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Facile synthesis of Fe2O3,  
Fe2O3@CuO and WO3 
nanoparticles: characterization, 
structure determination 
and evaluation of their biological 
activity
Asmaa T. Mohamed 1, Reda Abdel Hameed 2,3, Shahira H. EL‑Moslamy 4, Mohamed Fareid 2,3, 
Mohamad Othman 2,3, Samah A. Loutfy 1,5, Elbadawy A. Kamoun 1,6,7* & 
Mohamed Elnouby 8*

Due to their high specific surface area and its characteristic’s functionalized nanomaterials have 
great potential in medical applications specialty, as an anticancer. Herein, functional nanoparticles 
(NPs) based on iron oxide Fe2O3, iron oxide modified with copper oxide Fe2O3@CuO, and tungsten 
oxide WO3 were facile synthesized for biomedical applications. The obtained nanomaterials have 
nanocrystal sizes of 35.5 nm for Fe2O3, 7 nm for Fe2O3@CuO, and 25.5 nm for WO3. In addition to 
octahedral and square nanoplates for Fe2O3, and WO3; respectively. Results revealed that Fe2O3, 
Fe2O3@CuO, and WO3 NPs showed remarked anticancer effects versus a safe effect on normal cells 
through cytotoxicity test using MTT-assay. Notably, synthesized NPs e.g. our result demonstrated 
that Fe2O3@CuO exhibited the lowest IC50 value on the MCF-7 cancer cell line at about 8.876 µg/ml, 
compared to Fe2O3 was 12.87 µg/ml and WO3 was 9.211 µg/ml which indicate that the modification 
NPs Fe2O3@CuO gave the highest antiproliferative effect against breast cancer. However, these NPs 
showed a safe mode toward the Vero normal cell line, where IC50 were monitored as 40.24 µg/ml for 
Fe2O3, 21.13 µg/ml for Fe2O3@CuO, and 25.41 µg/ml for WO3 NPs. For further evidence. The antiviral 
activity using virucidal and viral adsorption mechanisms gave practiced effect by viral adsorption 
mechanism and prevented the virus from replicating inside the cells. Fe2O3@CuO and WO3 NPs 
showed a complete reduction in the viral load synergistic effect of combinations between the tested 
two materials copper oxide instead of iron oxide alone. Interestingly, the antimicrobial efficiency 
of Fe2O3@CuO NPs, Fe2O3NPs, and WO3NPs was evaluated using E. coli, S. aureus, and C. albicans 
pathogens. The widest microbial inhibition zone (ca. 38.45 mm) was observed with 250 mg/ml of WO3 
NPs against E. coli, whereas using 40 mg/ml of Fe2O3@CuO NPS could form microbial inhibition zone 
ca. 32.86 mm against S. aureus. Nevertheless, C. albicans was relatively resistant to all examined NPs. 
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The superior biomedical activities of these nanostructures might be due to their unique features and 
accepted evaluations.

Keywords  Fe2O3, Fe2O3@CuO, WO3, Biological activity evaluations, Functionalized nanomaterials, 
Antiviral, Anticancer, Medical applications

Novel nanomaterials and advanced nanotechnologies prompt the fast development of new protocols for biomedi-
cal applications. Ferric oxide, ferric oxide modified with copper oxide and tungsten oxide attracts great attention, 
due to their (biomedical application), another remarkable feature of ferric oxide and tungsten oxide nanoparti-
cles is their selective toxicity to cancer cells, which opens the way for a new promising pathway for treatment1. 
Recently, there is an important aspect of magnetic nanoparticles in relation to biomedical applications through 
their biocompatibility and chemical stability which play a great role in the antiviral, antimicrobial, and anticancer 
effects2. The interaction of MNPs with the biological system has the possibility of the target drug delivery and 
cancer therapy through escaping from the Reticuloendothelial System (RES) which forms part of the immune 
system3. Increasing the time of circulation makes them more effective and preferable than the traditional ways of 
cancer therapy as chemotherapy4,5. enhances their accumulation at the tumor site rather than the free anticancer 
drug which causes severe side effects6. Recent studies have elucidated that MNPs induce cancer cell ablation7 by 
induction of cell apoptosis with limited toxicity to normal cells8, (DNA fragmentation and caspase activation are 
the main hallmarks of apoptosis) with other mechanisms such as nanoparticle-mediated necrosis and autophagy9, 
which added advantage to the concept of the traditional ways of anticancer drugs10. Cancer is a critical disease 
that scientists are interested in since it has a long history of being one of the major causes of mortality. Cancer is 
not a single condition; rather, it is a group of disorders characterized by unregulated cell development. Tumors 
are a severe risk of lethal disease that has no geographic or organ limits; they cause an annual global mortality 
of more than 12.7 million people. Tumor illnesses are often caused by mutations in genes that regulate growth 
and are involved in DNA repair, cell division, and death.

