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Quantitative trait loci and genomic 
prediction for grain sugar 
and mineral concentrations 
of cowpea [Vigna unguiculata (L.) 
Walp.]
Bao‑Lam Huynh 1*, James C. R. Stangoulis 2, Tri D. Vuong 3, Haiying Shi 3, Henry T. Nguyen 3, 
Tra Duong 1, Ousmane Boukar 4, Francis Kusi 5, Benoit J. Batieno 6, Ndiaga Cisse 7, 
Mouhamadou Moussa Diangar 7, Frederick Justice Awuku 5, Patrick Attamah 5, José Crossa 8, 
Paulino Pérez‑Rodríguez 9, Jeffrey D. Ehlers 10 & Philip A. Roberts 1*

Development of high yielding cowpea varieties coupled with good taste and rich in essential minerals 
can promote consumption and thus nutrition and profitability. The sweet taste of cowpea grain is 
determined by its sugar content, which comprises mainly sucrose and galacto‑oligosaccharides (GOS) 
including raffinose and stachyose. However, GOS are indigestible and their fermentation in the colon 
can produce excess intestinal gas, causing undesirable bloating and flatulence. In this study, we 
aimed to examine variation in grain sugar and mineral concentrations, then map quantitative trait 
loci (QTLs) and estimate genomic‑prediction (GP) accuracies for possible application in breeding. 
Grain samples were collected from a multi‑parent advanced generation intercross (MAGIC) population 
grown in California during 2016–2017. Grain sugars were assayed using high‑performance liquid 
chromatography. Grain minerals were determined by inductively coupled plasma–optical emission 
spectrometry and combustion. Considerable variation was observed for sucrose (0.6–6.9%) and 
stachyose (2.3–8.4%). Major QTLs for sucrose (QSuc.vu-1.1), stachyose (QSta.vu-7.1), copper (QCu.
vu-1.1) and manganese (QMn.vu-5.1) were identified. Allelic effects of major sugar QTLs were 
validated using the MAGIC grain samples grown in West Africa in 2017. GP accuracies for minerals were 
moderate (0.4–0.58). These findings help guide future breeding efforts to develop mineral‑rich cowpea 
varieties with desirable sugar content.

Soluble carbohydrates including mono-, di-, and short-chain oligosaccharides are present in the edible parts of 
many crops and elicit a sweet taste when  consumed1. In cowpea (Vigna unguiculata L. Walp.) and other food leg-
umes, short-chain oligosaccharides include galacto-oligosaccharides (GOS) or raffinose family oligosaccharides, 
such as raffinose and  stachyose2–4. Since humans do not have enzymes to break down GOS, they bypass digestion 
in the small intestine and become fermented by colonic bifidobacteria and lactobacilli in the large intestine to 
produce short-chain fatty acids that provide numerous health  benefits5. This selective stimulation of microbial 
growth also helps reduce colonization of pathogenic bacteria and viruses in the  gut6. The prebiotic fermentation 
also reduces pH in the gut environment and thus increases the guts ability to absorb more nutrients from diets, 
particularly calcium and  iron7. However, the fermentation of GOS can also cause intestinal discomfort when 
excess intestinal gas is produced, which leads to bloating and  flatulence8; the latter is considered embarrassing in 
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many cultures, thus reducing legume consumption by people with sensitive gastrointestinal systems. Thus, devel-
oping new improved varieties of food legumes with a sweet taste and moderate GOS content can promote their 
consumption. Increased cowpea consumption would lead to better nutrition in populations and greater demand 
for the commodity. This is especially true for cowpea, a vitally important crop for food security in West Africa 
where it provides a main source of protein and essential minerals that complement cereals in the human  diet9–11.

