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With super SDMs (machine 
learning, open access big data, 
and the cloud) towards more 
holistic global squirrel hotspots 
and coldspots
Moriz Steiner 1,2,3*, F. Huettmann 3, N. Bryans 4 & B. Barker 4

Species-habitat associations are correlative, can be quantified, and used for powerful inference. 
Nowadays, Species Distribution Models (SDMs) play a big role, e.g. using Machine Learning and AI 
algorithms, but their best-available technical opportunities remain still not used for their potential 
e.g. in the policy sector. Here we present Super SDMs that invoke ML, OA Big Data, and the Cloud with 
a workflow for the best-possible inference for the 300 + global squirrel species. Such global Big Data 
models are especially important for the many marginalized squirrel species and the high number of 
endangered and data-deficient species in the world, specifically in tropical regions. While our work 
shows common issues with SDMs and the maxent algorithm (‘Shallow Learning’), here we present a 
multi-species Big Data SDM template for subsequent ensemble models and generic progress to tackle 
global species hotspot and coldspot assessments for a more inclusive and holistic inference.

Keywords BIG DATA , Squirrels, Maxent, Super species distribution models (SDMs), R, Oracle, Super 
computer, Cloud modeling

Many species and their habitat needs are either ignored, understudied, or poorly known; effective conservation 
is virtually impossible as the status of the world’s biodiversity crisis  reflects1,2. Albeit popular and ubiquitous, 
the world’s squirrels are part of that  group3.

For the global squirrels (300 + species)3,4, the habitat needs and ranges are widely unknown, not mutually 
agreed on, and data are not made publicly available in most  publications5. The only publication apart  from3 that 
truly focuses on the global hotspots of squirrels (or a large group of squirrels)  is6, where they described them as 
“The tropics, particularly the forests of south and southeast Asia, are hotspots of squirrel diversity; however, this 
region generates the fewest scientific publications on squirrels.”

This approach of unwillingness to conduct transparent and repeatable science by not using fully open-access 
and publicly shared data can actually be observed throughout most mandated governance bodies across the 
policy scale (from municipality to state, federal and the U.N.), across private enterprises, and NGOs up to the 
Science academies (see for instance Snow Leopards  in7; examples for squirrels found  in3).

To overcome basic presence data gaps mandated, data repositories like GBIF.org can be used, and now, also 
get support with increasing citizen science efforts as one of the largest data blocks in such repositories within 
just a decade. However, a wider global survey, assessment, and synthesis for target species data has rarely been 
accomplished before, and instead, predictive models from data mining are to be used as  surrogates8. Within 
that concept, Maxent is a popular and relatively accurate rapid-assessment algorithm in the ‘shallow learning’ 
group within the growing spectrum of wider Machine Learning (ML) and Artificial Intelligence (AI)  (see9 
for an overview and over 100 algorithms). Thus far, common issues of insufficient computational processing 
capacity significantly limited such global Big Data assessments to the use of tools available to “everyone” such 
as PCs and laptops. Few data and low-end computational platforms without much progress create a spiral down 
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with insufficient progress while better solutions have existed for over a decade but remain widely underused. 
To overcome these common and decade-old limitations, here we utilize cloud accelerated methods and show a 
workflow for progress.

Thus far, either such large computation capacities (supercomputers) were not readily available to the public, 
Big Data were not available, or software was not developed and used for them, and thus, one could not make use 
of their full  potential8. Therefore, it is crucially important to share such Big Data methods, and underlying data 
sets in an open-access fashion for updates and to gradually overcome this bottleneck with as many global species 
as possible. In general, the greatest science can perhaps be performed, but it remains of lower impact without 
sharing the data and results transparently for assessment, transparency, and repeatability (Open Access)10.

Another constraint is the habitat data necessary to actually run SDMs; the use of more than 20 habitat predic-
tors in a good pixel resolution, well aligned and with a geographic projection, remains rare to tackle real ecology 
questions. Digital habitat data for species like squirrels are even less widely found and  shared5. Similarly  to11, 
here we compiled and used the best publicly-available 132 GIS layers set from various sources (see complete 
dataset in Chapter 33).