Iron oxide (Fe2O3) magnetic nanoparticles have many roles in biomedical applications; their chemical stabil-
ity, biocompatibility, and size as nanoscales can be used as targeted therapy, cell leveling, repairing tissue, and 
hyperthermia11 in addition to their anticancer, antibacterial, and antiviral mechanisms12. These nanoparticles’ 
exceptional ability to trace and then eliminate cancer cell potentials ensures their uniqueness. Heating systems 
that rely on Fe3O4 to control the release of medications from their delivery system can also be used13. These 
systems are designed to release their substance at temperatures, which highlights further benefits of using the 
NPs-dependent delivery method in conjunction with the hyperthermia modality for cancer treatment. clinical 
diagnosis as magnetic fluid hyperthermia14 (MFH) and their magnetic resonance image (MRI)11. Furthermore, 
their ability to interact with biological factors (e.g. virus, pathogen1, or other biological targets and increase their 
signal sensitivity15 with particular resolution16 so, can be visualized by MRI and MFH16,17. Therefore, MNPs have 
attracted continuous attention due to highly functionalized magnetic nanoparticles18 which are able not only to 
target cancer cells via selective interaction between nanoparticles and cancer cells, especially the tumor mass, 
but also via their utilization for tumor imaging as a diagnostic approach7. Iron oxide nanoparticles were found 
to make induction of reactive oxygen species (ROS), induce depletion of glutathione19 further, reduce the matrix 
metalloproteinase-2 (MMP-2), loss of mitochondrial membrane potential20,4, and activation of caspase-3 which 
is responsible for cell apoptosis8,21. Fe2O3 NPs were later used as a targeted therapy to reach the tumor mass 
directly through the bloodstream3,22 with a compatible medium that can be dispersed in the form of clusters to 
prevent their aggregation18,23. Moreover, in parallel, MNPs were used as antiviral agents not only to prevent viral 
infection but also in clinical diagnosis for identifying the virus target17. This approach is based on targeting the 
virus through functionalized nanoparticles, hence preventing its pathogenesis by inhibiting or competing for 
its attachment to the host cells’ receptors24.

Iron oxide modified with copper oxide NPs plays a great role in biological applications, due to their biocom-
patibility with normal cells and affinity to express their effect on pathogenic cells25, copper oxide nanoparticles 
have an effective role in inducing the anticancer effect of iron oxide nanoparticles through the production of reac-
tive oxygen species (ROS)26, lipid peroxidation and genotoxic effect by chromosomal damage27 which pushes the 
cells to the apoptotic pathway in order to achieve tumor mass ablation27,28. Copper oxide nanoparticles showed a 
higher apoptotic effect29 and antimetastatic potential30 which was accomplished by elevating the cellular reactive 
species31, inhibiting of matrix metallopeptidase 9, and enhancing P53 expression which increases the apoptotic 
pathway32,33. Which assists the anticancer activity of iron oxide nanoparticles.

The antimicrobial effect of copper oxide NPs was determined by releasing Cu2+ ions leading to ROS 
production34 and interacting directly with bacterial cells through the cell membrane of a biological target thus, 
exerting its bactericidal effect34.

Tungsten oxide (WO3) NPs have a characteristic scale and feature role to be used as an anticancer agent 
through cell membrane damage, denaturation to proteins, and ROS production with ultimate apoptosis and cell 
death35,36. So, WO3 NPs have genotoxic and cytotoxic effects through their interference with DNA and protein 
of DNA synthesis or attacking the 5th phosphate group of DNA. And already expressed their genotoxic effect 
through oxidative stress by the production of ROS37 , thus leading to damage to the lipid and cell membrane38,39. 
Furthermore, WO3 NPs have antimicrobial effects40 by interacting with the bacterial cell membrane39, followed 
by the destruction of the bacterial cell41,42. Additionally, MNPs have great virucidal activity against human 
Adenovirus type-5 (HAdV-5)43. The ability of the MNPs to block the viral cell surface receptor, prevent viral 
attachment and viral entry to the cells, and preventing its pathogenesis through. Which, it makes irreversible 
changes inside the viral genome42, meanwhile prevent its replication inside the treated cells44,45. The magnetic 
nanoparticles (MNPs) might be functionalized intensively for great benefits in biomedical applications. However, 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6081  | https://doi.org/10.1038/s41598-024-55319-8

www.nature.com/scientificreports/

MNPs like Fe2O3, Fe2O3@CuO, and WO3 have not been entirely investigated lately regarding their biological 
activity evaluations in literature. Herein, this work aims to discuss simple synthesis routes, instrumental char-
acterization, and biological activity evaluations of synthesized MNPs cytotoxicity, antimicrobial, and antiviral 
activities were assessed and discussed in detail. Our findings clarified the following potential mechanisms for 
this complex’s impact on the used cell lines and explained the efficiency of the synergetic effect between iron 
oxide with copper oxide.

