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Modeling of ionic liquids viscosity 
via advanced white‑box machine 
learning
Sajad Kiani 1, Fahimeh Hadavimoghaddam 2,3, Saeid Atashrouz 4*, Dragutin Nedeljkovic 5, 
Abdolhossein Hemmati‑Sarapardeh 6,7* & Ahmad Mohaddespour 8*

Ionic liquids (ILs) are more widely used within the industry than ever before, and accurate models 
of their physicochemical characteristics are becoming increasingly important during the process 
optimization. It is especially challenging to simulate the viscosity of ILs since there is no widely 
agreed explanation of how viscosity is determined in liquids. In this research, genetic programming 
(GP) and group method of data handling (GMDH) models were used as white‑box machine learning 
approaches to predict the viscosity of pure ILs. These methods were developed based on a large open 
literature database of 2813 experimental viscosity values from 45 various ILs at different pressures 
(0.06–298.9 MPa) and temperatures (253.15–573 K). The models were developed based on five, six, 
and seven inputs, and it was found that all the models with seven inputs provided more accurate 
results, while the models with five and six inputs had acceptable accuracy and simpler formulas. 
Based on GMDH and GP proposed approaches, the suggested GMDH model with seven inputs gave 
the most exact results with an average absolute relative deviation (AARD) of 8.14% and a coefficient 
of determination  (R2) of 0.98. The proposed techniques were compared with theoretical and empirical 
models available in the literature, and it was displayed that the GMDH model with seven inputs 
strongly outperforms the existing approaches. The leverage statistical analysis revealed that most of 
the experimental data were located within the applicability domains of both GMDH and GP models 
and were of high quality. Trend analysis also illustrated that the GMDH and GP models could follow the 
expected trends of viscosity with variations in pressure and temperature. In addition, the relevancy 
factor portrayed that the temperature had the greatest impact on the ILs viscosity. The findings of this 
study illustrated that the proposed models represented strong alternatives to time‑consuming and 
costly experimental methods of ILs viscosity measurement.
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Ionic Liquids (ILs) are novel, highly tunable, and unique compounds that emerged in response to interest in 
green chemical  technologies1. In the last few decades, an enormous amount of research has gone into developing 
ILs for a wide range of uses, from industrial to molecular, such as gas absorption, energy storage, biotechnology, 
electrochemistry, separation, and fluid flow in porous  media2–5. ILs are materials composed only of ions and 
having a melting point of less than 100 °C. They are created chemically when organic cations (such pyridinium, 
phosphonium, imidazolium, and ammonium) combine with organic and inorganic anions (like phosphates, 
halides, and sulfates)5,6. When Paul Walden originally described the IL (ethylammonium nitrate  ([NHHH2] 
 [NO3]) back in 1914, he had no idea that nearly a century later the field of ILs would become very  significant6. 
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Since 1996, the number of scientific papers on ILs has skyrocketed from just a few to over 8000 by 2020, far 
outpacing the growth rates of other well-known scientific  fields7.

The type and arrangement of cations and anions, as well as the quantity of branching chains inside the 
molecules, are strongly linked to the characteristics of  ILs8. ILs have several noteworthy characteristics, such as 
strong ion conductivity, remarkable permittivity, outstanding electrical properties, nonflammability, high heat 
capacity, and thermal and chemical  durability8,9. Decades of research have led to the development of novel ionic 
liquids that can be synthesized to customize their physical and chemical characteristics for specific applica-
tions. As more ion combinations were developed, it became essential to describe their physical and chemical 
 characteristics10,11. The addition of even small quantities of chemical precursors, for instance halides or water, 
might cause ILs to become very sensitive. Therefore, studying their physicochemical properties is vital. Density, 
electrical/thermal conductivity, sound speed, surface and interface properties, refractive index, and viscosity are 
necessary variables that require precise prediction and optimization. Viscosity is one of the key physicochemical 
characteristics that assist in assessing the purity, fluid dynamics, and intermolecular forces of  ILs11,12. ILs have 
complex thermodynamic and physicochemical properties, therefore, modeling approaches and large datasets are 
needed to predict their viscosity. ILs have a viscosity range of between 10 and 10,000 mPa s, and their viscosity 
is much higher than conventional solvents (0.1–100 mPa s), which may be a big issue for applications requiring 
mass or charge  transfer13. In this regard, accurate models of ILs viscosity are required for process modeling, 
which allow to minimize costs/energy and predict physicochemical properties of  ILs14–16. Several computational 
methods, including group contribution methods (GCM), intelligent approaches (IA), and quantitative structure-
property relationships (QSPR), can be used to determine the viscosity of  ILs15,17,18. For example, Gardas and 
Coutinho used GCM to estimate the viscosity of ILs across a large temperature range (293–393 K) utilizing 
500 data points from 29 distinct ILs (based on imidazolium, pyrrolidinium, and pyridinium). According to the 
results, 7.7% was the absolute average relative deviation (AARD) for determining the viscosity of  ILs19. Other 
research was  conducted by Gharagheizi et al. In this study, the viscosity of the IL was estimated using a GCM 
method. The model was based on 443 distinct ILs (1672 data points) with the temperature range from 253.15 to 
433.15 K, and the result was an AARD of 6.3%20. Lazzús et al., in turn, developed a GCM-based linear model to 
predict ILs viscosity at temperatures ranging from 253 to 395 K, with an AARD of approximately 4.5%21. At the 
same time, AARD was about 11.4% in the study of Paduszynski et al. This work detailed the use of feed-forward 
neural network (FF-NN) based GCM using 13,000 data points (1484 ILs) with temperature and pressure ranges 
of 253–573 K and 0.06–350 MPa,  respectively22. Finally, AARD for linear and nonlinear models were 10.68% 
and 6.58%, accordingly, as was suggested by the QSPR model of Zhao et al.23. This paper was based on a data-
bank consisting of 1502 experimental points (89 ILs) across a broad range of temperatures (253.15–395.2 K) 
and pressures (0.1–300 MPa).