By working on a cloud hardware, in this study, we present and assess a powerful but still somewhat simplistic 
workflow opening cloud computing applications further and allowing a sheer infinity of data to be processed 
with ‘shallow learning’ to set the stage for multi-species data mining and subsequent predictions and wider ML/
AI ensemble models (e.g.  see12–15). Here, we investigate the first global multi-species assessment with extraordi-
nary novel amounts of data (“Big Data”), leading to in-time high-accuracy Super SDMs that were not possible 
to be created previously. Here, we focus on the global squirrel hotspots and coldspots as examples. As of now, 
there are no publicly-available hotspot/ coldspot maps available for all global squirrel species, explicit in space 
and time, especially not in a multi-species composite aggregate for the entire family, created with hundreds of 
thousands of occurrence points and 100 + environmental predictors, based on machine learning algorithms. 
Using such exhaustive digital tools and open-access data allows for global insights and sets the stage for a new 
global quantitative, repeatable, and testable standard, Super SDMs.

Methods
We created a global SDM assessment of all the world’s squirrel species utilizing Machine Learning algorithms 
powered by Cloud Computing. This study builds upon a workflow and data previously introduced  by3 and 
expands on that approach and workflow using almost three times as much new data. This workflow has been 
presented in Fig. 2 below. To our knowledge, this presents the highest number of predictors and occurrence 
records ever used for one SDM  (see14 for 80 predictors,  and11 for 100, and for multi-species models  see3 for over 
130). This moves Maxent from a simple ‘shallow-learning’ SDM algorithm into authentic data mining. We thus 
like to call it a Super SDM with the following method steps.

Big data: occurrence data
We utilized all publicly-available online GBIF occurrences for the family Sciuridae (= squirrels) with a cut-
off date of November 13th 2022 (www. GBIF. org receives constant new data submissions and updates its sets 
monthly). An older version of this downloaded dataset was used  by3 in 2020 but was significantly updated and 
now contains a total of 1,543,980 raw occurrence points (see download https:// doi. org/ 10. 15468/ dl. 2banfj). These 
occurrence points have been obtained from GBIF utilizing the RGBIF package in R. The R script that has been 
utilized to obtain the occurrence points can be found in Appendix S1. After obtaining the occurrence data from 
RGBIF, we removed duplicates in the dataset in order to make it easier to handle the model run. There are dif-
ferent approaches to using ‘double locations’ as those are ‘true’  data8; however, Maxent is commonly known as a 
rather ‘shallow learning’ data mining tool which mostly relies on parsimonious concepts and creates by default 
its own pseudo-absences, also relying on a high number of background  points16,17. Arguably, for our objectives, 
the duplicated occurrence points have assumably little influence on the global SDMs when all occurrences are 
combined, which we decided to do in order to create the global hotspot/ coldspot analysis for all squirrel species. 
After removing duplicates (utilizing “removing duplicates” function in MS Excel), we also removed all records 
without a geographic location and a described species  name18, after which the dataset was saved as a CSV file 
and imported in the data directory to be accessible for the cloud hardware. This data preparation is necessary 
for Maxent’s algorithm, which sets it apart from more advanced and deep-learning methods such as boosting 
(TreeNet) or bagging workflow etc., that are better able to work with raw and messy data within which the cor-
responding Machine Learning algorithm seeks  patterns19,20. This resulted in 665,529 final occurrence points 
which have been mapped and presented in Fig. 1 below; see Appendix S2 for ISO-compliant metadata describing 
this unique resource. This final dataset does not contain the same amount of occurrence records for all species. 
Rather, it contains many more records for western and common species compared to non-western rare species. 
This is an artifact of the dataset and represents the current global reality and data availability of the sciences. 
It additionally highlights the data gaps of the world’s squirrels, which are to be filled and improved in the near 
future to create even more sophisticated and improved global  models3.

Figure 1 shows the utilized occurrence points for this study, retrieved from GBIF.org. A detailed list of all 
included squirrel species and their corresponding record counts can be found in Appendix S3.

