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Calculation of the total corneal 
astigmatism using the virtual 
cross cylinder method 
on the secondary principal plane 
of the cornea
Yukitaka Danjo 

This study aimed to establish a virtual cross cylinder method to calculate the total corneal astigmatism 
by combining the anterior and posterior corneal astigmatism on the secondary principal plane of the 
cornea based on Gaussian optics. The meridian with the least refractive power, namely, the flattest 
meridian of the virtual cross cylinder of a ± 0.5 × C diopter, is set as the reference meridian, and the 
power (F) at an angle of φ between an arbitrary meridian and the reference meridian is defined as 
F(φ) =  − 0.5 × C × cos2φ. The magnitude and axis of the total corneal astigmatism were calculated by 
applying trigonometric functions and the atan2 function based on the combination of the virtual 
cross cylinders of the anterior corneal astigmatism and the posterior corneal astigmatism. To verify 
the performance of the virtual cross cylinder method, a verification experiment with two Jackson 
cross cylinders and a lensmeter was performed, and the measured and calculated values were 
compared. The limit of the natural domain of the arctangent function is circumvented by using the 
atan2 function. The magnitude and axis of the total corneal astigmatism are determined through 
generalized mathematical expressions. The verification experiment results showed good agreement 
between the measured and calculated values. Compared to the vector analysis method, the virtual 
cross cylinder method is mathematically sound and straightforward. A novel technique for calculating 
total corneal astigmatism, the virtual cross cylinder method, was developed and verified.

The refractive power of the cornea, including the tear film, accounts for approximately two-thirds of the total 
ocular refractive power. Theoretically, the refractive power can be calculated based on Snell’s law with the anterior 
corneal curve and the refractive indices of air and the cornea. However, accurate measurements of the posterior 
corneal curve and the refractive index of the total cornea, including the tear film, are difficult to obtain, so a 
method that does not require them was developed. The K index is a conversion factor that is used to calculate 
the corneal refractive power based on the anterior corneal curve, and the K index value of 1.3375, the origin 
of which is unknown, has been traditionally used in most keratometers and is adopted in most contemporary 
devices, including the IOLMaster700 (Carl Zeiss Meditec). As the use of corneal refractive surgery and premium 
intraocular lenses increases, the importance of measuring the posterior corneal curve has become increasingly 
evident1. The posterior corneal curve had previously been measured using various methods and instruments, 
including Purkinje images, Scheimpflug imaging, optical coherence tomography, and other tools1–3. The intro-
duction of the swept-source optical coherence technology-based IOLMaster700, which can be used to measure 
the posterior corneal curve, was expected to decrease postoperative refractive errors in eyes undergoing cata-
ract surgery by using the total keratometry (TK)4,5. However, several studies have reported that the refractive 
performance of TK-based IOL power calculation formulas for normal eyes is not superior to that of K-based 
formulas6–8; in fact, their performance is inferior to that of K-based methods in eyes with relatively normal ranges 
of axial length and anterior keratometry8.

In a previous stage of the present work9, the total corneal power (TCP) was computed using two strategies, 
one with the corneal index n1 as the variable and the other the TK index nx as the variable. The virtual axial 
length (AL) was defined as the distance from the corneal secondary principal plane to the retina. The refractive 
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prediction accuracy of the Barrett Universal II (BUII) formula (unpublished) was evaluated using the refraction 
results predicted based on the TCP and the virtual AL. The refractive performance of both strategies with the 
modified BUII formula was better than that of the conventional K-based BUII formula, and the performance was 
improved further when a TK index of nx = 1.3858 was used in the TK index strategy. The TK index of nx = 1.3858 
was determined via the TK index strategy, in which the TK index nx is used as a variable so that the modified BUII 
formula had the best refractive performance9. Thus, I proposed the TK index for TCP calculations. The TK index 
is related to the total corneal curve, similar to the relation between the K index and the anterior corneal curve.

It has been demonstrated that posterior corneal astigmatism has a significant influence on total corneal 
astigmatism1,10,11. In my previous study, I calculated the TCP with spherical equivalent powers in the anterior 
and posterior corneal planes9. Both planes have steep and flat meridians, namely, astigmatism, and the axes of 
these meridians are not necessarily the same. In addition, the corneal thickness should be considered in the 
calculation of the total corneal astigmatism, similar to the TCP calculation. Therefore, the calculation of the 
total corneal astigmatism is not simple. Traditionally, the total corneal astigmatism has been calculated using 
the vector analysis method12–15. However, this method cannot address, in a mathematically sound way, the case 
in which the formula has a zero in the denominator or an obtained value of the astigmatic axis is outside the 
limits. In addition, the results of studies using the vector analysis method to assess anterior corneal astigmatism 
combined with posterior corneal astigmatism have not been verified experimentally. To calculate the total corneal 
astigmatism in a mathematically correct manner, a novel technique called the virtual cross cylinder method has 
been developed and verified in this work.

