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SiamFDA: feature dynamic 
activation siamese network 
for visual tracking
Jialiang Gu *, Ying She  & Yi Yang 

In this paper, we present a novel anchor-free visual tracking framework, referred to as feature 
dynamic activation siamese network (SiamFDA), which addresses the issue of ignoring global 
spatial information in current Siamese network-based tracking algorithms. Our approach captures 
long-range dependencies between distant pixels in space, which enables robustness to unreliable 
regions. Additionally, we introduce a hierarchical feature selector that adaptively activates features 
at different layers, and an adaptive sample label assignment method to further improve tracking 
performance. Our extensive evaluations on six benchmark datasets, including VOT-2018, VOT-2019, 
GOT10k, LaSOT, OTB-2015, and OTB-2013, demonstrate that SiamFDA outperforms several state-of-
the-art trackers in various challenging scenarios, with a real-time frame rate of 40 frames per second.

Visual tracking is a fundamental task in computer vision, with various practical applications in the real world 
such as video surveillance, human–machine interaction and biomedical image analysis. Generally, given the 
initial state of a target, we are expected to predict its motion trajectory in subsequent frames. Though many 
efforts have been done recently, visual tracking still needs to cope with scale variation, appearance deformation, 
background clutter and so on.

Recently, tracking algorithms based on the Siamese  network1,2 have attracted great attention because of 
their balanced accuracy and speed. The pioneering works  SiamFC1 simply matches the initial patch of the 
target in the first frame with candidates in subsequent frames and returns the most similar patch by a learned 
matching function.  SiamRPN2 introduces the region proposal network to discard traditional multi-scale tests, 
which inevitably introduces many anchor related hyper-parameters that require carefully tuning and heavy 
computational burdens. To solve these problems,  SiamBAN3 introduces an anchor-free tracker, which directly 
regresses the positions of the target in a video frame. Although above methods have obtained excellent per-
formance on visual object tracking, they merely focus on the local characteristics of the target, and inevitably 
ignores the intrinsic structural information within the global region. These long-range features are particularly 
suitable for specific constraints of set  prediction4 such as background clutter and other challenges. Therefore, 
as Fig. 1 shown,  SiamBAN3 cannot identify the target ant from similar objects in the first sequence, and even 
cannot discriminate different objects such as between the knee and the football. Recently, non-local network 
(NLNet)5 is proposed to model the long-range dependencies via self-attention  mechanism6. Intuitively, a NL 
block compute the response at a position as a weighted sum of the features at all positions in the input feature 
map, to attain an attention map. Then the input features are aggregated with the important weights defined by 
the above attention map, thus allowing distant pixels to contribute to the filtered response at a local location. 
However, For an image, different query positions get almost the same global context information through the 
non-local  structure7. Moreover, NL block has to compute the pixel-level pairwise relations among all positions, 
which results in a heavy computational load.

In this work, we propose a simple yet effective anchor-free visual tracking framework named feature dynamic 
activation siamese network (SiamFDA), which consists of a Siamese network backbone for feature extraction and 
a feature dynamic activation (FDA) subnetwork for accurate target location estimation as well as bounding box 
prediction. Specifically, we design a novel FDA block for efficiently modeling long-range dependencies of the 
target and its modeling framework can be abstracted into three steps: (1) context modeling module obtains posi-
tion-independent context information as attention weights to make the tracking model focus on crucial regions. 
(2) Transform module further strengthens the representation power of the meaningful contextual information 
and captures the channel-wise interdependencies at the same time. (3) Fusion module merges the original input 
feature with global context features to improve discriminability. Besides, to fuse fine-grained information and 
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abstract semantic information of features adaptively, we introduce a squeeze-and-excitation (SE)  block8, which 
makes up for the lack of channel attention. Furthermore, on the observation that when the target aspect ratio 
is close to 1, the number of positive samples captured by an ellipse is less than a circle, we modify the original 
label assignment method to add more reliable samples, thus improving the tracking accuracy to some extent. 
Figure 1 displays that compared with  SiamBAN3, our SiamFDA pays more attention to the tracking target without 
being misled by similar objects and the background. For example, in the third sequence, our SiamFDA would 
focus more on the player’s jersey number instead of other places, which is more consistent with human percep-
tion. When we look at the fast-moving players on the court, the jersey numbers can help us quickly determine 
the identity of the player. In Fig. 2, we provide a qualitative comparison between our SiamFDA and SiamBAN 
on the VOT-2018 dataset. It is evident from the visualization results that our tracker outperforms the baseline 
(SiamBAN) in terms of precise tracking.