Developing “sweet” cowpea varieties has long been a breeding objective, following the sweet-trait discovery 
in a Cameroonian cowpea breeding line in the late  1990s12,13. Likewise, breeding for nutrient-dense cowpea 
varieties has also been a focus because of the considerable genetic variation observed in global cowpea germ-
plasm  collections9; the maximum concentrations of grain iron, zinc and some other minerals were more than 
double those of accessions with the lowest amounts. Breeding can also make use of greater understanding of 
trait inheritance. However, information on the inheritance of the sweet trait and grain mineral accumulation and 
their relationship with agronomic traits in cowpea is still lacking. Previous studies revealed multiple quantitative 
trait loci (QTLs) affecting grain sucrose, raffinose and stachyose contents in  soybean14 and grain iron and zinc 
accumulation in common  bean15. Such genetic control may also exist in related grain legumes from the Fabaceae 
family including cowpea. Understanding of genetic factors and relationships between grain sugar and mineral 
accumulation in cowpea would enable improving them together through marker-assisted breeding strategies.

In this study, we aimed to detect and map QTLs for grain soluble sugars and mineral accumulation using 
a multi-parent advanced generation intercross (MAGIC) cowpea population of 305 recombinant inbred lines 
(RILs) derived from eight founder parents, including a sweet cowpea landrace from  Africa16,17; they are geneti-
cally diverse and thus expected to contribute different favorable alleles to each nutritional trait. We also aimed to 
estimate the accuracies of genomic prediction (GP) for these traits using the cowpea MAGIC as a training popu-
lation. Using GP in selection does not require QTL  information18, so it can be suitable for improving traits that 
lack QTLs or are controlled mostly by minor effect QTLs. The cowpea MAGIC population was comprehensively 
genotyped and comprised individuals which were carefully selected based on genome-wide marker diversity, 
so interference in GP analysis by kinship and population structure would be minimal. Correlations between 
nutritional traits, flowering time and seed size were also examined for application in multi-trait selection. The 
findings will help guide genetic biofortification efforts to develop elite cowpea varieties with added nutritional 
values, desirable taste and greater digestibility.

Results
Phenotypic variation
The concentration of grain sugars and minerals varied considerably in the MAGIC RILs and parents grown at the 
University of California Riverside Coachella Valley Agricultural Research Station (CVARS) during 2016–2017. 
Stachyose showed the highest concentration, on average 5.1% (percentage of grain dry weight), ranging from 
2.3 to 8.4%, followed by sucrose (0.6–6.9%, average 2%) and raffinose (0.5–0.9%, average 0.6%). Among grain 
macronutrients, nitrogen was most concentrated (2.5–4.8%, average 3.7%), followed by potassium (1.14–1.77%, 
average 1.42%), phosphorus (0.27–075%, average 0.43%), magnesium (0.12–0.24%, average 0.18%), and cal-
cium (0.04–0.18%, average 0.09%). Among micronutrients, iron showed the highest concentration, on average 
54.3 ppm (parts per million), ranging from 32.5 to 91 ppm, followed by zinc (32.2–71.1 ppm, average 36.5 ppm), 
manganese (5.2–20.2 ppm, average 10.2 ppm) and copper (4.7–12.8 ppm, average 7.3 ppm). Nitrogen, magne-
sium and manganese showed a normal distribution based on the Shapiro–Wilk test, while other nutrients were 
skewed toward lower or higher values. Transgressive segregation, in which phenotypic values of many progeny 
were outside the range of parental phenotypes, was observed for most grain nutrients, except sucrose, manganese 
and copper (Fig. 1).

Significant (P < 0.001) positive correlations appeared between the 2016 and 2017 data of the same nutrients, 
among which sucrose showed the strongest correlation (r = 0.86) (Supplemental Table S1). There were also 
significant correlations among nutrient concentrations (Fig. 2). Most notably, iron and zinc were strongly and 
positively correlated with each other (r = 0.75, P < 0.001) and with phosphorus (r = 0.67 and 0.83, P < 0.001). The 
three soluble sugars (sucrose, raffinose and stachyose) were also positively correlated with each other (r > 0.54, 
P < 0.001) but negatively correlated with nitrogen concentration (r < -0.18, P < 0.001). Flowering time and seed 
size had significant (P < 0.001) positive correlations with nitrogen concentration (r = 0.36 and 0.19, respectively) 
but negative or neutral correlations with other mineral concentrations.