Environmental predictors
Here, we utilized a total of 132 environmental predictors; a set that has been firstly partially compiled  by11 and 
first presented as the world’s most complete socio-economic habitat predictor set  by3. Here it has been re-utilized 
for this study. A detailed description of all predictors and their sources can be found in Appendix S4 (repro-
duced from Table 3.2  from3). A large number of predictors (in this case 132) aims to reflect the complexity of 

http://www.GBIF.org
https://doi.org/10.15468/dl.2banfj
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nature as inclusively and accurately as possible (‘holistic’). By only utilizing a handful or much fewer selected 
predictors, the number of untested hypotheses increases with every predictor left out. Biases increase, and 
interactions remain untested. Another reason for using so many predictors is that the predictor selection and 
their consecutive contribution to the models are supposed to be carried out by the machine learning algorithm 
rather than by the opinion of a human (parsimonious selection of predictors). A well-trained dataset, used by a 
robust Machine Learning algorithm with hundreds of interactions will most likely, in every case, find the most 
suitable predictors for the given dataset. It is a reason for the strength of Maxent and ML/AI. With fewer initial 
predictors, this process is biased to a larger extent, the number of testable hypotheses is smaller, and the models 
cannot fully benefit from the Machine Learning algorithm’s potential.

Cloud modeling
In order to process the high quantities of data utilized for this study (point data and habitat layer data), we per-
formed all modeling steps in a powerful Oracle Cloud Infrastructure computing instance (cloud.oracle.com) 
using the R environment for easy reproducibility.

Thanks to a computing grant to FH in 2022, we were able to use the ORACLE cloud; we used the settings 
depicted in Table 1.

Utilizing the settings presented in Table 1, we used Powershell on a local Windows laptop to remote access 
the cloud compute via SSH, and run an R script for the global Super SDM (see Appendix S5), virtually synchro-
nized with the Oracle Cloud Infrastructure. This SDM has been created utilizing Maxent (version 3.4.4—https:// 
biodi versi tyinf ormat ics. amnh. org/ open_ source/ maxent/) and the software packages “raster”, “dismo”, “rgeos”, 

Figure 1.  Occurrence points of all global squirrel species (300 +) utilized for the global squirrel SDM 
downloaded from www. GBIF. org.

Table 1.  Oracle cloud settings utilized for global squirrel SDM.

Oracle cloud metric Description

Computer system Linux

Computer memory 1024 GB

OCPU count 64

Machine shape VM.Standard.E4.Flex

https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
http://www.GBIF.org
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“sp”, and “rJava” (see corresponding references in the sequence of the included  packages21–25. In order to subse-
quently produce the desired SDM, we ran the commands “maxent” and “predict” in R via the SSH connection. 
To diminish possible data gaps as much as possible, we utilized 80% of the available data for training the ML 
model and the remaining 20% and 500 iterations for the model testing. This ratio of data attributed to training 
and testing is commonly found in literature but many models use a ratio of data for the model training that is 
smaller (sometimes significantly smaller) than the model testing  ratio26. With our approach, we believe to have 
diminished possible data gaps as much as possible while still testing the model sufficiently with the remaining 
20% of the data and 500 iterations.

An overview of the workflow performed in this study is displayed in Fig. 2. This workflow includes all steps 
performed in the creation of the Super SDM in this study. It starts with the collection of the required datasets and 
ends with the results of the SDM in GIS. Additional add-on options are also included in this workflow, e.g. the 
option to create ensemble models. This workflow can act as a template for future Super SDMs studies, assessing 
other vertebrate species.