Materials and methods
Materials
Nanoparticles preparations
Iron metal powder (> 99%), copper nitrate (> 99%), and NaOH (> 99%) were purchased from Belaqmi Fine 
Chemicals, India, sodium tungstate (Na2WO4·2H2O, > 98%) was obtained from Sisco, India, ion-exchange resin 
(Rohm& Haas, France).

Cell culture: Vero cell line (normal monkey kidney cells), MCF-7 cell line (breast cancer cells) was obtained 
from (Vaccination and Sera Collection Organization (VACSERA), Agouza, Giza, Egypt). Dulbecco’s Modified 
Eagle Medium basal medium (DMEM) was purchased from (Sigma, Munich, Germany). And supplemented 
with 10% fetal bovine serum (FBS),1% penicillin–streptomycin (100 IU/ml), 1% l-glutamine, and 3% sodium 
bicarbonate were purchased from (Gibco, Merelbeke, Belgium). Trypsin–EDTA (0.025% trypsin and 0.0025% 
EDTA) and PBS (phosphate buffer saline) tablets were purchased from (Fisher Scientific, Loughborough, UK). 
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was purchased from (SERVA Electropho-
resis GmbH, Heidelberg, Germany). Antimicrobial activity was tested using a variety of human pathogens, 
including Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and fungal 
cells (Candida albicans). The tested human pathogens were kindly provided from GEBRI, SRTA-City, Alexan-
dria, Egypt.

Synthesis of Fe2O3, Fe2O3@CuO and WO3 NPs
Magnetic Fe2O3 NPs were prepared via a one-pot hydrothermal reaction method as described elsewhere45. 
Typically, 4 g of iron metal powder was mixed with 10 g of NaOH in 40 mL of distilled water for 10 min at room 
temperature. The mixture was transferred into a Teflon-lined steel autoclave container and aged in an oven at 
120 °C for 24 h. The obtained powder was washed several times with distilled water and dried overnight at 60°C 
(Scheme 1).

Cu-doped Fe2O3 (Fe2O3@CuO NPs) were prepared via one put hydrothermal reaction method as described 
elsewhere45. 4 g of iron metal powder was mixed with 10 g of NaOH in 40 ml of 0.1 M copper nitrate solution, 
where the water mixture was kept under harsh stirring for 10 min at ambient conditions. The mixture was trans-
ferred into a Teflon-lined steel autoclave container and aged in an oven at 120 °C for 24 h. The obtained powder 
was washed several times with distilled water and dried overnight at 60 °C.

Tungsten oxide (WO3 NPs) was synthesized as a previously reported method45. Briefly, 0.5 M Na2WO4 solu-
tion was prepared as described elsewhere as follows45: Sodium tungstate dihydrate (Na2WO4·2H2O, > 98%, Sisco, 
India) was dissolved in deionized milli-Q water. A column was packed with 30 ml of ion-exchange resin (Rohm& 
Haas, France). This column was washed several times with water before use. 10 ml of the (0.5 M Na2WO4) 
solution was loaded onto the column, to form yellowish and transparent tungstic acid (H2WO4) solution. The 

Scheme 1.   Schematic diagram showing in brief the synthesis procedure of Fe2O3, Fe2O3@CuO and WO3 NPs.
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obtained solution was aged at room temperature for 24 h to produce precipitated tungsten oxide nanoparticles 
(Scheme 1).

Characterization
The synthesized nanoparticles were characterized by several characterization tools. Scanning electron micros-
copy (SEM, JEOL, JSM-6360LA, Japan) was used to investigate the morphological structure of the obtained 
materials46. The crystallographic phases of the produced samples were determined by X-ray powder diffraction 
(XRD, Shimadzu-7000, Japan)47. Fourier transform infrared (FTIR) was used to perform the chemical structure 
of all compounds by A Bruker ALPHA spectrometer (Bruker Corporation, Rheinstetten, Germany).