The main contributions of our work can be summarized as:

Figure 1.  Visualization of attention maps (heatmaps) of SiamBAN (column 2 and 3) and our proposed 
SiamFDA (column 4 and 5) on three challenging video sequences, from which, we can see that SiamFDA can 
effectively identify ambiguous patches and enables our model to be robust to the unreliable regions.

Figure 2.  Qualitative comparison of our SiamFDA with SiamBAN on VOT-2018. Frames 1, 2, 3, and 4, each 
representing a consecutive frame in the tracking process. Observed from the visualization results, our tracker is 
better than the baseline in terms of accurate tracking.
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• We propose a simple yet effective anchor-free Siamese network SiamFDA to accurately estimate scale vari-
ation and aspect-ratio changes, thus boosting the generalization ability of the tracker.

• We design a novel FDA block which encodes rich global context information into the target representation 
along the spatial dimension. This block activates reliable patches, and enables our model to be robust to the 
unreliable regions during tracking. Furthermore, we adopt the SE block as a hierarchical feature selector in 
the classification and regression branches, which further maximizes the discriminative abilities via exploiting 
the inter-channel relationship.

• We introduce an adaptive sample label assignment method to add more reliable positive samples, thus 
improving the tracking performance.

• The effectiveness of SiamFDA is verified on six datasets, and the results demonstrate that SiamFDA is very 
promising for various challenging scenarios compared with several state-of-the-art(SOTA) trackers, with 
real-time performance of 40 fps.

Related work
Visual tracking
Recently, the proposal of Siamese network is a pioneering work in visual tracking community due to its end-
to-end training capabilities and high efficiency.  SiamFC1 presents a real-time tracking algorithm that utilizes a 
novel fully-convolutional Siamese network, trained end-to-end.  SiamRPN2 introduces a region proposal net-
work for precise bounding box regression. Building upon this, SiamRPN++10 architecture for improved per-
formance. Although these anchor-based methods effectively address scale variation and aspect ratio changes, 
they introduce numerous additional hyper-parameters that necessitate careful tuning and impose significant 
computational burdens. Furthermore, the anchor setting is not in line with the spirit of generic visual tracking, 
as it requires pre-defined hyper-parameters to describe the shape. Therefore, SiamFC++11 introduces a set of 
guidelines that include the decomposition of classification and state estimation, non-ambiguous scoring, being 
prior knowledge-free, and estimation quality assessment.  SiamBAN3 propose a simple yet effective visual track-
ing framework by exploiting the expressive power of the fully convolutional network. With the emergence of 
Transformer architectures, their significant advantages in handling complex sequential data have increasingly 
captured the attention of researchers in the academic field. Despite this, Transformer-based  trackers12–18 face 
significant challenges in practical applications, particularly due to their higher computational burden, which 
limits their feasibility in real-time tracking scenarios. In contrast, while CNN-based trackers may lag behind 
Transformer-based models in certain performance metrics, their lower computational complexity makes them 
more advantageous in scenarios requiring quick response times.

Similar to  SiamBAN3, we design an anchor-free Siamese network, which avoids hyper-parameters associated 
with the candidate boxes and makes the tracker more flexible and general.