QTL detection
Two QTLs affecting sucrose concentrations were consistently identified using data from the two phenotyping 
trials at CVARS in 2016 and 2017 (Fig. 3A,B, Table S2). The major QTL, QSuc.vu-1.1, was located on chromosome 
1 of the cowpea MAGIC genetic map, explaining approximately 38–48% of the total phenotypic variation. The 
high-sucrose allele was contributed from Suvita-2. The minor QTL with a lower additive effect, QSuc.vu-11.1, 
was located on chromosome 11, explaining 9–13% of the total phenotypic variation, with the high-sucrose alleles 
contributed from Suvita-2 and IT89KD-288. These two QTLs also coincided with QRaf.vu-1.1 and QRaf.vu-11.1 
affecting raffinose concentrations, explaining 8–15% of the total phenotypic variation (Fig. 3C,D, Table S2). The 
minor QTL for sucrose was also co-located with the QTL QSta.vu-11.1 affecting stachyose concentrations and 
explaining approximately 9% of the total phenotypic variation in 2017. Another QTL located on chromosome 7, 
QSta.vu-7.1, was also associated with the stachyose concentration, explaining approximately 11% of the total phe-
notypic variation in both 2016 and 2017 seasons, with the high-stachyose alleles contributed from IT89KD-288, 
IT84S-2049, IT82E-18, IT00K-1263 and IT93K-503-1 (Fig. 3E,F, Table S2).

The allelic effects of QSuc.vu-1.1 and QSta.vu-7.1 were validated using grain samples from four field trials 
across West Africa (Burkina Faso, Nigeria, Senegal and Ghana). At QSuc.vu-1.1, two markers (2_32637 and 
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2_40402) distinguishing between the high-sucrose allele donor (Suvita-2) and the other parents were used 
to form two genotypic classes. Sucrose concentrations measured for grain bulks of MAGIC lines carrying the 
Suvita-2 haplotype were significantly (P < 0.05) higher than those carrying other parental haplotypes (Fig. 4). 
Likewise, at QSta.vu-7.1, two markers (1_0585 and 2_01076) distinguishing between the high-stachyose allele 
donors (IT89KD-288, IT84S-2049, IT82E-18, IT00K-1263 and IT93K-503-1) and the other parents were used to 
establish two genotypic classes. Stachyose concentrations measured for grain bulks of MAGIC lines carrying the 
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Figure 1.  Frequency distribution for mean concentration of (a–c) grain sugars and (d–l) mineral nutrients 
measured in the cowpea MAGIC population grown in Thermal, California in 2016 and 2017. Values for the 
eight founder parents are indicated by capital letters: A, IT89KD-288; B, IT84S-2049; C, CB27; D, IT82E-18; 
E, Suvita-2; F, IT00K-1263; G, IT84S-2246; H, IT93K-503-1. Significant differences (P < 0.001) exist among the 
MAGIC and parental lines.
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high-stachyose haplotype were significantly (P < 0.05) higher than those carrying the low-stachyose haplotype 
(Fig. 5). These significant effects were based on analysis of variance in which QTL haplotypes and field locations 
across West Africa were considered as fixed and random factors, respectively. On average, the favorable haplo-
types at QSuc.vu-1.1 and QSta.vu-7.1 contributed to an increase of 2% and 1% (of grain dry weight) respectively 
in grain sucrose and stachyose concentrations compared to the unfavorable haplotypes.

Figure 2.  Phenotypic correlations among grain concentrations of minerals and sugars (SUC: sucrose, RAF: 
raffinose, STA: stachyose) and agronomic traits (FLO: flowering time, SDW: seed size) in the cowpea MAGIC 
population grown in Thermal, California in 2016 and 2017. The asterisks (*, **, ***) indicate significance at the 
0.05, 0.01, and 0.001 levels, respectively.
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Figure 3.  Chromosomal regions associated with grain sucrose, raffinose and stachyose concentrations 
measured in the cowpea MAGIC population grown in Thermal, California in 2016 (left) and 2017 (right). 
Vertical lines flanking QTL peaks indicate 1-LOD support intervals. Dashed lines indicate the significance 
threshold at 7.56 ×  10–5 (LOD = 4.12) using empirical null simulations (n = 1000, P = 0.05).
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Several QTLs affecting grain mineral concentrations were also detected and mapped to multiple chromo-
somal regions, none of which were co-located with the sugar QTLs (Fig. 6, Table S2). Three QTLs affecting Ca 
concentrations were consistently identified using both 2016 and 2017 CVARS phenotypic data sets (Fig. 6A,B), 
located on chromosomes 1, 6 and 7, each explaining 8–14% of the total phenotypic variation. Of these, the 
QTL on chromosome 6 (QCa.vu-6.1) also coincided with those affecting Mg and K concentrations (Fig. 6C–F). 
Most notably, QTLs with major effects were identified for Cu on chromosome 1 (QCu.vu-1.1, Fig. 5G,H) and 
Mn on chromosome 5 (QMn.vu-5.1, Fig. 6I,J), explaining up to 36% and 28% of the total phenotypic variation, 
respectively. Other QTLs for Fe, Zn and N concentrations showed minor effects, and they were detected only in 
the 2016 or 2017 environment (Table S2).