Methods
Definition of the TK plane and descriptive terms
Assume that the anterior corneal astigmatism and the posterior corneal astigmatism are combined in the second-
ary principal plane of the cornea, which is calculated based on the TK index strategy9 and corresponds to the 
spherical equivalent plane of the total corneal power. I term this plane the TK plane. The following descriptive 
terms, including Kf, Ks, PKf, and PKs, are derived from keratometry with the IOLMaster700.

Kf : refractive power of the flat meridian of the anterior corneal surface
Ks: refractive power of the steep meridian of the anterior corneal surface
Kf’: the refractive power of the flat meridian of the anterior corneal surface on the TK plane calculated with 
the TK index strategy, assuming that the posterior corneal surface has no astigmatism
Ks’: the refractive power of the steep meridian of the anterior corneal surface on the TK plane calculated with 
the TK index strategy, assuming that the posterior corneal surface has no astigmatism
PKf: refractive power of the flat meridian of the posterior corneal surface
PKs: refractive power of the steep meridian of the posterior corneal surface
PKf’: the refractive power of the flat meridian of the posterior corneal surface on the TK plane calculated with 
the TK index strategy, assuming that the anterior corneal surface has no astigmatism
PKs’: the refractive power of the steep meridian of the posterior corneal surface on the TK plane calculated 
with the TK index strategy, assuming that the anterior corneal surface has no astigmatism
nx: the TK index
1.3375: value of the K index
1: refractive index of air
1.376: refractive index of the corneal stroma derived from the Gullstrand exact schematic eye
CCT: central corneal thickness

Note: Since the PK value is negative on the posterior corneal surface1 and PKf and PKs are converted to the 
PKs’ and PKf’, respectively, on the TK plane, the axis of the posterior corneal astigmatism is reversed on the TK 
plane.

According to the TK index strategy9,
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PCA: the magnitude of the posterior corneal astigmatism on the TK plane

TCA: the magnitude of the total corneal astigmatism on the TK plane

Definition of the virtual cross cylinder
The following formulation is based on the assumption that the anterior corneal astigmatism and posterior 
corneal astigmatism are both regular astigmatism in the paraxial region. Consider a cross cylinder on the TK 
plane (Fig. 1a). I term this cross cylinder the “virtual cross cylinder”. The meridian with the least refractive power, 
namely, the flattest meridian of the virtual cross cylinder, is defined as the reference meridian, the angle of which 
is defined as zero. The virtual cross cylinder of the ±0.5×C diopter (D) is set to:

i.e., in the plus cylinder form,

as shown in Fig. 1a. The power (F) of the virtual cross cylinder at an angle of φ between an arbitrary meridian 
and the reference meridian is defined as shown in the following equation:

Although an axis angle of 180 degrees is conventionally used instead of zero degrees, an axis angle of zero 
degrees is used in this study for mathematical reasons. The results of Equation (9) are plotted in Fig. 1b.

•	 The refractive power at an arbitrary angle φ of the ± 0.5 × ACA virtual cross cylinder with an axis angle of α 
(0 ≤ α < π), corresponding to the angle of Kf’, can be expressed as (Fig. 2a):

•	 The refractive power at an arbitrary angle φ of the ± 0.5 × PCA virtual cross cylinder with an axis angle of β 
(0 ≤ β < π), corresponding to the angle of the PKf’ can be expressed as (Fig. 2b):

•	 Then, the refractive power of the TCA at an arbitrary angle φ can be expressed as follows:

The astigmatic magnitude of the TCA and the axis angle σ (0 ≤ σ < π) corresponding to the angle of the flattest 
meridian of the TCA can be calculated by substituting σ for φ and solving the following equation:

(6)PCA = PKs
′ − PKf

′

(7)−0.5× C Ax 90/+ 0.5× C Ax 180,

(8)Sph− 0.5× C = Cy + C Ax 0,

(9)F(ϕ) = −0.5× C× cos2ϕ

0◦ ≤ ϕ < 180◦(0 ≤ ϕ < πradian)