Long-range dependency modeling
Recently, many new approaches focusing on long-range dependency modeling have emerged in object classi-
fication and detection. To model the pairwise relation,  NLNet5 computes the response at a position as a weight 
sum of the features at all positions.  GCNet7 has found that the global contexts modeled by  NLNet5 are almost 
the same for different positions within an image. Therefore,  GCNet7 creates a simplified network based on a 
query-independent formulation, which maintains the accuracy of  NLNet5 but with significantly less computation. 
To model the query-independency global context,  SENet8 focuses on the channel relationship and adaptively 
recalibrates channel-wise feature responses.  CBAM19 exploits both spatial and channel-wise attention based on 
an efficient architecture. Particularly, the recent advance of tracking approaches has achieved great success by 
integrating attention mechanisms.  SiamAttn20 learns strong context information and aggregates rich contextual 
inter-dependencies between two branches of Siamese network, via deformable self-attention and cross-attention 
jointly.

In our paper, we introduce a novel FDA block designed to effectively model long-range dependencies, address-
ing the NL block’s inherent limitations. This approach enables our model to adaptively focus on reliable regions 
across the spatial dimension. The SE block is further exploited to determine the effectiveness of each output 
channel.

SiamFDA framework
As displayed in Fig. 3, the proposed SiamFDA consists of a Siamese network backbone for feature extraction and 
a FDA subnetwork for accurate target location estimation as well as bounding box prediction. Specifically, the 
Siamese network backbone encodes the appearance information of the template image and the search image. The 
FDA subnetwork includes a classification branch and a regression branch, which considers the spatial layouts of 
the target and models the query-independency global context via three novel FDA blocks. Besides, a SE block is 
introduced to further amplify the discriminative ability along the channel dimension.

Revisiting Siamese network backbone
The Siamese network-based trackers view visual tracking as a cross-correlation problem and learn a tracking 
similarity map from a fully-convolutional network, which compares a template image Z against a search image 
X of the same size and returns a high score if the two images depict the same object and a low score other-
wise. We use the initial appearance feature of the target as the template and a larger crop centered on the last 
estimated position of the target as the input of the search branch. These two branches share parameters in the 
Siamese backbone so that the two patches are implicitly encoded by the same transformation which is suitable 
for the subsequent network. We use the modified ResNet-503 pretrained from  ImageNet21 as the backbone. The 



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4749  | https://doi.org/10.1038/s41598-024-55487-7

www.nature.com/scientificreports/

down-sampling operations from the last two convolution blocks are removed to reserve detailed spatial infor-
mation and thus perform dense prediction. Besides, atrous convolutions with different atrous rates are adopted 
to improve the receptive field.

Feature dynamic activation subnetwork
FDA subnetwork consists of a classification branch and a regression branch, which captures long-range depend-
encies of the target via three novel FDA blocks. As illustrated in Fig. 4, our FDA block contains three modules: 
context modeling module, transform module and fusion module. Specifically, as different instantiations achieve 
comparable  performance5, we adopt embedded Gaussian as the basic NL block to compute similarity in an 
embedding space. Suppose the input features are X, with shapes of Np = C ×H ×W . H represents the height 
of the target, W denotes the width and C denotes the channel.

Context modeling module
Based on the observation that the attention maps for different positions are almost the same in the  NLNet5, 
we replace the pixel-level pairwise operation with a 1× 1 convolution Wc , and obtain a position-independent 
attention map via a softmax function. Then these attention weights are aggregated with the input features by 
matrix multiplication, to recalibrate the importance of different spatial positions. Thus, the context modeling 
procedure can be formulated as

where i denotes the index of query positions and j enumerates all possible position.

Transform module
To further strengthen the representation power of global context features, we aggregate the global context features 
to each position of the input feature via element-wise multiplication, and adopt a 1× 1 convolution Wt to capture 
channel-wise dependencies, as Wt(X̄i · Xj).

