i:m:n

)−αγβ

2
(Ri+1)

.

(37)h3
∗(γ |α,β , x) ∝ γ b3−1e−c3γ

m∏

i=1

γ 2β

γ 2β − x2β i:m:n
(
γ β + xβ i:m:n
γ β − xβ i:m:n

)

−αγβ

2 (Ri+1)

.






ρα = min

�
1,

h1
∗
�
α∗|β(j−1) ,γ (j−1) ,x

�

h1
∗
�
α(j−1)|β(j−1) ,γ (j−1) ,x

�

�

ρβ = min

�
1,

h2
∗
�
β∗|α(j−1) ,γ (j−1) ,x

�

h2
∗
�
β(j−1)|α(j−1) ,γ (j−1) ,x

�

�

ργ = min

�
1,

h3
∗
�
γ ∗|α(j−1) ,β(j−1) ,x

�

h3
∗
�
γ (j−1)|α(j−1) ,β(j−1) ,x

�

�
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 (3) Generate u1, u2 and u3 from a uniform (0, 1) distribution.
 I. If u1 < ρα , accept the suggestion and put α(j) = α∗ otherwise put αj = αj−1.
 II. If u2 < ρβ , accept the suggestion and put β(j) = β∗ otherwise put β j = β j−1.
 III. If u1 < ργ , accept the suggestion and put γ (j) = γ ∗ otherwise.

Put γ j = γ j−1.

• Step 4: Count the CLBS
(j)asfollowing,

• Step 5: Suppose that j = j + 1.
• Step 6: Repeat N times steps from step 3 to step 5 to have α(i),β(i), γ (i) and CL

(BS)(i), i = 1, 2, . . . ,N .
• Step 7: Assess the credible interval of α,β , γ and CL order α(i),β(i), γ (i) and CL

(BS)(i), i = 1, 2, ..,N  as α(1) <
α(2) < · · · < α(N),β(1) < β(2) < · · · < β(N), γ(1) < γ(2) < · · · < γ(N) and CL(1) < CL(2) < · · · < CL(N) . 
Then, the 100(1− ρ)% credible intervals of,

ϑ = (α,β , γ ) be (ϕ(N(ρϑ/2)),ϕ(N(1− ρϑ/2))).

The testing procedure for the lifetime performance index
The testing procedure allows us to measure the behavior of the lifetime of the product. In this section, a statisti-
cal testing process is submitted to evaluate whether the lifetime performance index achieves the pre-specified 
desired level c∗(target value). If the CL is larger than c∗ , the product is categorized as reliable. The attitude of the 
lifetime test process is executed as follows.

The null hypothesis H0 : CL ≤ c∗ is performed against an alternative hypothesis Ha : CL > c∗. The MLE for 
CL is applied as a test statistic. The rejection region can be represented as {ĈL|ĈL > C0} , when C0 is a critical 
value. We can obtain the value of C0 for assigned specified significance level α as follows,

where, ĈL−CL√
ψ
θ̂

∼ N(0, 1)  and  ψ
θ̂

 is the approximate asymptotic variance–covariance matrix given in Eq. (25). 

Then, the percentile of the standard normal distribution zα = C0−c∗√
ψ
θ̂

 with right-tail probability α and the critical 
value can be performed as,

Moreover, the level 100(1− α)% one-sided confidence interval of CL is obtained as follows,

As a result, the 100(1− α)% ower confidence bound for CL can be performed as,

The methodology of the proposed testing procedure about CL can be employed in the next steps.

• Step 1 : Calculate the estimation of three parameters α,β and γ of the Omega distribution. From Eqs. (12), (13) 
and (14) we can determine the MLE under progressive type-II censored sample X1:m:n,X2:m:n, . . . . . . .,Xm:m:n   
which is α̂ = 4.28,β̂ = 2.61 and γ̂ = 57.79.