(10)FACA(ϕ) = −0.5× ACA× cos2(ϕ − α)(0 ≤ ϕ < π)

(11)FPCA(ϕ) = −0.5× PCA× cos2(ϕ − α)(0 ≤ ϕ < π)

(12)FTCA(ϕ) = FACA(ϕ)+ FPCA(ϕ) (0 ≤ ϕ < π)

Figure 1.   A virtual cross cylinder with a ± 0.5 × C diopter, depicting the power profile with a color coded map 
(a) and a graphical display (b) of the power F(φ). C: power corresponding to the astigmatic magnitude.
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Calculation of the magnitude and axis of the total corneal astigmatism
Equation (12) is rewritten as the following Eq. (14) using Eqs. (10) and (11).

The astigmatic magnitude of the TCA is the difference between the maximum and minimum value of FTCA​(φ), 
that is, 

√

a2 + b2 is equivalent to twice the amplitude of Eq. (14).

The axis angle σ of the TCA is determined as follows:

In Eq. (14), σ is equal to φ when FTCA​(φ) is the minimum value as described in Eq. (13). Therefore,
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domain of the arctangent function (Fig. 3b). Then, the range of θ can be extended to − π < θ ≤ π by applying the 
atan2 function16,17:
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Figure 2.   (a) A virtual cross cylinder for anterior corneal astigmatism with axis α. The power profile is 
expressed as FACA​(φ) =  − 0.5 × ACA × cos2(φ – α). (b) A virtual cross cylinder for posterior corneal astigmatism 
with axis β. The power profile is expressed as FPCA(φ) =  − 0.5 × PCA × cos2(φ – β). ACA​ magnitude of the anterior 
corneal astigmatism, PCA magnitude of the posterior corneal astigmatism.
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Equation (17) can be rewritten as the following Eq. (20) using the atan2 function.

1. If b>0,

If a≥0 and b>0,
−π

2 < 2σ− θ < 2π is derived from 0 ≤ 2σ < 2π and 0 ≤ θ < π
2  , since θ is in the first quadrant, as shown 

in Fig. 3c. By solving Eq. (21):
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(
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( a
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))

= −0.5
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a2 + b2 × cos (2σ− θ)

When cos (2σ− θ) = 1, FTCA(σ) is the minimum.

2σ− θ = 0

Figure 3.   (a) Graphical display of the relationship between θ and tanθ = a/b. a = ACA × sin2α + PCA × sin2β, 
b = ACA × cos2α + PCA × cos2β; (b) Graphical display of the relationship between a/b and θ = arctan(a/b). 
The natural domain of the arctangent function is – π/2 < θ < π/2. (c) Application of the atan2 function. If 
b > 0, θ is in the first or fourth quadrants and thus within the natural domain of the arctangent function, so 
θATAN2 = arctan(a/b) + 0. If b < 0 and a ≥ 0, θ is in the second quadrant, which is beyond the natural domain of 
the arctangent function, so θATAN2 = arctan(a/b) + π. If b < 0 and a < 0, θ is in the third quadrant, which is beyond 
the natural domain of the arctangent function, so θATAN2 = arctan(a/b) − π. If b = 0 and a > 0, θATAN2 = π/2. If b = 0 
and a < 0, θATAN2 =  − π/2. (d) Axis angle σ of the total corneal astigmatism, which is determined based on the 
combination of the signs of a and b.
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Then, if a<0 and b>0,
0 < 2σ− θ < 5

2π is derived from 0 ≤ 2σ < 2π and − π
2 < θ < 0 , since θ is in the fourth quadrant, as shown 

in Fig. 3c. By solving Eq. (21):

2. If b < 0 and a ≥ 0,
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2π is derived from 0 ≤ 2σ < 2π andπ

2 < θ ≤ π , since θ is in the second quadrant, as shown 
in Fig. 3c. By solving Eq. (24):
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π
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in Fig. 3c. By solving Eq. (26):
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By solving Equation (28):
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In summary, the axis angle σ of the TCA is determined based on the combination of the signs of a and b, as 
shown in Fig. 3d. Finally, since σ is the angle of the axis of the flattest meridian of the TCA, the magnitude and 
direction of the TCA can be expressed as follows:

whereTCA =
√

ACA2 + PCA2 + 2× ACA× PCA× cos(2α − 2β).
In the + cylinder form, the notation for the TCA is:

In the − cylinder form, the notation is:

To determine the magnitude and astigmatic axis of the TCA, the notation (33) can be applied since the sign of 
Cy is positive and the angle of the axis is that of the flattest meridian. To correct the TCA, we need to implement 
the following spherocylindrical lenses in the TK plane.