(1)X̄i =

Np
∑

j=1

exp(WcXj)
∑Np

m=1 exp(WcXm)
Xj ,

Figure 3.  Overview of the proposed SiamFDA architecture. The top branch is the template branch which 
encodes the appearance information of the target, and the bottom branch is the search branch. Conv3_z , 
Conv4_z and Conv5_z represent the feature maps of the template branch while Conv3_x , Conv4_x and 
Conv5_x represents the feature maps of the search branch. The features of each stages from the Siamese network 
backbone are extracted and then modulated by three FDA blocks, which generates global context features 
and feeds them into a SE block to further exploit the channel attention. The network finally outputs a 2D 
classification map and a 4D regression map.
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Fusion module
We broadcast the simple element-wise addition for final feature fusion. Besides, a subsampling trick via a 1× 1 
convolution Ws is used before context modeling module to further lower computation, as X̂j = WsXj and 
X̂m = WsXm . Thus, the overall procedure can be expressed as

In the paper, the FDA block is not inserted between features of different layers of the backbone, but acts 
directly on the output of layer 3–5, respectively. This not only effectively utilizes the global context feature infor-
mation of different layers, but also avoids the false guidance of low-level features to high-level feature extraction. 
The final output can be attained by the concatenation operation.

Considering that FDA blocks mainly pay attention to the global spatial information which decides ‘where’ to 
focus, and miss the complementary channel attention which decides ‘what’ to focus, a SE  block8 is introduced 
and placed in a sequential manner. The SE block serves as a hierarchical feature selector which directly selects 
features that are more conductive to identifying the current target and amplifies their discriminative abilities, 
leading to more accurate tracking. Specifically, the concatenated features from three FDA blocks are fed into a 
SE block, and are decoupled according to corresponding layers. For convenience, the decoupled feature of the 
template branch and the search branch is simply denoted as Fzse and Fxse , respectively. Then, we copy Fzse and Fxse of 
each layer to the classification branch and the regression branch, denoted as [Fzse]cls , [Fzse]reg and [Fxse]cls , [Fxse]reg . 
Each branch combines the feature maps via a depth-wise cross-correlation layer:

where ∗ represents the convolutional operation, Pcls and Preg denote the classification and the regression map, 
respectively. Finally, the classification maps and the regression maps from different layers are fused independently, 
and the corresponding weights are optimized through training. Specifically, each location (i, j) on the classifica-
t i o n  m a p  i s  c o n s i d e r e d  a s  a  p o s i t i v e  s a m p l e  i f  i t s  c o r r e s p o n d i n g  p o s i -
tion(⌊wim

2 ⌋ + (i −
⌊

wim
2

⌋

)× s, ⌊ him2 ⌋ + (j −
⌊

him
2

⌋

)× s) on the input image falls within the ground-truth bound-
ing box, and a negative sample otherwise. Here, wim and him represent the width and the height of the input 
image, and s denotes the total stride of the network. For each location (i, j) on the regression map, we estimate 
a 4D vector at each spatial location of the feature map. The 4D vector represents the relative offsets from the four 
sides of a bounding box to the center location.

(2)Fx = Xi +Wt

Np
∑

j=1

exp(WcX̂j)
∑Np

m=1 exp(WcX̂m)
X̂j · X̂j .

(3)Pcls =[Fzse]cls ∗ [F
x
se]cls ,

(4)Preg =[Fzse]reg ∗ [F
x
se]reg ,

Figure 4.  Architecture of the NL block (left) and our FDA block (right), both of which contain three modules: 
context modeling module, transform module and fusion module. The feature maps are displayed as feature 
dimensions, e.g., C ×H ×W denotes that a feature map with channel number C, height H and width W. ⊗ 
denotes matrix multiplication, 