Hotspot/coldspot identification
Once the SDM has been created, the produced raster has been imported into Open-Source GIS (QGIS ver-
sion 3.10.6, obtainable via https:// www. qgis. org/ en/ site/ forus ers/ downl oad. html); we also used ESRI ArcGIS 
for some operations. In GIS, with a visual rapid-assessment approach, we identified the global squirrel hotspots 
and coldspots. This distribution hotspot/ coldspot identification aims to show the predicted species distribution 
index of all global squirrel species (multi-species distribution index). Regions with a prediction index ≤ 0.32 
have been classified as ‘coldspots’ (low prediction occurrence), and regions with a prediction index ≥ 0.66 have 
been classified as ‘hotspots’ (high prediction occurrence). These thresholds have been set up in this manner to 
represent the low 1/3rd of the predicted occurrence index as coldspots with low predicted occurrence, a certain 
average or medium, and the top 1/3rd of the predicted occurrence index as hotspots with high predicted occur-
rences. Because our work is fully open access, any of these settings can be re-visited and improved upon new 
data and research.

Results
Worldwide squirrel open access data compilation
We were able to compile and use the best-available point data in the world for 351 species included in the GBIF 
dataset. This set of methods is the first of its kind and allows many applications for SDMs and conservation 
management, all described with ISO-compliant metadata (see Appendix S2) allowing transparent and repeat-
able research.

Oracle maxent run of a super SDM
With these extremely high numbers of utilized data (‘Big Data’), and the extraordinary computational power 
of cloud computing, without such a cloud modeling approach, this workflow would have not been possible to 
complete on a laptop or a PC—Windows 10 processor Intel® Core™ i5-4300U. But using cloud computing, we 
were able to achieve an output for this complex data cube after 7 full days of run time. After the prediction com-
mands are finished, the produced global SDM has been exported into the data directory accessible for the cloud 
computer, from where the SDM raster has been downloaded. This produced raster (TIFF) file can be found in 
Appendix S6 and can be used in any OpenSource GIS application. According to our “evaluation” command and 
the Maxent results, we obtained the model diagnostics displayed in Table 2 below. These diagnostics describe the 
single-best result obtained by the standard procedure and default Maxent SDM  algorithm22.

In addition to the model diagnostics, we also obtained the variable importance of the predictors as an outcome 
from the Maxent run. The top 25 predictors (judged by their model contribution) of our global Super SDM can 

Figure 2.  Methodological workflow global super SDM.

https://www.qgis.org/en/site/forusers/download.html
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be observed in Table 3. This can help to assess the relevance of GIS predictors and for specific data gaps, data 
improvements, and hypotheses tested in the field.

Table 3 shows that the predictors ‘HII1’ (Human Influence Index), ‘BIO19_2_5min’ (Precipitation of Coldest 
Quarter), ‘World_MAX_RH_JAN’ (Global Maximum Relative Humidity for January 2020), and ‘WorldProtect-
edAreasMerged4’ (Proximity to the world’s protected areas) have been most contributing to our Super SDM. This 
indicates that the HII (Human Influence Index) predictor dominates the global squirrel hotspots and coldspots 
distribution. Apart from that, the most contributing predictors of the model can be classified as climate predic-
tors. However, instead of focusing on these variable importance rankings, here we promote the approach from 
Leo Breiman, allowing inference from  predictions27, asking to infer from the specific predicted pixel attributes. 
More work can be done on those pixels but here we make our prediction available and start this process.

Our map is the first for the 300 + squirrel species showing global hotspots and coldspots based on 132 predic-
tors. It allows it to be more inclusive, complete, and holistic regarding the predicted outcome.

Squirrel hot- and coldspots
The obtained Super SDM was then imported into ArcGIS Pro 3.1 (version 3.10—with a valid license download-
able via https:// pro. arcgis. com/ en/ pro- app/ latest/ get- start ed/ downl oad- arcgis- pro. htm), where the symbology 
of the produced SDM was adjusted and map details were added. The resulting map is presented in Fig. 3.

Table 2.  Global squirrel Super SDM model evaluation.

Evaluation criteria Description

AUC (area under the ROC curve) 0.9543

Correlation 0.4198

Test accuracy 0.6169

Table 3.  Global squirrel Super SDM variable importance.