• Step 2: Detect the lower lifetime limit L for the product and the target value c∗.
• Step 3: Applying H0 : CL ≤ c∗ which called the null hypothesis and the alternative hypothesis Ha : CL > c∗.
• Step 4 : Detect a significance level α.
• Step 5 : Conclude the 100(1− α)% one-sided confidence interval [LB,∞) for CL as,

(38)

CLBS
(j) =

α(j)k(j)γ
(j)(β(j)+1) − L√

α(j)γ (j)(β(j)+2)B

(
2

β(j) + 1, α
(j)γ (j)(β(j))

2 + 1

)
2F1

(
α(j)γ β(j)

2 + 1, 2
β(j) + 1, 2

β(j) +
α(j)γ (j)β(j)

2 + 1,−1

)
− α2(j)k2(j)γ

(j)(2β(j)+2)

(39)P(ĈL > C0|CL = c∗) = α,

(40)P

(
ĈL − CL√

ψ
θ̂

≤
C0 − c∗√

ψ
θ̂

)
= 1− α,

(41)C0 = c∗ + zα

√
ψ
θ̂
.

(42)CL ≥ ĈL − zα

√
ψ
θ̂
.

(43)LB = ĈL − zα

√
ψ
θ̂
.

(44)LB = ĈL − zα

√
ψ
θ̂
,
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where the number of observed failures before termination m is determined also, the lower lifetime limit L, 
the censoring scheme R = (R1,R2, . . . . . . .,Rm) and the significance level.

• Step 6: The conclusion is detected as c∗ /∈ [LB,∞) then we will reject H0 . This indicates that the desired level 
for the performance of the product is reached.

Clearly, the hypothesis test process not only can assess the performance of products lifetime but also detect 
the customers’ demands. In the following section two numerical examples obvious this concept.

Simulation study
This section shows our simulation study involves generating data under various sample sizes.

• Number of samples: N = 1000.
• Sample sizes: n = 30, 50, 70, 90, 100, 200.

The equation F(x)− u = 0 , where u is an observation from the Omega distribution and F(x) is a cumulative 
distribution function of Omega distribution, is used to create this study. The following measures are assessed:

• Average bias of α̂, β̂  and γ̂  of the parameters α,β and γ are respectively:

• The mean square error (MSE) of α̂, β̂  and γ̂  of the parameters α,β and γ are respectively:

From Table 2, we can know that the estimates have small bias and that the MSE decreases as the sample size 
increases. This suggests that the estimator is relatively consistent and that increasing the sample size can improve 
the accuracy of the estimates.

Applications
In this section we construct the testing procedure for the lifetime performance index on two applications. These 
two applications obviously show the importance of the Omega distribution on detecting the quality of products. 
One of them is about HPLC data and the other is about Ball Bearing data.

HPLC data
High-performance liquid chromatography (HPLC) is an important mechanism for separating, identifying, and 
quantifying each component in the blood. Under large samples, Omega distribution fit to data set which is taken 

1

N

N∑

i=1

(
α̂ − α

)
,
1

N

N∑

i=1

(
β̂ − β

)
and

1

N

N∑

i=1

(
γ̂ − γ

)
.

1

N

N∑

i=1

(
α̂ − α

)2
,
1

N

N∑

i=1

(
β̂ − β

)2
and

1

N

N∑

i=1

(
γ̂ − γ

)2
.

Table 2.  Bias and MSE for parameters α, β and γ .

α β γ N Bias ( α) MSE (α) Bias ( β) MSE ( β) Bias ( γ ) MSE ( γ )

0.2 0.6 50 30  − 0.02079 0.001286  − 0.04186 0.003921  − 0.40384 0.305149

50  − 0.01293 0.000757  − 0.02657 0.002246  − 0.37943 0.246498

70  − 0.00803 0.000517  − 0.01869 0.001484  − 0.35149 0.202034

90  − 0.00690 0.000430  − 0.01392 0.001188  − 0.32567 0.177657

100  − 0.00647 0.000363  − 0.01268 0.001034  − 0.32148 0.175021

200  − 0.00238 0.000185  − 0.00580 0.000479  − 0.25142 0.102086

Table 3.  HPLC data.