⊙

 denotes element-wise multiplication and 
⊕

 denotes element-wise addition. 
The blue boxes denote 1× 1 convolution and the purple ellipses denote the softmax operation.
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Ground-truth and Loss
As illustrated in  SiamBAN3, the sample label assignment is important for the tracking performance, which is 
usually ignored by most Siamese network-based trackers.  SiamBAN3 adopts two ellipses to define both negative 
labels and positive labels. However, as Fig. 5 shown, we find that if the target aspect ratio is close to 1, which 
means that the target shape approximates a circle, the number of positive samples contained in the ellipse E2 is 
less than the circle C2. Therefore, to add more reliable positive samples, we preserve the setting for negative labels 
and modify for positive labels. Specifically, following the  definitions3, the width, height, top-left corner, center 
point and bottom-right corner of the ground-truth bounding box are represented by gw , gh , (gx1, gy1) , (gxc , gyc) 
and (gx2, gy2) , respectively. Then the border for negative labels can be formulated as

where (pi , pj) denotes the location of the feature maps. The border for positive labels can be formulated as

when min
(

gw , gh
)

< 0.25 ∗max
(

gw , gh
)

 , which represents the target shape is close to a long rectangle. Under 
this circumstance, the area of the ellipse with gw4 ,gh4  as the axes length is larger than the area of the circle with 
min

( gw
2 ,

gh
2

)

 as the radius.

when r = min
( gw

2 ,
gh
2

)

 and min
(

gw , gh
)

≥ 0.25 ∗max
(

gw , gh
)

 , which represents the target shape is close to a 
square and the area of a circle is larger than an ellipse.

Therefore, the location (pi , pj) is assigned with a positive label if falling within E2/C2, while a negative label 
if falling outside E1. The position falls between E2/C2 and E1 would be ignored. It should be noticed that only 
the location with a positive label would be used for bounding box regression. Finally, the multi-task loss func-
tion is minimized as

where Lcls is the focal loss for the classification result, Lreg is the intersection over union (IoU) loss for the regres-
sion result. Similar to  SiamBAN3, we do not search for the hyper-parameters of the loss function and simply set 
�1 = �2 = 1.

Experiments
Implementation details
Our approach is implemented in Python using Pytorch on a PC with an Intel i7 CPU and four NVIDIA GeForce 
1080Ti GPU.

Training phase
 Our proposed SiamFDA is trained end-to-end with image pairs picked from ImageNet  VID21, YouTube 
 BoundingBoxes22,  COCO23, ImageNet  DET21,  GOT10k24 and  LaSOT25, using Stochastic Gradient Descent(SGD) 
with a minibatch of 32 pairs. The size of an template patch is 127× 127 pixels, and the size of a search patch 

(5)E1 :
(pi − gxc)

2

(
gw
2 )

2
+

(pj − gyc)
2

(
gh
2 )

2
= 1,

(6)E2 :
(pi − gxc)

2

(
gw
4 )

2
+

(pj − gyc)
2

(
gh
4 )

2
= 1,

(7)C2 :
(pi − gxc)

2

r2
+

(pj − gyc)
2

r2
= 1,

(8)L = �1Lcls + �2Lreg ,

Figure 5.  The sample label assignment methods of SiamBAN and SiamFDA. E1 denotes ellipse E1, which is the 
border for negative labels, E2 and C2 denote ellipse E2 and circle C2, which are the border for positive labels.
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is 225× 225 pixels. We adopt the modified ResNet-503 pretrained from  ImageNet21 as the backbone and the 
parameters of the first two layers are frozen. The total training epoch is 20. We first train our model for 5 warm 
up epochs with a learning rate linearly increased from 0.001 to 0.005, then use a learning rate exponentially 
decayed from 0.005 to 0.00005 in the last 15 epoches. In the first 10 epochs, we only train those layers without 
pretraining, and fine-tune the remaining parameters in the last 10 epochs.