Biological activity evaluation
Antimicrobial activity
The antimicrobial activities of Fe2O3, Fe2O3@CuO, and WO3 NPs were determined using the well-diffusion 
method as previously reported48–50. The bacteria and yeast cultures were grown in Luria–Bertani broth (0.5% yeast 
extract, 1% NaCl, and 1% tryptone) and Sabouraud dextrose broth (4% dextrose, 0.5% peptic digest of animal 
tissue, and 5% pancreatic digest of casein), respectively. The bacteria (106 bacteria/ml) and yeast (104 yeast/ml) 
were inoculated into 1% of the appropriate agar medium. After thoroughly shaking, 25 ml of the medium was 
transferred to sterile Petri plates (9 cm in diameter) and homogeneously distributed. Using a crock borer (6 mm 
in diameter), the wells were made into microbe agar plates51. The inhibitory concentration ranges were then 
determined by adding different concentrations of Fe2O3, Fe2O3@CuO, and WO3 NPs (10, 50, 90, 130, 170, 210, 
250, and 290 mg/ml) into these wells. Following that, varied concentrations of Fe2O3 NPs (5, 10, 15, and 20 mg/
ml), Fe2O3@CuO NPs (10, 20, 30, and 40 mg/ml), and WO3 NPs (100, 150, 200, and 200 mg/ml) were loaded 
into the wells to determine the minimal inhibitory concentrations (MICs). Additionally, common antibiotics 
including 10 mg Ampicillin, 10 µg Penicillin, and 5 µg Ciprofloxacin discs were also surveyed as controls. The 
Petri dishes were then kept at 40 °C for an hour to allow the diffusion process to take place52. Then, the bacteria 
were incubated for 24 h at 37 °C and the yeasts for 72 h at 28 °C. Finally, the diameter of the created inhibitory 
zones on these plates was measured with a ruler (mm). After three repetitions of these experiments, average 
inhibition zones and their standard deviation values (mm ± SD) were calculated53.

MTT assay
Cytotoxicity of our synthesized NPS was determined by using MTT assay on Vero and MCF-7 as normal models 
and human breast cancer cell lines, respectively54. Cells were seeded into a 96-well tissue culture plate with a 
density of (2 × 104) cells/ml and then, incubated at ambient conditions (37 °C, 5% CO2, and humidity of 85–95%) 
for 24 h until reached complete sheet55. Afterward, cells were treated with synthesized NPs (Fe2O3, Fe2O3@
CuO, and WO3 NPS) with concentrations (100, 50, 25, 12.5, 6.25, 3.125 µg/ml) for 48 h. Cell viability (%) was 
determined by applying MTT dye for 4 h then, 100 µl of DMSO was added to dissolve the formed crystals. The 
OD was measured at 570 nm using a microplate reader (CLARIOstar Plus, BMG LABTECH, Germany)56,57.

Where OD (S) is the mean optical density of the tested sample and OD (C) refers to the mean optical density 
of the control group58. The relative cell viability % was plotted against the concentrations of the prepared NPs 
using GraphPad Prism Version 6.

Antiviral assay against human adenovirus type 5 (ADV‑5)
Virucidal mechanism.  Vero cells were seeded into a 6-well tissue culture plate with a density of (5 × 105 cells/
well) till reached 90% confluency after 24 h incubation. Then, the cells were treated with synthesized materials 
(Fe2O3, Fe2O3@CuO, and WO3 NPs) after their incubation at 4 °C for 1 h with 100 TCID50 of ADV load59. This 
procedure is based on the ability of the tested material to interact with the virus preventing its ability to replicate 
inside the host cells60,61. Then, viral copies were quantified by quantitative real-time PCR (RT-PCR)62.

Viral adsorption mechanism.  The viral adsorption mechanism was done via seeding Vero cells into a 6-well 
tissue culture plate at a density of (5 × 105) cells/well, then incubated for 24 h at ambient conditions. Upon reach-
ing a confluency of > 90%, cells were treated with the tested NPs, then incubated for another 24 h. On the third 
day63, the cells were infected with 100 TCID50 of the virus until the appearance of cytopathogenic effect (CPE)64. 
Finally, viral load was determined by quantitative RT-PCR60,65. The mechanism relies on the ability of tested 
material to inhibit viral entry into cells.

Statistical analysis
The obtained data were statically analyzed using an unpaired t-test with GraphPad Prism. The values were 
presented as the mean ± SD.

Ethics approval and consent to participate
Manuscripts report no studies involving human participants, human data, or human tissue. All experiments 
were performed in accordance with the Guidelines of the World Medical Association Declaration of Helsinki: 
Ethical Principles for Medical Research Involving Human Subjects and approved by the ethics committee at 
Cairo University and The British University in Egypt (BUE).

(1)Cell viability (%) =
MeanOD (S)

MeanOD (C)
× 100
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Results and discussion
Crystal structures investigation by XRD analysis
Figure 1 shows the XRD patterns of all synthesized magnetic nanoparticles (i.e. Fe2O3, Fe2O3@CuO, and WO3 
MNPs). XRD patterns show a single-phase structure of formed Fe2O3; while all peaks were indexed to the 
cubic Fe3O4 with a space group of Fd-3m (227) and lattice parameters: 8.3560 Å (ICDD Card No. 01-078-6916) 
(Fig. 1a).

Figure 1b shows the XRD pattern of synthesized Cu doped-MNPs. XRD pattern of Fe2O3@CuO shows a dual 
phase; where all peaks were indexed to the cubic Fe3O4 with a space group of Fd-3m (227) and lattice param-
eters: 8.3560 Å (ICDD Card No. 01-078-6916) and monoclinic CuO with a space group of C2/c (15) and lattice 
parameters: a ~ 4.7940 Å, b ~ 3.3620 Å, c ~ 5.2280 Å (ICDD Card No. 01-076-7800) (Fig. 1b). The obtained pattern 
is further evidencing the formation of dual phase between CuO doped onto Fe2O3.