Variable Percent contribution Permutation importance

HII1 43.7 21.4

BIO19_2_5min 18.4 4.2

World_MAX_RH_JAN 13.5 0.2

WorldProtectedAreasMerged4 11.6 30.8

GlobalRoadsProxy2 4.1 10.7

Prec11 1.3 0.4

WorldSlope1 1.1 1.0

GlobalCities2 1.0 5.8

Prec09 1.0 2.5

srad8 0.8 1.2

srad4 0.8 3.6

tavg2 0.6 1

tmax12 0.6 1.4

WorldThreatenedMammalDensity3 0.5 8.2

BIO12_2_5min 0.2 0.2

World_MAX_RH_DEC 0.2 0.9

Prec08 0.1 2.5

srad10 0.1 1.0

FFJun2020_3 0.1 1.3

Prec01 0.1 0.1

GlobalRiversProxy2 0 0

WCaltitude 0 0

BIO3_2_5min 0 0.7

GlobalBigRivers11 0 0.4

srad7 0 0

BIO14_2_5min 0 0.1

srad11 0 0.5

World_MAX_RH_AUG 0 0

tavg4 0 0

https://pro.arcgis.com/en/pro-app/latest/get-started/download-arcgis-pro.htm
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In Fig. 3, we can observe that the major global squirrel hotspots are located in North America, Middle 
America, Europe, Southeast Asia, Japan, Northwestern Africa, whereas the global coldspots can be observed 
in the Sahara Desert (Africa), Tropical Region of South America, North American Arctic, Mongolia and Tibet, 
Southwestern Africa, Australia, Siberia, and the Middle East. Table 4 outlines all the identified global hotspots 
with a comment on the reasons for those regions to be considered hotspots, and Table 5 outlines the identified 
global coldspots with additional comments on the reasons for those regions to be considered coldspots. These 
tables represent the outcome of a literature review we performed to support our model results.

Despite the extraordinarily large numbers of occurrence points and environmental predictors, we still observe 
a certain degree of overprediction with the Maxent application in this  study60. We can observe such overpredic-
tions in e.g. Iceland or New Zealand (see Fig. 3 above). Arguably, this can indicate a vacant niche and squirrel 
species extinctions. It warrants further research.

Discussion
We aimed to predict the latest state-of-the-art and high-accuracy distribution hotspots and coldspots of over 
300 squirrel species using more than 130 environmental predictors in the form of a Super Species Distribution 
Model (‘Super SDM’). This Super SDM is based on a Machine Learning algorithm, applied to a Cloud Computing 
environment, aiming to improve the understanding of the world’s squirrels’ hotspots and coldspots with resulting 
science-based conservation progress.

Squirrels are marginalized. Tree-living squirrels are of conservation concern with ongoing old-growth and for-
est loss worldwide. Data are widely missing, specifically for tropical species, where most of the diversity sits. Here 
we were able to benefit from the citizen-science database GBIF.org. Further, we were able to use and expand on 
the Open-Access Data layers and the workflow introduced  by3. Big Data exist but remain widely  underutilized61. 
Further, in GIS and SDM models it is common to miss habitat layers; the relevant and needed set of habitat 
predictors remains incomplete while ML/AI can often overcome those gaps. Additionally, ML/AI methods are 
likely to perform best in capturing species-habitat associations as a large number of habitat-associated predic-
tors are included in the models, allowing for inclusive and holistic predictions. While our work opens up new 
avenues, it is far from complete. However, as a new workflow, it presents a minimum estimate, we can exclude 
uncertainty for 132 predictor layers adding overall ‘certainty’ to the model predictions based on open-access Big 
Data, the Cloud, and Machine Learning.

The evaluation criteria of the Maxent multi-species composite model indicate a near-perfect model fit with 
an AUC (Area under the ROC Curve) of 0.9543. Besides this great result, the Correlation is 0.4198, and the Test 

Figure 3.  Global squirrel Super Species Distribution Model created with Machine Learning algorithms in the 
Oracle cloud computer.
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accuracy is 0.6169, which would indicate a rather high Sensitivity and low Specificity. However, with the setup of 
this composite model, these results can be attributed to the large diversity in the input data set (e.g. many different 
species with varying occurrence records), and therefore do not pose any major over-prediction issues. Overall, 
here one aim was also to have a quantifiable outcome, provide the best-available data, and start a discussion on the 
global hotspots and coldspots of all squirrels (as a group/ composite) based on actual data, rather than creating 
the ultimate species-specific SDMs with the least overfitting possible (see for other models in  comparison3,62,63. 
We are following a Macro-Ecology perspective to provide progress on the wider issues, globally.