Tracking phase
The template feature in the first frame is computed via the Siamese backbone once, and then is continuously 
matched to subsequent search images, generating the target center location and bounding boxes via the clas-
sification branch and regression branch, respectively. In order to achieve a more stable and smoother prediction 
between adjacent frames, cosine windows and scale change  penalties2 are used. Cosine windows reduce boundary 
effects by applying a cosine-shaped weight distribution within the tracking window, placing the highest weight at 
the center and gradually decreasing towards the edges. This method focuses on the target at the center of the win-
dow, minimizing the disruptive influence of the window’s edges, thereby making the tracking process smoother 
and more focused. On the other hand, scale change penalties are employed to manage changes in the target’s size 
within the video. As the target moves away from or closer to the camera, its size in the frame changes. By penal-
izing rapid or significant scale changes, this mechanism assists the tracking algorithm in smoothly and gradually 
adjusting the size of the tracking window, avoiding instability due to abrupt scale changes. The combination of 
these two techniques significantly enhances the coherence and stability of frame-to-frame predictions, improving 
the overall efficacy of the tracking algorithm. Then, we identify the predicting bounding box with the highest 
score as the most probable location of the target in each frame. This bounding box is then linearly interpolated 
with the states from historical frames to maintain a continuous and accurate trajectory of the target. This inter-
polation not only utilizes the current frame’s data but also leverages the historical information, ensuring a more 
reliable tracking even when the target undergoes sudden changes in motion or appearance. Subsequently, the 
target state is updated based on this interpolated data, which includes the target’s updated position and size. To 
further enhance tracking accuracy, especially in scenarios of occlusion where the target is partially or completely 
obscured, we employ a Kalman filter. This filter assists in predicting the target’s location by extrapolating from 
previous observations, thereby compensating for moments when the target is not clearly visible. The integration 
of a Kalman filter proves crucial in maintaining robust tracking in complex environments, effectively mitigating 
the challenges posed by occlusions.

Comparison with the state-of-the-arts
Six datasets including VOT-201826, VOT-201927,  GOT10k24,  LaSOT25, OTB-201528 and OTB-201329 are adopted 
to demonstrate the performance of our SiamFDA tracker against numerous SOTA trackers.

VOT‑2018
VOT-201826 contains 60 sequences and adopts expected average overlap (EAO) as the major evaluation metric, 
which measures robustness (failure rate) and accuracy (average overlap). We compare our tracker with several 
SOTA trackers, including SiamFC++11,  PrDiMP30,  TLPG31,  SiamAttn20,  ATOM32, SiamR-CNN33,  SiamRPNpp9, 
 DiMP34,  SiamBAN3,  UpdateNet35,  LADCF36,  SiamMASK37 and  SiamDW38. Table 1 and Fig. 6 show that, com-
pared with almost all the top-performing trackers in VOT2018, our SiamFDA tracker achieves the best EAO 
score of 0.476. Besides, we also visualize EAO with respect to the tracking speed, as Fig. 7 shown. From the plot, 
our SiamFDA achieves best performance, while still running at real-time speed (40 fps).

VOT‑2019
VOT-201927 replaces 20% easy sequences of VOT-201826. We compared our tracker with recent prevailing track-
ers, including  SiamDW38,  SiamMask37,  ATOM32,  DCFST27,  SiamRPNpp9,  DiMP34,  SiamBAN3,  STN39,  SPM40, 
 MemDTC41 and  TADT42. Table 2 and Fig. 8 show that our SiamFDA tracker has the highest EAO and obtains 
2.4% relative increases over  SiamBAN3. It is worth noting that the improvement of our SiamFDA mainly comes 
from the robustness score, which outperforms  SiamBAN3 by 4%.

GOT10k
GOT10k24 test set is a large-scale high-diversity dataset, containing 180 videos, with the average overlap (AO) and 
success rates (SR) at two thresholds as measure metrics. We evaluate our SiamFDA with  SiamFC1,  DaSiamRPN43, 
 SiamMask37,  ATOM32, SiamFC++11,  SiamRPNpp9 and  DiMP34. Results on GOT10k are reported in Table 3, from 

Table 1.  Performance comparisons on VOT-2018. italic, bolditalic and underline fonts indicate the top-3 
trackers.