QTLs for flowering time and seed size were mapped in similar genome regions reported by Huynh et al.16. 
Five QTLs affecting flowering time in 2016 were mapped on chromosomes 1, 4, 5, 9 and 11; of these, QTLs on 
chromosomes 4 and 9 also affected flowering time in 2017 (Table S2). All QTLs showed minor effects, each 
explaining less than 18% of total phenotypic variance. The parent CB27 consistently contributed to the early-
flowering allele at each QTL. The QTLs on chromosomes 1, 5 and 9 were co-located with those affecting Ca, Mn 
and Fe concentrations, respectively. For seed size, one minor and one major QTL were identified on chromosomes 

Figure 4.  Mean grain sucrose concentrations of two genotypic classes of MAGIC lines with contrasting SNP 
haplotypes defined by two markers 2_32637 and 2_40402 flanking QSuc.vu-1.1: AAAA (lines homozygous 
for the high-sucrose haplotype from Suvita-2, blue bars) and TTGG (lines homozygous for the low-sucrose 
haplotype of the other parents, orange bars). Values shown for USA are mean values from individual lines. 
Values shown for Burkina Faso, Ghana, Nigeria and Senegal are based on the assessment of grain samples 
bulked within genotypic classes. Significant differences (P < 0.05) exist between genotypic classes.

Figure 5.  Mean grain stachyose concentrations of two genotypic classes of MAGIC lines with contrasting SNP 
haplotypes defined by two markers 1_0585 and 2_01076 flanking QSta.vu-7.1: AAAA (lines homozygous for 
the high-stachyose haplotype from IT89KD-288, IT84S-2049, IT82E-18, IT00K-1263 and IT93K-503-1, blue 
bars) and TTGG (lines homozygous for the low-stachyose haplotype from Suvita-2 and IT84S-2246, orange 
bars). Values shown for USA are mean values from individual lines. Values shown for Burkina Faso, Ghana, 
Nigeria and Senegal are based on the assessment of grain samples bulked within genotypic classes. Significant 
differences (P < 0.05) exist between genotypic classes.
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6 and 8, respectively (Table S2). The major QTL explained up to 38% of total phenotypic variance, with favorable 
(large seed) alleles contributed from IT82E-18 and IT00K-1263. This QTL was co-located with those affecting N 
and P concentrations. The other QTL with minor effect was located on chromosome 6, explaining approximately 
9% of total phenotypic variance, with the favorable allele contributed from IT89KD-288 (Table S2). This QTL 
was also co-located with those affecting Ca, Mg, Mn, N and K concentrations.

The wide ranges and transgressive variation of grain sugar and mineral concentrations support the presence of 
multiple QTLs detected, with favorable alleles contributed from different founder parents. Traits affected by major 
QTLs, such as glucose and stachyose concentrations, seemed to skew toward lower or higher phenotypic values 
while those affected by minor QTLs exhibited a normal phenotypic distribution (Fig. 1). Common QTLs found 
among traits and years were also consistent with their positive correlation (Fig. 2 and Supplemental Table S1). 
Of these, one common QTL region for sucrose, raffinose and stachyose was identified on chromosome 11, in 
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Figure 6.  Chromosomal regions associated with grain calcium, magnesium, potassium, copper and manganese 
concentrations measured in the cowpea MAGIC population grown in Thermal, California in 2016 (left) and 
2017 (right). Vertical lines flanking QTL peaks indicate 1-LOD support intervals. Dashed lines indicate the 
significance threshold at 7.56 ×  10–5 (LOD = 4.12) using empirical null simulations (n = 1000, P = 0.05).