Figure 1c shows the XRD pattern of synthesized tungsten oxide nanoparticles (WO3 NPs). XRD pattern of 
tungsten oxide nanoparticles show a single phase, where all peaks were indexed to the orthorhombic WO3·H2O 
with a space group of Pmnb (62) and lattice parameters: a ~ 5.2477 Å, b ~ 10.7851 Å, c ~ 5.1440 Å (ICDD Card 
No. 00-018-1418). The obtained patterns of WO3 NPs are fully consistent with the previously published findings 
of Elnouby et al.45.

The crystal sizes of the obtained nanoparticles were calculated from Debye-Scherer equation42:

where λ = 0.1542 nm is the Cu-Kα wavelength, K is a constant and is the FWHM.
Table 1 summarizes the crystal sizes of the obtained materials. It is noticeable that all obtained materials are in 

nanoscale size. Pure octahedral MNP has a crystal size of 35 nm, and by adding Copper the crystal size decreased 
to 7 nm coinciding with the disappearance of octahedral structure (Fig. 3). While tungsten oxide platelets have 
a lateral dimension of 33 nm and thickness of 25 nm.

(2)D =

K�

β cos θ

Figure 1.   XRD pattern of synthesized magnetic NPs and their matched patterns as Fe2O3, Fe2O3@CuO and 
WO3 (a–c); respectively.

Table 1.   Crystal sizes of the obtained synthesized materials.

Sample type 2Ɵ Plane Size (nm)

Fe2O3 35.37 311 35.5

Fe2O3@CuO 35.61 MNP (311)
Cu (-111) 7

WO3
25.61 111 33.5

16.45 020 25.5
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FT‑IR analysis
Figure 2 shows FTIR spectra of all synthesized Fe2O3, Fe2O3@CuO, and WO3 MNPs. It was observed that the 
FTIR spectrum of Fe2O3 shows characteristics peaks at ν 3406 cm−1 revealing the stretching motion of (O–H) and 
the medium narrow band at ν 1616 cm−1, characteristic of in-plane bending of (H–O-H) of the water molecule. 
Very intense broadband in the region at ν 902–621 cm−1 corresponds to different motions arising from W–O 
linkage66. Therefore, the band at ν 902 cm−1 refers to stretching (W = Ot) (where Ot is the terminal oxygen). While 
the bands at ν 763 and 694 cm−1 revealed the stretching (W–O) and the band at ν 713 cm−1 is due to stretching 
(W–O-W)67. On the other hand, the FTIR spectrum of synthesized Fe2O3 MNPs shows characteristic peaks 
also at the broadband at around 624–425 cm−1 revealing the vibrations of the Fe–O bonds of the magnetite68.

Similarly, the FTIR spectrum of prepared Cu-doped MNP shows characteristic peaks at ν 525 cm−1 revealing 
the bending vibration of the Cu–O bond69. Briefly, all synthesized magnetic metal oxides (i.e. Fe2O3, Fe2O3@
CuO, and WO3 MNPs) were characterized by a broad band around at ν 500 cm−1 indicating different modes of 
bending vibration of the metal–O bond. In addition, a few individual characteristic peaks are presented, where 
these peaks result from the crystal structures of nanoparticles, which play a definite role in their performance.

SEM investigation
Figure 3 shows the SEM surface investigation of all synthesized MNPs at two original magnifications. It was 
observed that Fe2O3 MNPs have a uniform octahedral structure and size. After adding CuO into Fe2O3MNPs, 
it lost its uniform octahedral structure, leading to forming of a homogeneously coated bilayer structure that 
uniformly distributed on the surface of the Fe2O3 MNPs. Notably, an SEM micrograph revealed that WO3 NPs 
composed of a large number of square nano-plates. In addition, the average particle size of Fe2O3 and WO3 NPS 
was measured from SEM micrographs. Size distribution histograms were listed supplementary in Fig. S1 (sup-
plementary data). The average size of octahedral MNPs was 1.5 ~ 2.0 µm. However, the lateral dimension of the 
WO3 nano-plates reached several hundreds of nanometers.

Figure 2.   FT-IR spectra of synthesized magnetic NPs as Fe2O3, Fe2O3@CuO and WO3 (down-to-up); 
respectively.
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EDAX analysis
The compositional and elemental analysis of all synthesized MNPs was examined and verified using an EDAX-
SEM unit and shown in Fig. 4. The composition of Fe2O3, Fe2O3@CuO, and WO3 NPs were (Fe, O), (Fe, O, 
Cu), and (W, O); respectively, which indicate that no contaminated elements were detected for all samples. In 
additions, the composition ratios in all provided samples confirmed its compositions- as listed in Table 2 from 

Figure 3.   SEM micrographs of synthesized magnetic NPs of Fe2O3, Fe2O3@CuO and WO3, where all images 
were taken at (original magnification 5000X and 10,000X, scale 10 and 5 µm and applied voltage at 20 kV).