VOT-2018 SiamFC++ PrDiMP SiamAttn SiamRPNpp DiMP SiamBAN SiamFDA

EAO ( ↑) 0.426 0.442 0.47 0.417 0.441 0.452 0.476

Accuracy ( ↑) 0.587 0.618 0.63 0.604 0.597 0.597 0.598

Robustness ( ↓) 0.183 0.165 0.16 0.234 0.152 0.178 0.178
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Figure 6.  Expected average overlap (EAO) graph with trackers ranked from right to left on VOT-2018. The 
right-most tracker achieves the top-performing result.

Table 2.  Performance comparisons on VOT-2019. italic, bolditalic and underline fonts indicate the top-3 
trackers.

VOT-2019 SiamDW ATOM DCFST SiamRPNpp DiMP SiamBAN SiamFDA

EAO ( ↑) 0.299 0.301 0.317 0.285 0.321 0.327 0.351

Accuracy ( ↑) 0.6 0.603 0.585 0.599 0.582 0.602 0.599

Robustness ( ↓) 0.467 0.411 0.376 0.482 0.371 0.396 0.356

Table 3.  Performance comparisons on GOT10k. italic, bolditalic and underline fonts indicate the top-3 
trackers.

GOT10k SiamMASK DaSiamRPN SiamFC++ SiamRPNpp DiMP SiamFDA

AO ( ↑) 0.514 0.444 0.595 0.518 0.611 0.615

SR0.5 ( ↑) 0.587 0.536 0.695 0.618 0.717 0.731

SR0.75 ( ↑) 0.366 0.22 0.479 0.329 0.492 0.477

Figure 7.  A comparison of the quality and the speed of SOTA trackers on VOT-2018.
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which, we can conclude that our SiamFDA significantly outperforms nearly all top-performing SOTA trackers 
in all performance metrics.

LaSOT
LaSOT25 test set (280 videos, average length of 2448 frames) is a long-term visual object tracking evaluation 
dataset, which uses success plots and normalized precision plots to evaluate tracking performance. We evalu-
ate our tracker with trackers including  SiamBAN3,  SiamRPNpp9,  UpdateNet35,  SPLT44,  SiamDW38,  ASRCF45, 
 ATOM32 and  SiamFC1. Figure 9 shows that our SiamFDA tracker achieves an advantageous result with a success 
rate of 0.536 and 0.540 normalized precision.

OTB‑2015
OTB-201528 consists of 100 sequences and adopts one-pass evaluation (OPE) success plots and precision plots 
as evaluation metrics. Our SiamFDA tracker is compared with numerous SOTA trackers including  ATOM32, 
 TADT46,  DaSiamRPN43,  SiamRPN2,  GradNet47,  SiamTri48 and  SiamFC1. As results displayed in Fig. 10, our 
SiamFDA tracker is dominant over other trackers, with a success score of 0.672 and a precision score of 0.879.

OTB‑2013
OTB-201329 consits of 50 challenging image sequences, which is a subset of OTB-201528 and annotated with 
bounding boxes with several different attributes. Besides, we compare our tracker SiamFDA with other SOTA 
trackers including  TADT46,  SiamRPN2,  GradNet47,  DaSiamRPN43,  ATOM32,  SiamTri48 and  SiamFC1. Table 4 
shows that that our proposed SiamFDA performs favorably against other outstanding trackers especially when 
encountering with low resolution and background clutter.

Figure 8.  Expected average overlap (EAO) graph with trackers ranked from right to left on VOT-2019. The 
right-most tracker achieves the top-performing result.

Table 4.  Comparisons on OTB-50, evaluated by precision and success rate. Italic, bolditalic, and underline 
fonts indicate the top-3 trackers.