In the − cylinder form, the lens is:

In the + cylinder form, the lens is:

Verification experiment with the Jackson cross cylinder
To evaluate the performance of the virtual cross cylinder method, a verification experiment was performed. Since 
it is impossible to make the virtual cross cylinder, the Jackson cross cylinder was used as an alternative. Two 
Jackson cross cylinders of ± 1.00 D and ± 0.50 D were prepared, and the axes of the + cylinder, corresponding to 
the black marks in Fig. 4, were designated as the axes of the cross cylinders. The ± 1.00 D cross cylinder with axis 
angle α and the ± 0.50 D cross cylinder with axis angle β can be expressed as Sph − 1.00 D = Cy + 2.00 D Ax α and 
Sph − 0.50 D = Cy + 1.00 D Ax β, respectively. The two stacked Jackson cross cylinders were mounted in a trial 
frame with angle scales, each axis was incrementally rotated, and the resultant power and axis of the combined 
cross cylinders were measured with an automatic lensmeter (LM-1800PD, NIDEK). The measurements were 
performed for all 324 combinations of axis angles α and β from 0 to 170 at 10-degree intervals. To compare the 
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2
π
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4
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2
< π

)

(33)Sph− 0.5× TCA = Cy + TCA Ax σ
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2

(
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π

2
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)

Figure 4.   The two Jackson cross cylinders used for the verification experiment: ± 1.00 D (S – 1.00 D = C + 2.00 D 
Ax 0) and ± 0.50 D (S – 0.50 D = C + 1.00 D Ax 0). D diopter, Ax axis.
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measured astigmatic axes and magnitudes with those calculated by the virtual cross cylinder method, scatter 
plots using Cartesian coordinates were generated to visually confirm the agreement between the measured and 
calculated values, and the results were further evaluated using Spearman’s rank correlation coefficients. The 
intraclass correlation coefficient (ICC) and the Bland − Altman plots cannot be determined because of the non-
normal distribution. All analyses were performed using BellCurve for Excel version 4.04 (Social Survey Research 
Information Co., Ltd.).

Results
Figure 5 shows scatter plots of the astigmatic axis (Fig. 5a) and astigmatic magnitude (Fig. 5b) resulting from 
the combination of the two Jackson cross cylinders with ± 1.00 D and ± 0.50 D to compare the values measured 
with the lensmeter with the values calculated by the virtual cross cylinder method. The astigmatic axes and 
magnitudes converge on the line y = x (x: measured values, y: calculated values). Based on the 324 pairs of data, 
Spearman’s rank correlation coefficient was r = 0.9993 (p < 0.001) for the astigmatic axis. Similarly, Spearman’s 
rank correlation coefficient was r = 0.9833 (p < 0.001) for the astigmatic magnitude; thus, the results were highly 
correlated. Compared with the astigmatic axis results, the wider range of convergence on the line y = x for the 
astigmatic magnitude likely occurs because the combination of the Jackson cross cylinders, which have thick 
lenses, cannot be conducted on the same plane as the virtual TK plane for the virtual cross cylinders. Moreover, 
the Jackson cross cylinders have different power profiles from the virtual cross cylinder.

Discussion
I developed the virtual cross cylinder method for calculating the total corneal astigmatism by combining the 
anterior corneal astigmatism and posterior corneal astigmatism on a virtual TK plane, corresponding to the 
secondary principal plane of the cornea. The results of the verification experiment using Jackson cross cylinders 
showed that the values calculated by the virtual cross cylinder method were consistent with those measured by 
the lensmeter.