Figure 4.   EDAX analysis of synthesized magnetic NPs of Fe2O3, Fe2O3@CuO and WO3.
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EDX analysis. These results are in good agreement with the crystal structures provided by XRD investigations 
(Figs. 1 and 2).

Biological activity evaluations
Antimicrobial activity
To evaluate the antimicrobial efficacy, synthesized Fe2O3, Fe2O3@CuO, and WO3 NPs were studied individually 
against different human pathogens such as E. coli, S. aureus, and C. Albicans. A wide range of tested nanomate-
rial concentrations (10, 50, 90, 130, 170, 210, 250, and 290 mg/ml) were studied to find appropriate ranges for 
all examined nanoparticles. According to Fig. 5, the highest inhibition zones of Fe2O3@CuO NPs and Fe2O3 NPs 
were observed at low concentrations that ranged from (10 to 50 mg/ml). Nevertheless, the largest concentrations 
of WO3 NPs (90 to 250 mg/ml) produced the widest inhibition zones against all tested pathogens, as shown in 
(Fig. 5). Also, C. Albicans showed clear resistance nearly to all tested nanoparticles; whereas Gram-negative 
bacteria are affected perfectly, followed by Gram-positive bacteria.

Subsequently, the MICs for all tested nanoparticles were determined as shown in Table 3. The inhibition zones 
generated by applying different doses of Fe2O3@CuO, Fe2O3, and WO3 NPs against all tested human pathogens 
are depicted in the antimicrobial photographs in Fig. 6. When compared to controls, all of the synthesized Fe2O3, 
Fe2O3@CuO, and WO3 NPs exhibit significant antimicrobial effects against all tested human pathogens. It was 
clearly observed that the highest antibacterial potency was detected against E. coli (38.45 ± 3.12 mm) in case of 
WO3 NPs at 250 mg/ml, followed by 20 mg/ml of Fe2O3 NPs (33.56 ± 3.25 mm). However, the lowest inhibition 
zone was determined in case of E. coli (22.67 ± 2.08 mm) at 40 mg/ml of Fe2O3@CuO NPs (Table 3 and Fig. 7). 
However, in the case of S. aureus, the maximum antibacterial potency was recorded at 40 mg/ml of Fe2O3@CuO 
NPS (32.86 ± 3.21 mm) and the lowest one was recorded at 100 mg/ml of WO3NPs (19.36 ± 1.08 mm), as shown 
in (Fig. 7). This indicates that antimicrobial activity depends on both type of bacterial species and nanoparticles 
concentrations. Nevertheless, the resistance was relatively dominant for all tested nanoparticles (Fe2O3@CuO, 
Fe2O3, and WO3 NPs) in the case of fungal cells (Table 3 and Fig. 7).

Recently, polymers modified with large-surface-area of NPs, such as Fe2O3, and WO3 NPs have been employed 
for a variety of applications including drug release, tissue regeneration, heavy metal adsorption, cell separa-
tion, antimicrobial agents, and the treatment of malignant brain tumours and breast cancer cells70,71. They have 
low volume/surface area ratios, high adsorption capabilities, and selective target molecule adsorption72. While, 
another report has revealed that the charge potential of both the fabricated nanoparticles and the tested microbial 
cells influences antimicrobial properties. Furthermore, the Concentration, shape, and size of the nanoparticles 
generated have an impact on overall bioactivity, which are among the primary causes for NP attachment or 
non-attachment to microbial cells.

Table 2.   EDX results of the prepared NPs samples.

Fe2O3 Fe2O3@CuO WO3

Element Wight (%) Element Wight (%) Element Wight (%)

O 17.94 O 30.68 O 84.62

Fe 82.06
Fe 38.96

W 15.38
Cu 30.36

Total 100 Total 100 Total 100

Figure 5.   Survey of the inhibitory concentration ranges of Fe2O3@CuO NPs, Fe2O3 NPs, and WO3 NPs against 
some human pathogens including E. coli, S. aureus, and C. albicans. 
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Table 3.   Antimicrobial activity of different concentrations of Fe2O3, Fe2O3@CuO and WO3 NPs against varied 
human pathogens compared with different common antibiotics as controls.