Method

Low resolution Background clutter

Precision Success rate Precision Success rate

TADT46 0.875 0.680 0.875 0.680

SiamRPN2 0.789 0.601 0.789 0.601

DaSiamRPN43 0.872 0.667 0.872 0.667

ATOM32 0.810 0.621 0.810 0.621

SiamTri48 0.884 0.692 0.884 0.692

SiamFC1 0.749 0.573 0.749 0.573

SiamFDA 0.889 0.701 0.889 0.701
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TNL2K
TNL2K represents a recently developed benchmark specifically tailored for visual-language (VL) tracking, 
encompassing a comprehensive dataset with 2000 video sequences. This benchmark distinguishes itself through 
a combination of key attributes, including superior quality, the inclusion of challenging adversarial samples, 
and extensive variation in appearance. We compare our tracker SiamFDA with other SOTA trackers including 
 TNL2K49,  SNLT50,  CTRNLT51, VLTTT 52,  JointNLT53. Table 5, from which, We can conclude that SiamFDA 
exhibits superior performance on the assessed dataset compared to most of the current state-of-the-art methods. 
Notably, even though Transformer-based approaches surpass SiamFDA in accuracy, they significantly fall short 
in terms of real-time performance. This juxtaposition highlights SiamFDA’s advantage in delivering efficient 
tracking capabilities, particularly in scenarios that demand rapid response and minimal computational resources. 
Therefore, despite the superior accuracy of Transformer-based methods, SiamFDA emerges as a more practical 
solution for real-time tracking, striking a balance between high accuracy and operational feasibility.

Figure 9.  Success and normalized precision plots on LaSOT.
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Figure 10.  Success and normalized precision plots on OTB100.

Table 5.  Performance comparisons on TNL2K. Italic, bolditalic and underline fonts indicate the top-3 
trackers.

TNL2K CTRNLT VLTTT JointNLT TNL2K-2 SNLT SiamFDA

SUC ( ↑) 0.44 0.531 0.569 0.42 0.276 0.542

Norm.PRE0.5 ( ↑) 0.52 0.593 0.796 0.50 – 0.572

PRE0.75 ( ↑) 0.45 0.533 0.581 0.42 0.419 0.528
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Ablation studies
Ablation studies are performed on VOT-201826 and VOT-201927 to demonstrate the impact of key components 
of SiamFDA. As shown as Table 6, FDA block, NL block, SE block represent feature dynamic activation block, 
non-local block and squeeze-and-excitation block. Rectangle, Circle represent rectangle labels ( E1+ E2 ), adap-
tive labels ( E1+ E2/C2 ), respectively.

Ablation studies on blocks
As shown as Table 6, we perform an ablation study on the effects of blocks we adopt. Compared A1 with A2, we 
can found that the introduction of SE block makes the EAO criterion increases from 0.406 to 0.435 on VOT-
201826 and 0.281 to 0.314 on VOT-201927. Based on A2, when using our proposed FDA block, the performance 
achieves better results. From A3 to A4, though NL  blocks5 reach competitive results on object detection/segmen-
tation, it’s not effective enough when applied directly to object tracking, and we speculate that this is because of 
the essential difference among these fields.

Ablation studies on sample label assignments
To explore the impact of sample label assignments on tracking performance, we take the target shape into 
account. Compared A3 with A5, we can reach a conclusion that the adaptive sample label assignment method 
contributes to better tracking results.

Conclusions
In this paper, we propose a novel anchor-free network named SiamFDA, which consists of a Siamese network 
backbone for feature extraction and a feature dynamic activation subnetwork for accurate target location esti-
mation as well as bounding box prediction. Specifically, a simple yet effective FDA block is designed to capture 
long-range dependencies between distant pixels in space and further activate reliable regions, thus improving 
the tracking robustness. Besides, a SE block serves as a hierarchical feature selector to focus on features which 
are more advantageous to track the current target. Furthermore, we adjust the sample label assignment method 
adaptively according to the target shape. Extensive experiments are conducted on five datasets, where our method 
obtains competitive results, with real-time running speed.

Data availibility
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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