99 327 203 241 578 153 109 156 93 244 245 71 151 271

125 275 350 521 370 166 402 35 77 428 185 112 206 130

127 285 221 336 339 129 318 159 104 198 254 280 266 653

109 298 440 340 162 227 556 118 159 980 346 118 148 87
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over 56 blood samples from an organ transplant recipient and analyzing an aliquot of each sample by a standard 
approved method high performance liquid chromatography (HPIC) (see Dube et. al.30).

A  p r o g r e s s i v e  t y p e  I I  c e n s o r i n g  s c h e m e  w a s  p e r f o r m e d  w i t h  m = 24  a n d 
Ri = (R1,R2, . . . . . . .,Rm) = (7, 4 ∗ 2, 0 ∗ 2, 3, 0 ∗ 7, 1, 5, 2, 0 ∗ 2, 3 ∗ 2, 0 ∗ 4). Table 3 clarify the HPLC data.

We fitted the omega model to the data by employing maximum likelihood method. For determination stability 
with fitting of the model, we divided each observation by 980.

The Omega distribution is a relatively new lifetime distribution that has been shown to be a good fit for a 
variety of data sets, including HPLC data. The Omega distribution was compared to four other lifetime distribu-
tions, namely the  Exponential31,  Lindley32,  gamma33, and  TLAPE34 distributions, for their ability to fit HPLC data. 
K-S values and its p-values are shown in Table 4. The results of the study showed that the Omega distribution 
provided a better fit to the HPLC data than the other four distributions.

Then, the life test procedure is constructed for CL of Omega distribution in the next steps.

• Step 1: Compute the MLE for parameters α,β and γ of the Omega model under progressive type-II censoring 
sample. Table 5 shows censoring scheme under progressive type-II scheme.

• Step 2: Detect the lower limit specification L = 0.0191. The conforming rate of products should exceed 0.80306. 
The target value c∗ is equal to 0.9.

• Step 3: Constructing H0 : CL ≤ 0.9 (null hypothesis) and the Ha : CL > 0.9 (alternative hypothesis).
• Step 4: Specify α = 0.05 significance level for calculating CL.
• Step 5: Employing Eq. (43), the lower confidence interval bound.

So that, the 95% one-sided confidence interval for CL is [LB,∞) = [2.09237,∞).

• Step 6: The performance index c∗ = 0.9 /∈ [LB,∞) = [2.09237,∞) so we make a decition that null hypothesis 
H0 : CL ≤ 0.9  is rejected. Moreover, ĈL = 2.64 > c∗ + zα

√
ψ
θ̂
= 0.9+ 1.645

√
0.1115 ≈ 1.44943 So that, 

we accept the Ha and the CL of the item adhere the desired level.

In Tables 6 and 7, it is seen that Bayes estimates outperform MLEs in the progressive type II samples. In 
comparison to the approximation confidence intervals, the Bayes credible intervals have the shortest confidence 

LB = 2.64− 1.645
√
0.1115 = 2.09237

Table 4.  Fitting results and various measures for several distributions to HPLC data.

Distribution MLEs KS P-value

Exponential θ̂ = 255.0 0.2355 0.0040

Lindely θ̂ = 0.0078 0.0979 0.6567

Gamma
α̂ = 2.6882

0.1007 0.6212
β̂ = 94.858

TLAPE
α̂ = 0.00375

0.0970 0.6669
β̂ = 3.26242

Omega

α̂ = 7.39003

0.0919683 0.730733β̂ = 1.6281

γ̂ = 1136.19

Table 5.  Censoring scheme for HPLC data.