Treatments Concentrations Escherichia coli Staphylococcus aureus Candida albicans

Controls

Ampicillin 10 mg 3.04 ± 0.02 2.54 ± 0.14 1.02 ± 0.98

Penicillin 10 µg 0.96 ± 1.02 2.48 ± 0.39 1.45 ± 0.92

Ciprofloxacin 5 µg 3.21 ± 1.98 1.69 ± 0.95 0.54 ± 0.95

Fe2O3@CuO NPs

10 mg/ml 7.3 ± 3.61 9.8 ± 4.63 9.36 ± 2.36

20 mg/ml 14.26 ± 1.52 12.79 ± 4.56 0

30 mg/ml 16 ± 3.65 19.67 ± 7.78 0

40 mg/ml 22.67 ± 2.08 32.86 ± 3.21 0

Fe2O3 NPs

5 mg/ml 16.56 ± 1.53 8.56 ± 0.69 5.23 ± 0.59

10 mg/ml 19.68 ± 4.04 14.36 ± 2.23 0

15 mg/ml 27.3 ± 7.09 23.67 ± 1.36 0

20 mg/ml 33.56 ± 3.25 27.58 ± 3.58 0

WO3 NPs

100 mg/ml 6.56 ± 5.51 19.36 ± 1.08 3.56 ± 0.14

150 mg/ml 19.36 ± 4.35 13.45 ± 0.96 0

200 mg/ml 24.12 ± 3.06 10.36 ± 0.96 0

250 mg/ml 38.45 ± 3.12 6.59 ± 0.89 0

Figure 6.   Antimicrobial activity of Fe2O3@CuO NPs (A); Fe2O3 NPs (B) and WO3 NPs (C) against tested 
human pathogens. 
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According to Pekdemir et al.73, Fe2O3NP-pathogen cell contact would be poor due to prevailing electrostatic 
repulsion at the interface, which is the underlying cause of the NP’s non-attachment to the microbial cells. 
Moreover, at high concentrations of at least 50 µM (critical concentration); they observed some antimicrobial 
effects. Also, Borcherding et al.74, reported excellent antimicrobial activities at different n-IONP dosages, which 
are consistent with our findings. Since increased n-IONP concentrations in the culture media might also promote 
the production of reactive oxygen species (ROS) (including superoxide radical, hydrogen peroxide, and hydroxyl 
radical), which is one of the key causes of metal oxide nanoparticles’ antimicrobial properties75,76. Furthermore, 
physical contact between nanoparticles and microbial wall membranes modifies cell permeability, which subse-
quently leads to microbial mortality77,78.

Cytotoxicity test
MTT‑assay.  MTT colorimetric assay was performed on Vero and MCF-7 cell lines with serial concentrations of 
each synthesized NPs, as shown in Fig. 8. After treatment with different concentrations of NPs, the results were 
obtained by calculation of IC50 value using Graph Pad Prism software version 6.

IC50 values were detected at concentrations of 40.24, 21.13, and 25.41 µg/ml for Fe2O3, Fe2O3@CuO, and 
WO3NPs respectively on Vero cells, whereas on MCF-7 these values were detected at 12.87, 8.876 and 9.211 µg/
ml; respectively for the same materials. Our tested NPs demonstrated anti-proliferative activity against replica-
tion of in vitro model of human breast cancer cells (MCF-7) (Fig. 8).

Furthermore, morphological examination of MCF-7 cells revealed a distinctive change in the morphology of 
MCF-7 cells from a healthy spindle-like shape to a rounded morphology, and cells were also observed to form 
small irregular aggregations due to the toxicity induced by magnetic NPs on them. Such toxicity is due to the 
production of reactive oxygen species (ROS)19,37 DNA injury and fragmentation, lipid peroxidation and genotoxic 
effect through chromosomal damage27. Leading to caspase activation which push cancer cells apoptotic pathway79 
and cell death in response to the toxic effect of magnetic nanoparticles. These findings support the anti-cancer 
effects of the synthesized magnetic NPs22,80.

Antiviral assay against human Adenovirus type‑5(ADV‑5) on Vero cells
Quantitative measurement of antiviral activity using real-time PCR against Adenovirus (ADV-5) was determined 
for our proposed materials using two mechanisms including virucidal and viral adsorption mechanisms. Results 
showed that all tested materials have antiviral activity via viral adsorption mechanism for both Fe2O3@CuO and 
WO3 NPs as evidenced by the undetectable level of viral load (copies/mL) although, Fe2O3 NPs decreased the 
viral copies reach 80% reduction compared with the positive control. This indicates that the nanoparticles’ effect 
was to prevent viruses’ entry into host cells61,81.