Historically, astigmatism has been analyzed based on power vector analysis18–22. This method is very com-
plex since it addresses the spherical and astigmatic components of spherocylindrical lenses at the same time. 
In contrast, the virtual cross cylinder method analyzes only the astigmatic component and not the spherical 
component on a spherical equivalent plane by using trigonometric functions. Furthermore, Eq. (37) (Appendix 
in Supplementary Equations) in the paper by Furlan et al.23 is the same as Eq. (9), (10), and (11) in the present 
study. Equation (37) defines the astigmatic component derived from Eq. (38) (Supplementary Equations) which 
describes the dioptric power of a spherocylindrical lens at the off-axis meridian. The similarity between the for-
mulas occurs because the trigonometric double-angle formula gives Eq. (39) (Supplementary Equations). There 
has been much discussion on the derivation and results of the sine-squared expression for spherocylindrical 
lenses24–27. Although the above results have not been noted in previous works, Eq. (37) is equivalent to the power 
F(φ) at an arbitrary angle φ of the virtual cross cylinder. Hence, the sine-squared expression of the spherocylindri-
cal lens is identical to the expression of the combination of the virtual cross cylinder and the spherical component 
with 0.5 × C. In other words, the virtual cross cylinder has only the astigmatic component of the spherocylindri-
cal lens, with the spherical component removed. Furthermore, consider the spherocylindrical lens. Consider a 
spherocylindrical lens of Cy + C Ax 0 with a refractive power of zero (green) at its astigmatic axis (Fig. 6a). The 
refractive power F(φ) of this lens at an arbitrary angle φ is expressed as Eq. (40) (Supplementary Equations). 

Figure 5.   Plots of the lensmeter-measured and virtual cross cylinder method-calculated values with two 
Jackson cross cylinders of ± 1.00 D and ± 0.50 D. (a) Astigmatic axis. (b) Astigmatic magnitude. The oblique line 
in the graph is y = x. D diopter.
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Using the trigonometric double-angle formula, this equation can be transformed into Eq. (41) (Supplementary 
Equations), which is equivalent to the sine-squared expression of a spherocylindrical lens, as described above.

Several vector analysis techniques for astigmatism have been derived based on the abovementioned traditional 
power vector analysis method28–33. These methods have been applied to calculate the TCA​12–15. However, the 
results of these studies using vector analysis methods to combine anterior corneal astigmatism and posterior 
corneal astigmatism have not been verified experimentally, as was performed in this study. The results of the 
vector analysis methods should be verified through “ex vivo” verification experiments, even if these methods 
are widely used and empirically correct. The present study is the first to confirm that the virtual cross cylinder 
method is valid for combining anterior corneal astigmatism and posterior corneal astigmatism. Moreover, 
Abulafia et al.13 suggested that a thick lens formula should be employed to calculate the net corneal power for 
each meridian. This approach is consistent with the virtual cross cylinder method, which calculates the total 
corneal astigmatism on the TK plane based on Gaussian optics. Furthermore, Ferreira et al.15 and Savini et al.34 
reported that toric IOL power calculations based on the predicted posterior corneal astigmatism rather than the 
measured astigmatism yielded better refractive outcomes. Their results might be attributed to the calculation of 
the TCA via vector analysis without using a thick lens formula, and hence, reevaluation of these results with the 
virtual cross cylinder method on the TK plane is of great interest.

In this study, I set the reference axis of the virtual cross cylinder at the meridian with the least refractive 
power (shown in blue in Fig. 1a) and expressed the refractive power at an arbitrary angle φ through the Eq. (9). 
However, the reference axis can be arbitrarily chosen. For example, when the axis at which the power is zero, 
that is, a neutral refractive power, as designated in green in Fig. 1a, is chosen as the reference axis, the refractive 
power at an arbitrary angle φ is defined as Eq. (42) (Supplementary Equations). In contrast, when the axis at 
which the power is + 0.5 × C, that is, the maximum refractive power, as designated in red in Fig. 1a, is chosen as 
the reference axis, the refractive power at an arbitrary angle φ is defined as Eq. (43) (Supplementary Equations). 
These equations can also be used to calculate the TCA using trigonometric functions and the atan2 function. This 
study adopted the meridian with the least refractive power − 0.5 × C as the reference axis to ensure consistency 
with the sine-squared expression.

The atan2 function was first introduced in computer science17 and has since been applied in other fields. With 
this function, the natural domain of the arctangent function, −π

2 < θ < π
2  , is extended to − π < θATAN2 ≤ π, which 

was used to calculate the TCA in this study. Since the notation of the atan2 function is yet to be mathematically 
established, either atan2(y, x) or atan2(x, y) can be used. Care should be taken when using Microsoft Excel, which 
adopts the format atan2(x, y). When Excel is used, the procedure is defined using Eq. (20) and Eqs. (44) and (45) 
(Supplementary Equations). Additional data for the verification experiments using the virtual cross cylinder 
method and the vector analysis method are shown in the corresponding Excel files (Supplementary Information).