The nodes and layers of an artificial neural network (ANN) are controlled by a vast collection of equations. 
Aside from that, the number of nodes and levels in the network are decided either manually or at  random24,25. 
The use of machine learning methods to model complicated systems has gained popularity  recently25–31. Machine 
learning methods fall into two categories: black and white-box methods. Black-box models such as neural net-
works or gradient boosting may be quite  accurate26. Black-box models (e.g., support vector regression (SVR) and 
decision tree) rely on a complicated computer-aided process, whereas white-box models (e.g., gene expression 
programming (GEP) and group method of data handling (GMDH)) clearly provide a simple and explainable 
 approach26,32–34. Because white-box models provide a model that is more like to human language, they are often 
understandable to experts in practical applications. White-box models are based on patterns, rules, or decision 
 trees32,35. The GMDH methodology, a self-organizing neural network, can not only describe the system’s genome 
using simple polynomials, but it can also employ standard minimization procedures to determine the optimal 
 configuration24. In our previous research, we used several black-box machine learning approaches for modeling 
the viscosity of ILs. Also, we developed a simple correlation using a trial-and-error procedure. However, the 
proposed correlation was not accurate enough and could predict the data with an AARD of 28%, which is high 
for engineering  practices25. Thus, developing a more accurate correlation with high accuracy using advanced 
correlative approaches such as GMDH and GP appears to be a preferable research direction.

This work models a vast set of 2813 experimental viscosity values from 45 distinct IL using GP and GMDH 
models with diverse inputs. Additionally, empirical and theoretical methods—such as Eyring’s theory (ET)—are 
used to estimate the viscosity of pure ILs. To determine which approach is the most correct, the dependability 
of the models that are provided is assessed using both graphical and statistical criteria. The sensitivity analysis is 
also used to determine how different input factors affect viscosity in relation to one another. Lastly, the quality 
of the experimental data is assessed and the application domain of the suggested models is determined using 
the leverage technique.

Data collection
A model can be more accurate and widely applicable the more data points it contains. In order to do this, 
2813 experimental viscosity data from 45 ILs were gathered from open literature sources at varying pressures 
(0.06–298.9 MPa), temperatures (253.15–573 K), and viscosities (1.13–9667.6 MPa.s)36–48.

Recognizing the potential risks associated with open literature data, a thorough screening method was imple-
mented. This process evaluates the quality and consistency of experimental data based on specific criteria. 
Rigorous analysis was applied to any data points that raised questions, with verification achieved through direct 
contact with the original authors or alternative sources. This scrupulous approach enhances the robustness of 

(1)η = f (T , P,Mw ,Tc ,Tb, Pc ,ω,Vc)
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the analytical data, fortifying the conclusions drawn. Strict standards for experimental data from open literature 
sources significantly contribute to the reliability of the results, highlighting the commitment to data dependability.

The dataset was randomly split into training (80%) and test (20%) subsets, ensuring that the test set remains 
undisclosed during parameter adjustments for independence. The application of k-fold cross-validation to the 
training subset played a pivotal role in this investigation. This approach ensures that each observation in the 
dataset is included in both the training and validation sets. The deliberate use of 6 k-folds for all models was 
strategic, with the choice depending on the data size—striking a balance between avoiding excessive or insuf-
ficient fold sizes. The train data underwent random partitioning into 6 folds, where the model fitting involved 
K-1 folds (i.e., 5 folds), and validation was conducted using the remaining fold.