This research and the workflow open up new avenues worldwide for SDMs, the use of SDMs, and the use 
of datasets that exist but are widely underused and under-analyzed. We actually think that not running Super 
SDMs is by now poor-inference science, e.g. when just relying on HSI, BioClim, Occupancy, or RSF models 
run on a PC or laptop, and it should become a baseline for any defendable habitat assessment and policy. With 
methods and data at hand now, it easily becomes best-professional practice and sets a mandate for more con-
clusive habitat models, as well as for SDMs for any species, e.g. for IUCN and industrial impact assessments, 
including climate change predictions. Arguably, SDMs with less than 100 predictors and few occurrence records 
in the public and open access realm despite decades of research are of inferior value and should be re-run with 

Table 4.  Global squirrel hotspot regions.

Regions Included countries Reason(s) for high occurrences References

North America USA, Southern Canada
Originating grounds (= long evolution time), close to Anthropocene 
(parks, bird feeders, etc.), temperate and optimal climate for mam-
mals, plenty of habitat diversity, prey abundance

3,28–33

Europe

Portugal, Spain, United Kingdom, Ireland, France, Belgium, Nether-
lands, Germany, Denmark, Switzerland, Liechtenstein, Luxembourg, 
Austria, Italy, Slovenia, Poland, Sweden, Norway, Finland, Slovakia, 
Czechia, Hungary, Croatia, Romania, Serbia, Moldova, Ukraine, 
Bosnia and Herzegovina, Albania, Montenegro, Bulgaria, North 
Macedonia, Greece, Latvia, Lithuania, Estonia, Belarus

Close to Anthropocene (parks, bird feeders, etc.), temperate and opti-
mal climate for mammals, plenty of habitat diversity, prey abundance

3,28,31,32,34

Central America
Mexico, Guatemala, Belize, Honduras, El Salvador, Nicaragua, Costa 
Rica, Cuba, Haiti, Dominican Republic, Puerto Rico, several island 
states

Pristine tropical habitats, extraordinary habitat diversity, a high num-
ber of different possible ecological niches, and prey abundance

35–38

Northwestern Africa Morocco, North Algeria, Tunisia High human impact (benefits of living close to the Anthropocene), 
ideal for arid-loving species (predominately ground squirrels)

39,40

Western Asia
Georgia, Armenia, Azerbaijan, Iran, Pakistan, Afghanistan, Turkmen-
istan, Tajikistan, Kyrgyzstan, Kazakhstan, Western Russia, Northern 
India, Nepal, Bhutan

High habitat diversity with significant altitude changes. Hotspots are 
often observed close to areas with high human impact

7,40,41

Most eastern Asia South Korea, Japan, Taiwan Close to Anthropocene (parks, bird feeders, etc.), temperate and opti-
mal climate for mammals, plenty of habitat diversity, prey abundance

3,28,31,32,34

Southeast Asia Vietnam, Thailand, Laos, Cambodia, Sri Lanka, Indonesia, Brunei, 
Malaysia, Philippines

Pristine tropical habitats, extraordinary habitat diversity, a high num-
ber of different possible ecological niches, and prey abundance

42–48

Tropical Africa
Ethiopia, Western Kenya, Uganda, Rwanda, Burundi, Tanzania, 
Congo, DRC, Equatorial Guinea, Cameroon, South Sudan, South-
western CAR, Nigeria, Benin, Togo, Burkina Faso, Ghana, Ivory 
Coast, Liberia, Sierra Leone, Guinea

Pristine tropical habitats, extraordinary habitat diversity, a high num-
ber of different possible ecological niches, and prey abundance

49–52

Table 5.  Global squirrel coldspot regions.