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4567  | https://doi.org/10.1038/s41598-024-55214-2

www.nature.com/scientificreports/

addition to a specific QTL for stachyose on chromosome 7, and the other for sucrose and raffinose on chromo-
some 1 (Fig. 3). This genetic relationship reflects the FOS biosynthetic pathways to be mentioned hereafter in 
the discussion.

Genomic prediction
The GP accuracy (i.e., correlations between predicted and actual phenotypic values) differed significantly 
(P < 0.001) among nutrient concentrations measured in the MAGIC population planted at CVARS in 2016 
and 2017 based on two cross validation schemes using Bayesian Ridge Regression (Fig. 7). In the 1/9 scheme 
(Fig. 7A), 90% of lines were used to predict the remaining 10%. In the 1/4 scheme (Fig. 7B), 80% of lines were 
used to predict the remaining 20%. There was no difference (P > 0.05) between these two schemes, although data 
derived from the 1/9 setting appeared more dispersed. On average, seed size and flowering time had the highest 
GP accuracy (0.59), followed by K (0.58), Cu (0.57), Ca (0.55), Mg (0.54), sucrose (0.53), Fe (0.46), N (0.43), P 
(0.43), Mn (0.43), Zn (0.40), stachyose (0.26) and raffinose (0.02). Overall, the trial in 2017 with an augmented 
row-column design gave a significantly (P < 0.001) better prediction (0.48 on average) than the single-plot design 
trial in 2016 (0.43 on average).

Discussion
The moderate GP accuracies (0.40–0.58) for cowpea mineral concentrations (Fig. 7) overlap those reported 
recently for  wheat19 and  rice20. This indicates the potential of GP in genetic biofortification to enrich cowpea 
grain with nutritional elements. Taking all traits together there appears to be a correlation between QTL informa-
tion and GP accuracies. Traits with major effect QTLs (e.g. seed size, sucrose and copper) and those with many 
minor effect QTLs (e.g., calcium, nitrogen and iron) had better GP accuracies than traits with fewer minor-effect 
QTLs (Fig. 7 and Table S2). This supports the advantage of GP in which breeding values are estimated using all 
genome-wide  markers21 that would also capture QTL effects through linkage disequilibrium.

The presence of common and specific QTLs for different grain sugars (Fig. 3) reflects the FOS biosynthetic 
 pathways22 in which sucrose serves as a starting material, where enzymes subsequently add galactose units to 
sucrose, yielding raffinose and other longer FOS polymers. Sequencing of MAGIC RILs and parents carrying low- 
vs high-concentration alleles may help reveal gene polymorphisms underlying differential sugar accumulation in 

Figure 7.  Genomic prediction accuracies using Bayesian Ridge Regression model for concentrations of grain 
minerals, soluble sugars (SUC: sucrose, RAF: raffinose, STA: stachyose), and agronomic traits (FLO: flowering 
time, SDW: seed size) measured in the cowpea MAGIC population grown in Thermal, California in 2016 
(orange) and 2017 (cyan). Two cross-validation settings are presented: (A) Testing/Training = 1/9, and (B) 
Testing/Training = 1/4.
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the cowpea grain. Sequence assembly and QTL candidate-gene identification would be supported by the cowpea 
reference  genome23 and the homolog genes of common bean available on  Phytozome24.