Virucidal mechanism.  Figure 9 represents a chart of viral adsorption mechanism. This mechanism depended 
on investigating viral titer through the ability of the tested nanoparticles to neutralize the virus and block its 
affinity to enter and infect the cells Therefore, lost its ability to replicate inside the cells82 Results showed the syn-
thesized Fe2O3, Fe2O3@CuO, and WO3 NPs inhibited the viral titer as evidenced by this assay (Table 4). The viral 
titer was involved (copies/mL) as a result the tested materials showed high antiviral properties against ADV-5 
and detected levels of viral copies using quantitative real-time PCR (Table 4). Fe2O3 treated infected cells gave 
viral titer (3.3 × 104) Copies/ml, Fe2O3@Cuo treated infected cells was (2 × 105 Copies/ml), WO3 treated infected 
cells was (8.5 × 104 Copies/ml), showing the reduction in viral titer as 99% reduction compared to viral control 

Figure 7.   Antimicrobial activity of Fe2O3@CuO NPs (10 mg/ml, 20 mg/ml, 30 mg/ml, and 40 mg/ml); Fe2O3 
NPs (10 mg/ml, 15 mg/ml, 20 mg/ml, and 25 mg/ml), and WO3 NPs (100 mg/ml, 150 mg/ml, 200 mg/ml, 
and 250 mg/ml) against different human pathogens compared to various conventional antibiotics as controls, 
including 5 µg of Ciprofloxacin, 10 µg of Penicillin, and 10 mg of Ampicillin.
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Figure 8.   IC50 charts through MTT-assay of synthesized Fe2O3, Fe2O3@CuO and WO3 NPs with different 
concentrations using Vero (normal cell line) (up) and MCF-7 (cancer cell line) (down).

Figure 9.   Chart of viral adsorption mechanism represented against Adino virus.

Table 4.   Real-time PCR assay of AdV-5 treated cells with synthesized MNPs using (virucidal mechanism).

AdV-5 CT Copies/mL

Untreated Vero cells (cell control) Under detection Under detection

Positive cells infected with AdV5 (viral control) 11.08 4 × 108

Fe2O3-treated infected cells 19.16 3.3 × 104

Fe2O3@Cuo NPs treated infected cells 19.69 2.0 × 105

WO3-treated infected cells 20.71 8.5 × 104

Positive control 10.97 4.54 × 108

Negative control Under detection Under detection
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(4.54 × 108 Copies/ml). Consequently, this detailed study as virucidal and viral adsorption mechanisms of MNPs 
proved the high affinity of magnetic NPs as a potent antiviral agent40.

Viral adsorption mechanism.  Concerning the antiviral adsorption mechanism this mechanism depended on 
the affinity of the tested materials to inhibit the viral entry, and replication and also prevent its spread to cells 
during its pathogenesis process, two materials were able to prevent viral replication inside the cells, thus dem-
onstrating the antiviral activity without affecting cell viability (Table 5). The results demonstrated the potent of 
Fe2O3 as an antiviral inhibitor by decreasing the viral titer and rationalized their effect an equivalent reduction of 
viral titer reach to 99% compared to the positive control, the viral titer for Fe2O3 NPs was (8.8 × 104), compared 
to the positive control was 4.54 × 108 while Fe2O3@CuO and WO3 NPs showed the great effect that the viral load 
was under detectable inside the treated cells. MNPs cause irreversible damage to the viral genome and inactiva-
tion of viral genome replication which prevents viral replication inside the treated cells. By another mechanism, 
MNPs block the viral entry into the cells, as evidenced by undetected viral copies by real-time PCR assay83,61.

Conclusions
In conclusion, Fe2O3, Fe2O3@CuO, and WO3 NPs were successfully synthesized, fully characterized, and structure 
evaluated; these materials were greatly applied in biomedical aspects due to their biocompatibility and chemi-
cal stability which play a great role as an antiproliferative effect against breast cancer, IC50 on MCF-7(human 
breast cancer) was detected at 12.87, 8.876, and 9.211 µg/ml for Fe2O3, Fe2O3@CuO, and WO3 respectively. The 
combination of iron oxide with copper oxide improved the anti-proliferative activity of iron oxide and increased 
its toxicity against the replication of cancer cells. The result showed that iron oxide modified with copper oxide 
nanoparticles (Fe2O3@CuO NPs) demonstrated the highest anticancer activity against an in vitro model of 
human breast cancer cells affecting their morphological appearance and confirmed by low IC50 value. Fe2O3, 
Fe2O3@CuO, and WO3 were observed against replication of human adenovirus type 5 as a respiratory viral 
model. Fe2O3@CuO and WO3 gave a complete reduction of viral titer to an undetectable level, and Fe2O3 gave a 
reduction of more than 60% which proves the high potency of these tested materials against viral infection. In 
addition, their activity was demonstrated against gram-positive and gram-negative bacteria. In this study, we 
obtained a clear view of the potency of the tested MNPs as promising antiviral agents against ADV-5 (respira-
tory viral model). Therefore, our synthesized materials, Fe2O3, Fe2O3@CuO, and WO3 NPs, showed promising 
candidates and will be subjected to further insight and investigation on a molecular level to elucidate the interplay 
between apoptotic gene expression (programmed cell death) and their role in cancer death and in vivo studies 
before their application in clinical settings.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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