Regions Included countries Reason(s) for low occurrences References

North American Arctic Alaska (USA), Canada Unfavorable climate (too cold temperatures), low feed avail-
ability

3,51

Greenland Greenland Unfavorable climate (too cold temperatures), low feed avail-
ability

3,51

South America
Southern Venezuela, Guyana, Suriname, French Guinea, South-
western Colombia, Peru, Northeastern Brazil, Bolivia, Northern 
Chile, Argentina

Few Squirrels have reached that far south throughout evolution 3,53–55

Southwestern Africa Angola, Eswatini, Namibia Unfavorable climate (too hot temperatures, and too arid) 3,51,56

Sahara and Sahel desert (Africa) Central and Southern Algeria, Western Sahara, Mauritania, 
Northern Mali, Niger, Chad, Sudan, Libya, Southern Egypt

Unfavorable climate (too hot temperatures, and too arid), low 
feed availability

3,51,56

Middle East Southern and Northern Saudi Arabia, Western Oman, Eastern 
Yemen Unfavorable climate (too hot temperatures, and too arid) 3,51,56

Siberia and Tibet Western China, Central and Eastern Russia Unfavorable climate (too cold temperatures), low feed avail-
ability

3,51

New Guinea Indonesia, Papua New Guinea Squirrels did not reach these regions yet (see Wallace Line) 3,57–59

Australia and Oceania Australia, New Zealand, Solomon Islands, New Caledonia, Fiji, 
Vanuatu, and several island states Squirrels did not reach these regions yet (see Wallace Line) 3,57–59

Antarctica Antarctica Unfavorable climate (too cold temperatures), low feed avail-
ability

3,51
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this compiled habitat data set made available by us (see an example for Tree Kangaroos in Papua New  Guinea64, 
and forthcoming).

Here, a new world is attempted and envisioned where computing-intensive methods are a research require-
ment, parsimony is ended (see  also8), and results are more inclusive and holistic allowing for improved infer-
ence  (see8,14,65). With this workflow introduced here, decades-old SDM limitations can be overcome, and Big 
Data high-accuracy predictions can be created  (see66 for 1m resolution). Here, for reproducibility, we utilized 
the most common, free of charge, and widely used SDM algorithm Maxent, which can be considered part of 
the shallow learning ML tools, but with the large amounts of data and the cloud computing efforts, with these 
methods, the SDM can still be considered a high-accuracy top-class SDM. Nonetheless, utilizing other software 
that can generally be considered as ‘deep learning’—if applied correctly—(e.g. TreeNet/ Random Forest), and 
Neural Networks, etc.  (see67), that commonly do not require much data cleaned-up, would likely provide even 
more accurate results. Other network-based systems are also expected to have a critical impact on data process-
ing and the implementation of  AI68.

We did not use much data thinning or methods to re-sample for autocorrelation yet, as Maxent often  prefers69. 
But arguably, our research opens new science for these questions that have never been attempted yet on that 
scale. New insights can be expected counter  to70. Arguably, we want to use a more fine-tuned, optimized, and 
complete workflow as well as more GIS habitat layers and an ensemble model in the future. Within bounds, 
additional Species Distribution Forecasts for future decades can be created using this workflow, not just for the 
global squirrel species but also for all other kinds of vertebrate species.

In summary, we found that the global squirrel hotspots are primarily located in North America, Europe, 
Central America, Northwestern Africa, Western Asia, most regions in Eastern Asia, Southeast Asia, and Tropical 
Africa. On the other hand, we found that the global squirrel coldspots are located in the North American Arctic, 
Greenland, parts of South America, Southwestern Africa, Sahara & Sahel desert (Africa), the Middle East, Siberia 
and Tibet, New Guinea, Australia & Oceania, and Antarctica.

Now that such Super SDM methods are developed with transparent and shared workflows and metadata, we 
encourage all SDM users to apply such methods rather than parsimonious approaches. In order for everyone 
to run such Super SDM methods, we conclude that more access to cloud computing should be provided to the 
wider public and the need for policy to use this work.

Data availability
All data utilized for this study will become publicly available upon the publication of this study. All directly rep-
resented data can be accessed in the Appendix, and any other one can be obtained on request from M. Steiner.
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