It seems likely that sweetness and mineral accumulation are under different genetic controls, because none 
of the sugar QTLs coincided with those affecting mineral accumulation. The two major QTLs for grain sucrose 
(QSuc.vu-1.1) and stachyose (QSta.vu-7.1) appeared stable across environments based on results from the vali-
dation of QTL allelic effects (Figs. 4, 5). Previous studies also revealed QTLs with major effects on sugar accu-
mulation in the grain of other crops such as  wheat25 and  soybean14. In contrast, the inheritance of grain mineral 
accumulation, except Cu and Mn, appears more complex with many QTLs with small effects (Fig. 6 and Table S2). 
Previous studies also reported QTLs with small effects on mineral accumulation in the grain of other crops such 
as  rice26 and common  bean15. The challenge in detecting QTLs with major effects on grain mineral accumulation 
could be attributed to soil spatial variation, whereas sugar biosynthesis might be influenced mainly by sunlight 
through photosynthesis in addition to carbon dioxide, temperature and water availability as seen in common 
 bean27,28; these factors would be more uniformly distributed than soil in the field under sub-surface irrigation at 
CVARS. Indeed, more QTL peaks and better GP accuracies were discovered for grain minerals from the trial at 
CVARS in 2017, where data were corrected taking into account spatial variation, compared to the non-replicated 
trial in 2016 (Figs. 6, 7, Table S2).

The information on QTL locations and GP accuracies for grain sugar and mineral accumulation helps guide 
future breeding efforts to develop nutrient-dense and sweet cowpea varieties using indirect selection with molec-
ular marker haplotypes. Grain sugars are mostly affected by major QTLs, therefore marker-assisted backcross-
ing could be employed to introduce favorable alleles from MAGIC donors to existing elite cowpea varieties. In 
contrast, grain mineral accumulation involved a few major but many minor QTLs, so effective breeding strate-
gies should make use of whole-genome prediction in combination with QTL haplotype selection. For example, 
marker-assisted recurrent selection enables intercrosses of MAGIC lines to stack favorable haplotypes at major 
QTLs, followed by GP to select for lines with high genomic estimated breeding values. For multi-trait selection, 
priorities should be given to traits with higher GP accuracies (Fig. 7) and/or positively correlated with other 
traits (Fig. 2).

QTLs for sucrose and stachyose are located on separate chromosomes, thus it is possible to use molecular 
markers to select for high sucrose and low stachyose for improving digestibility and sweetness of cowpea. As 
previously described, while stachyose and other GOS improve gut health by acting as prebiotics, their fermen-
tation by bifidobacteria and lactobacilli in the colon can also cause side effects such as diarrhea, bloating and 
flatulence. In a clinical study using synthetic GOS, Ito et al.8 reported a linear relationship between the GOS 
consumption and gut microbial growth, but at the optimal dose of 10 g GOS per day, stool weight and stool 
frequency after ingestion did not change significantly and no sign of diarrhea was observed. This dosage would 
be equivalent to approximately 189 g of cowpea grain containing 6% GOS and 12% moisture, for instance. Addi-
tional research may be needed to confirm whether cowpea grain derived from MAGIC lines carrying low- versus 
high-concentration haplotypes at the stachyose QTL may exert a significant change in gut functions. To avoid 
confounding effects of other nutritional factors, such research can utilize bulks of grain from MAGIC lines car-
rying contrasting QTL haplotype groups as described in the QTL validation section (Fig. 5). With this approach, 
a large number of cowpea dietary samples can be produced with varying stachyose concentrations but with equal 
amounts of other nutrients that potentially interact with the stachyose effect in the gut. Future investigation of 
candidate genes underlying the major QTLs and pathway controlling high sucrose and low stachyose content 
could lead to new molecular breeding approaches using gene-editing.

Methods
Genetic materials
Grain samples of the cowpea MAGIC population were obtained from two field sites in the USA and four in West 
Africa (Nigeria, Ghana, Burkina Faso and Senegal). In the USA, the population was planted at the University 
of California Riverside Coachella Valley Agricultural Research Station (CVARS) in Thermal, California (33.52° 
N, 116.15° W) under irrigation during the 2016 and 2017 autumn seasons (September–November). In West 
Africa, the MAGIC population was planted under rain-fed conditions during the 2017 summer season (July to 
October) at (1) the International Institute of Tropical Agriculture (IITA) in Minjibir, Nigeria (12.14° N, 8.66° E), 
(2) the Savanna Agricultural Research Institute (SARI) in Manga, Ghana (11.02° N, 0.27° W), (3) the Institut de 
l’Environnement et de Recherches Agricoles (INERA) in Ouagadougou, Burkina Faso (12.28° N, 1.33° W), and 
(4) the Institut Senegalais de Recherches Agricoles (ISRA) in the Centre National de Recherche Agronomique 
(CNRA), Bambey, Senegal (14.70° N, 16.45° W).