The virtual cross cylinder method can also be applied to a combination of spherocylindrical lenses. As 
described above, the refractive power at an arbitrary angle φ of a spherocylindrical lens Cy + C Ax 0 is expressed 
as Eq. (40) (Supplementary Equations). Given that the power of a spherocylindrical lens 1 of Cy + C1 Ax α is 
Eq. (46) (Supplementary Equations), and the power of a spherocylindrical lens 2 of Cy + C2 Ax β is Eq. (47) 
(Supplementary Equations), the refractive power of the combined spherocylindrical lens 1 + 2 at an arbitrary 
angle φ is calculated as Eq. (48) (Supplementary Equations). This is exactly the same format as Eq. (14) shown 
in the Methods section, except for the spherical component of 0.5 × (C1 + C2). The results of the verification 
experiments using two spherocylindrical lenses confirmed that the astigmatic magnitude and axis value 
calculated with the virtual cross cylinder method were consistent with those measured by the lensmeter.

In addition, the virtual cross cylinder method can be applied to subtraction of astigmatism, or the calculation 
of surgically induced astigmatism (SIA). Cornea-based SIA is caused by incisions during cataract surgery and 

Figure 6.   A spherocylindrical lens of Cy + C Ax 0, depicting the power profile with a color coded map (a) and a 
graphical display (b) of the power F(φ). C power of the spherocylindrical lens.
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ablations during corneal refractive surgery, and lens-based SIA is caused by toric intraocular lens implantation. 
By applying the virtual cross cylinder method on the secondary principal plane of a given optical system, Eq. (49) 
(Supplementary Equations) can be defined, where FPRE(φ) is the refractive power at an angle φ for the preoperative 
astigmatism, FSIA(φ) is the refractive power at an angle φ for the SIA, and FPOST(φ) is the refractive power at an 
angle φ for the postoperative astigmatism. Then, FSIA(φ) can be calculated by solving the given equations. When 
calculating the FSIA(φ), the magnitude and direction of the SIA are similar to those determined by the equations 
described by Jaffe and Clayman35, which Naeser33 introduced as Eqs. (50) and (51) (Supplementary Equations). 
However, it is highly likely that Eq. (51) generates incorrect results because it does not use the atan2 function. 
On the other hand, Naeser33 adjusted the arctangent function in Eq. (52) (Supplementary Equations) in his paper 
by adding the integer p, which somehow adjusted the limit of the natural domain of the arctangent function. 
However, Eq. (52)33 cannot handle scenarios in which the denominator KP(φ + 45) is 0, requiring the addition 
of a very small value to the denominator, such as 10–10, as shown by Holladay et al.28. In contrast, the virtual 
cross cylinder method using the atan2 function addresses this limit with a simple and straightforward approach.

The advantages of the virtual cross cylinder method are as follows: the method is easy to intuitively understand 
since it calculates the astigmatic axis and magnitude mathematically using familiar trigonometric functions; 
Eq. (9), which defines F(φ) =  − 0.5 × C × cos2φ at an arbitrary angle φ, can be universally applied to express regular 
astigmatic components, demonstrating the versatility of the virtual cross cylinder method; and the method is 
consistent with the sine-squared expression, as described above, and is applicable to both spherocylindrical 
lenses and the cross cylinder. On the other hand, there are several limitations to this study. First, the virtual 
cross cylinder method assumes regular astigmatism, in which the principal meridians are perpendicular to 
each other. However, as corneal topography maps show, the cornea has an irregular astigmatic component. In 
extreme cases such as irregular astigmatism, the extraction of the regular astigmatic component by the Fourier 
transform might be required before the method can be applied. Second, since the virtual cross cylinder cannot 
be physically produced, the Jackson cross cylinder was used as an alternative in the verification experiment. The 
results of the verification experiments showed good agreement between the measured and calculated values. A 
study on the combination of anterior corneal astigmatism and posterior corneal astigmatism in the real cornea is 
currently being performed. Finally, this study addresses the TCA calculation for an individual case; on the other 
hand, for aggregate data analysis, it remains to be determined whether previously published and well-known 
methods such as the double-angle plot36 and bivariate polar value analysis37 are suitable for the virtual cross 
cylinder method. Alternatively, from a different viewpoint, directional statistics38 may be appropriate since the 
virtual cross cylinder method is based on trigonometric functions.

In conclusion, I developed the virtual cross cylinder method, a novel technique for calculating the total 
corneal astigmatism on the TK plane. This method is expected to tremendously contribute to the fields of 
ophthalmology and optometry, including refractive surgery, cataract surgery, contact lens and spectacle 
prescription, and other optical design methods. Finally, I hope that the virtual cross cylinder method will be 
added to the principles of optics.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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