i 1 2 3 4 5 6 7 8

xi:m:n 0.036 0.111 0.129 0.156 0.159 0.162 0.189 0.202

Ri 7 4 4 0 0 3 0 0

i 9 10 11 12 13 14 15 16

xi:m:n 0.207 0.210 0.226 0.232 0.246 0.249 0.259 0.324

Ri 0 0 0 0 0 1 5 2

i 17 18 19 20 21 22 23 24

xi:m:n 0.346 0.347 0.353 0.437 0.567 0.589 0.666 1

Ri 0 0 3 3 0 0 0 0
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lengths. This study may effectively assist in the failure analysis of the HPLC dataset since the distribution of 
Omega distribution is well suited to the applicable data.

Ball bearing data
In a life test, ball bearing data devoted the number of millions of revolutions before failing for 23 
ball bearings (see  Lawless35). A progressive type II censoring scheme was presented with m = 11 and 
Ri = (R1,R2, ...,Rm) = (0 ∗ 3, 3, 2, 3, 1, 0 ∗ 3, 3). Table 8, show the data on the failure times of 23 ball bearing.

We fitted the omega model to the data by employing maximum likelihood method. For determination stability 
with fitting of the model, we divided each observation by 1.2792.

Table 9 contains critical information for a comprehensive discussion around Ball Bearing data. Statistical tests 
like Kolmogorov–Smirnov test are applied to show which distribution is more fit to ball bearing data.Ahmadi 
et al.36 constructed the lifetime performance index with Weibull distribution. The Omega distribution performed 
better than the Weibull distribution because the Weibull distribution is not fitted to ball bearing data.

Also, we can notice that the Omega distribution provided better than some other distribution on evaluating 
performance for products such as Kumaraswamy  distribution37 and Power Lomax  distribution38.

Then, we create life test procedure of CL for Omega distribution in the next steps.

Table 6.  Point estimates for the parameter α,β , γ and CL for HPLC data.

Parameter MLE SEL

LINEX

c1 = −2 c2 = 2 c3 = 0.001

α 5.5639 5.8764 6.9842 6.2105 5.6782

β 1.4202 1.5524 1.9654 1.8345 1.4556

γ 1643.66 1835.72 2042.1 1852.32 1865.3

CL 1.3017 1.8976 2.3451 1.7357 1.8991

Table 7.  The 95% asymptotic and credible intervals α,β , γ  and CL for HPLC data.

Parameter MLE MCMC

α (− 8.7679, 23.3679) (0.1284, 20.3642)

β (0.618937, 2.58106) (0.7421, 2.3241)

γ (− 1643, 18,739) (0, 19,451)

CL (0.7645, 2.1302) (0.5541, 2.543)

Table 8.  Failure times for 23 ball bearing data set.

0.1788 0.2892 0.3300 0.4152 0.4212 0.4560 0.4848 0.5184

0.5196 0.5412 0.5556 0.6780 0.6780 0.6780 0.6864 0.6864

0.6888 0.8412 0.9312 0.9864 1.0512 1.0584 1.2792

Table 9.  Fitting results and various measures for several distributions to ball bearing data.

Distribution MLEs KS P-value

Weibull
α̂ = 0.52225

0.741731 0.00204214
β̂ = 14.6739

Kumerswamy
α̂ = 2.49066

0.175724 0.476412
β̂ = 1 1.3687

Power lomax

α̂ = 1.2632

0.169049 0.52679β̂ = 2.5295

γ̂ = 1.00939

Omega

â = 13.8007

0.166612 0.545698β̂ = 2.61496

γ̂ = 50.3162
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• Step 1: Calculate the MLE for parameters α,β and γ of the Omega model under progressive type-II censoring 
sample. Table 10 illustrates the progressive type-II censored scheme.

• Step 2: Determine the lower limit specification L = 0.0732 . The conforming rate of products should be 
exceeding 0.80306 . The target value c∗ is equal to 0.9.