The trial at CVARS in 2016 included 291 MAGIC RILs and eight parents as described in Huynh et al.17. Each 
line was planted in a single row (0.76 m wide and 3.7 m long) at a density of 12 seeds  m-1 using a tractor-mounted 
planter. The other five trials in California and West Africa each included 302 MAGIC RILs and eight parents 
planted in an augmented row-column (ARC) design in which 42 lines (checks) were replicated two times. The 
ARC designs were efficiently produced using statistical software DiGGeR  package29. This tool searches for an 
optimal experimental design for the replicated check lines and then enlarges the blocks or increases the number 
of rows and/or columns to accommodate the un-replicated lines. The replication of check lines allows for estima-
tion of error variance for un-replicated  lines30,31. For the trial in California, each plot was a single row (0.76 m 
wide and 4.3 m long) at a density of 12 seeds  m-1 using a tractor-mounted planter. For each plot, calendar days 
to flowering were determined when approximately 50% of plants in the plot flowered. At maturity, the plots were 
cut and allowed to dry in the field for about two weeks before threshing. A random sub-sample of harvested seeds 
from each plot was measured for 100-seed weight and used in nutrient assays in accordance with a sampling 
protocol established for  cowpea32. Thus, there was one biological replication per variety, except 42 checks that 
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were replicated twice in the ARC-design trial as described above. For the trials in West Africa, each plot was a 
single row (0.75 m wide and 2 m long row) at a density of 10 seeds  m-1. A random sub-sample of 50 harvested 
seeds from each line was sent to the University of California Riverside and bulked for validation of QTL allelic 
effects as described later in the QTL Mapping section.

Nutrient assays
Grain samples from Thermal, California, USA and bulked grain samples from West Africa were assayed for 
soluble sugars. Sugar quantifications were performed on Agilent HPLC detection system (Agilent Technologies, 
Santa Clara, CA, US) using an established methodology at the University of Missouri, as previously  described33. 
Briefly, approximately 5 to 6 g of seed sample was finely ground using Mini-Mill (Arthur Thomas Wiley, NJ, 
USA) fitted with a 20-mesh screen. Fine powder was lyophilized in a 2 mL centrifuge vial for 48 h, followed by 
incubation at 55℃ for 1 h and then centrifugation at 250 rpm for 30 min. The supernatant was subsequently 
diluted with acetonitrile:water mixture of 65:35 (v/v) prior to being injected into the HPLC system. Soluble 
carbohydrate compositions were then calculated based on sugar standards, which included sucrose (≥ 99% CP); 
D-( +) raffinose pentahydrate (≥ 99% HPLC); and D-( +) stachyose hydrate (≥ 98% HPLC) from Sigma-Aldrich 
(St. Louis, MO, USA). These standards were prepared in HPLC-grade water with concentrations of 50, 100, 300, 
500, and 1000 µg/mL, from which calibration curves were developed as illustrated in Supplementary Figure S1. 
One technical replication per grain sample was run together with two interval checks (certified reference Wil-
liams 82 and KB07-15 soybean flours) that were also included in each assay to monitor and ensure the consistency 
and accuracy of sugar assessments as previously  described33.

Grain micro- and macronutrients of the grain samples from Thermal, California, USA were determined by 
inductively coupled plasma mass spectrometry (ICP–MS) at Flinders University. Approximately 10 g of seed 
sample was ground with a Retsch ZM200 mill (Retsch, Haan, Germany) and oven dried at 80 °C for 4 h to remove 
remaining moisture. Approximately 0.3 g of each ground sample was acid-digested in a closed tube as described 
in Wheal et al.34. Elemental concentrations of samples were measured using ICP-MS (8900; Agilent, Santa Clara, 
CA) according to the method of Palmer et al.35. One technical replication per grain sample was run and two 
replications every 30 samples to monitor and ensure reproducibility and accuracy. Any samples with Al present 
at > 5 µg g-1 were considered to have unacceptable levels of purported soil  contamination36, thus resulting in their 
removal. Total nitrogen was determined by combustion using an Elementar Instrument. Nutrient concentrations 
were measured as % or ppm, while nutrient contents were calculated as nanograms per seed.

Pearson’s correlation analysis was used to examine phenotypic relationships among traits and their consist-
ency between the 2016 and 2017 trials in California. For the 2017 trial, phenotypic data were corrected taking 
account of the augmented row-column design using residual maximum likelihood (REML) implemented in 
ASREML-R version  437. These corrected phenotypic data and those from individual plots in 2016 were used in 
QTL and GP analyses.

QTL mapping
Genotypic data for the MAGIC population including 32,130 single nucleotide polymorphic (SNP) markers 
across 11 cowpea chromosomes were derived from Huynh et al.16. These markers were from the 60 K-SNP Illu-
mina iSelect  BeadArray38 and polymorphic in the MAGIC population with a minor allele frequency > 0.05 and 
a successful calling rate > 90%. QTL interval mapping was performed using the ‘mpIM’ function in R/mpMap39. 
Probabilities of founder haplotypes were computed at 1-cM steps across the genome (step = 1, mrkpos = F) and fit 
in a linear model for each trait. A genome-wide significance threshold of 7.56 ×  10–5 was empirically determined 
using the function ‘sim.sigthr’ with 1000 simulations from a null distribution. Initially, QTL were detected as 
peaks on a chromosome which exceeded the significance threshold. The next step involved using the ‘fit’ function 
in R/mpMap which incorporated all identified QTLs simultaneously. Consequently, QTL effects were estimated 
in a final model following the removal of peaks that no longer met the significance threshold after accounting 
for all other QTLs.

Allelic effects of two major QTLs for sucrose and stachyose concentrations were validated using grain samples 
from the four field sites in West Africa. These samples were grouped into contrasting marker-allele classes at each 
QTL, then bulked using a similar method described in Huynh et al.25. For each field site, one bulk of grain was 
formed for each marker-allele class, using an equal amount (2 g) of whole grain powder from each line within 
the class. Each bulk was well mixed and analyzed for sugars as described above. Analysis of variance (ANOVA) 
was performed with computer software GenStat (Release 11, VSN International Ltd.). Factors for the ANOVA 
model were marker-allele class and block, with each of the four field sites in West Africa considered as a block.

Genomic prediction
The GP accuracy for each trait was estimated using a Bayesian Ridge Regression (equivalent to GBLUP) and the 
model was fitted using the BGLR  package21, using phenotypic data from the MAGIC population grown at CVARS 
in 2016 and 2017. This accounted for across season variations and experimental designs as described previously. 
Genotypic data included 15,124 SNP markers from the 60 K-SNP Illumina iSelect  BeadArray38. These markers 
are polymorphic in the MAGIC  population16, and we kept markers with a minor allele frequency > 0.05 and a 
successful calling rate > 90%, and spaced at least 10 kb apart on the cowpea physical  map23. For each nutrient, the 
computation involved 30,000 Markov Chain Monte Carlo iterations; the first 15,000 of these were discarded as 
burn-in, and every other 10th sample was used to compute the posterior mean. Prediction ability of the proposed 
model was evaluated using two cross-validation schemes (testing/training = 1/9 and 1/4) for comparison. For 
example, with testing/training = 1/9, 10% of the MAGIC lines (the testing set) were left out for validation, whereas 
the remaining 90% were used as a training set. GP accuracy was measured as Pearson’s correlation between 
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observed and predicted phenotypic values of the testing set. We generated 20 random partitions as described 
therein, and for each partition we obtained the Pearson’s correlation between observed and predicted phenotypic 
values and obtained the average of these correlations for each trait for each validation scheme.

Plant ethical statement
The seed samples from Africa were prepared and shipped to the USA for nutritional assays in accordance with 
guidelines of the import permit for small lots of seeds issued by the United States Department of Agriculture—
Animal and Plant Health Inspection Service (APHIS).

Data availability
The grain-nutrient dataset generated and analyzed during the current study is available in the Dryad repository, 
URL: https:// doi. org/ 10. 6086/ D1FH6J.
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