• Step 3: Applying H0 : CL ≤ 0.9 (null hypothesis) and the Ha : CL > 0.9 (alternative hypothesis).
• Step 4: Specify α = 0.05 significance level for calculating CL.
• Step 5: utilizing Eq. (43), the lower confidence interval bound.

So that, the 95% one-sided confidence interval for CL is [LB,∞) = [3.48227,∞).

• Step 6: Since, the performance index c∗ = 0.9 /∈ [LB,∞) = [3.48227,∞) so we decide that null hypothesis 
H0 : CL ≤ 0.9  is rejected. Moreover, ĈL = 5.5 > c∗ + zα

√
ψ
θ̂
= 0.9+ 1.645

√
1.50451 ≈ 2.91773 So that, 

we accept the Ha and the CL of the product adhere the desired level.

In Tables 11 and 12, it is seen that Bayes estimates outperform MLEs in the progressive type II samples. In 
comparison to the approximation confidence intervals, the Bayes credible intervals have the shortest confidence 
lengths. This study may effectively assist in the failure analysis of the Ball Bearing dataset since the distribution 
of Omega distribution is well suited to the applicable data.

Conclusion
Evaluating the lifetime performance index is a critical point in our life to meet customers’ demands. Making 
that assessment under censoring data allows good results in detecting the required customer level of quality. 
Some statistical measures are constructed to calculate CL . By using the MLE method of CL , we can test the CL of 
Omega distribution based on Progressive type-II censoring sample data with displaying the multivariate delta 
method. Bayes estimation based the Markov chain Monte Carlo (MCMC) method is performed for unknown 

LB = 5.5− 1.645
√
1.50451 = 3.48227

Table 10.  Type-II progressive censored sample failure times of the ball bearing data.

i 1 2 3 4

xi:m:n 0.139775 0.226079 0.257974 0.324578

Ri 3 0 0 3

i 5 6 7 8

xi:m:n 0.405253 0.434334 0.536585 0.538462

Ri 2 3 1 0

i 9 10 11

xi:m:n 0.657598 0.727955 0.771107

Ri 0 0 3

Table 11.  Point estimates for the parameter α,β , γ and CL for ball bearing data.

Parameter MLE SEL

LINEX

c1 = −2 c2 = 2 c3 = 0.001

α 149.87 146.659 149.128 141.823 146.659

β 3.7787 3.75396 3.75402 3.75401 3.7539

γ 9.3494 9.406 9.8004 9.5352 9.2060

CL 2.35305 2.8451 2.9982 2.9745 2.4354

Table 12.  The 95% asymptotic and credible intervals α,β , γ  and CL for ball bearing data.

Parameter MLE MCMC

α (− 72.8793, 372.62) (140.688, 150.219)

β (2.5403, 5.0172) (3.74071, 3.7754)

γ (− 25.5335, 26.8353) (22.486, 28.035)

CL (− 2.6803, 7.3864) (0.8452, 3.2821)
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parameters and CL . To compare MCMC with MLE, a simulation study is provided. The simulation study is 
provided to compare MCMC with MLE. We compare Omega distribution with some other distributions by 
applying Kolmogorov–Smirnov test to show the superiority of Omega distribution. This analysis is derived for 
various values of α,β and γ . Finally, the theoretical results are applied to two real data sets HPLC data and Ball 
Bearing data for specifying the desired concept of this paper.

In future research, as an alternative, Expectation–Maximization (EM) algorithm will be applied to estimate 
the parameters of Omega distribution. Whereas it’s applied in various statistical areas, including mixture models, 
hidden Markov models, factor analysis, and many more. The EM algorithm is an iterative algorithm for estimat-
ing parameters. It consists of iterating the expectation step (E), which computes a bound for the loglikelihood 
function using the current parameter values, and the maximization step (M), where the bound is maximized 
with respect to parameters, we will discuss it in detail in our future research.

Data availability
The data that support the findings of this study are available within the article.
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