Model development
Using Eyring’s Theory (ET) to calculate Pure Viscosity
Kirkwood et al. have come up with a strong theory regarding how monatomic liquids  transport49. This idea 
itself, however, does not provide immediate results. The absolute rate idea was suggested by Eyring et al.50,51. 
The individual molecules are always moving in a pure liquid at rest. But because the molecules are closely 
packed inside a "cage," the motion is mostly limited to the vibrations that each molecule generates in response 

to its nearest neighbors. The height-energy barrier �Ĝ+
0

NA
 is this "cage" where  NAstands for the Avogadro number 

(molecules/g-mol). Additionally, in order to "escape" from the stationary fluid cage,  �G + 0ˆ, or a molar-free 
activation energy, is required. (Fig. 1)25,51.

Following Eyring’s theory (ET), a molecule escapes its “cage” into a resting liquid’s “hole”25. As a result, every 
molecule moves in the length of “ ̇α ” at a frequency “ f  ”. The frequency is set by the rate expression:

where K  , P , and R are stand for the Boltzmann (J/K), the Planck constant, and the gas constant (J/mole·k), 

respectively.  T and �Ĝ+
0  represent the molar activation energy and absolute temperature (K) of the fluid at rest. 

Additionally, a fluid traveling in the x-direction with a gradient of velocity 
(
dVx
dy

)
experiences molecular recon-

figurations more often. The potential energy barrier, deformed by the applied stress τyx is seen in Fig. 1 and will be 
expressed using the subsequent equation: 

where an estimate of how much work was performed on the molecules is shown by ±(γ /α̇)

(
τyxQ̃

2

)
 . This is the 

mole liquid volume denoted by Q̃ . Equations (2) and (3) are then merged as follows:

(2)f =
KT

P
exp(−�Ĝ+/TR)

(3)−�Ĝ+ = �̂G+
0 ± (γ /α̇)

(
τyxQ̃

2

)

Figure 1.  Illustration of a liquid flow’s escape mechanism. Molecule 1 has to go through a "bottleneck" in order 
to get to the vacant position.25.
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The net velocity (Fig. 1) shows the separation between molecules in layer "A" and layer "B." The computation 
involves multiplying the net frequency of advancing jumps     ( f+ − f−) by the distance travel in each jump (α̇ ). 
The frequency of forward and backward leaps are denotedby  " f+ " and " f−". The following equation is used:

Over a fairly small distance “ ̇α ” between the two layers, a linear velocity profile may be observed, allowing:

To sum up, Eqs. (4) and (6) are combined to form the following equation:

If γ τyxQ̃2α̇TR ≪ 1 , the Taylor series can also be applied. Finally, the viscosity is derived using the following equation:

The unity factor, γ
α̇

 , makes the equation without compromising accuracy, since �̂G+
0  is acquired empirically 

to ensure that the equation’s values match the experimental results. However, it is demonstrated that, for a given 

fluid, the estimated �̂G+
0  (free activation energies) are almost constant when  fitting Eq. (8) to experimental 

viscosity values. This translates to the  boiling point internal energy of vaporization 
(
�Ûvap = �Hvap − RT�Zvap

)
 , 

which is given by Eq. (9) as  follows63:

By using this empiricism and setting α̇
γ
= 1 , Eq. (8) becomes as follows when empiricism is set at α̇

γ
= 1:

The following is an accurate estimate of the vaporization energy provided by the Trouton’s rule at the typical 
boiling point:

Equation (10), when approximated, reads as follows:

where  η indicates the expected viscosity (mPa·s) of pure ILs.  NA and p , respectively, are the Avogadro number 
 (mole−1) and the Plank constant (J·s). The Q represents the volume of a mole of liquid  (m3  mole−1), Tb and T 
stands for the boiling temperature (K) and temperature (K), respectively. To promote the performance of Eq. (12), 
a “ � ” term was added to Eq. (12) in Excel program for each IL in this study. This term is not constant; rather, it 
varies depending on ionic liquid.  Empiricism η = Aexp(B/T) is compatible with eqs. (10) and (12) and appears 
to be a popular and useful approach.  Viscosity decreases with temperature, according to the theory.

Group method of data handling (GMDH)
Ivakhnenko’s data-management approach for groups matches Darwin’s natural choice  concept52. By merging 
two independent variables, the system chooses the optimal polynomial terms. The approach generates a generic 
multinomial term at each stage. The vast relationship multinomial Volterra–Kolmogorov–Gabor (VKG) analyzes 
the entire  network52:

(4)f =
KT

p
exp

(
−
�Ĝ+

0

TR

)
exp

(
±γTyxQ̃

2α̇TR

)

(5)fxA − fxB =
(
f+ − f−

)
ω

(6)−
dvx

dy
= (γ /α̇)

(
−f− + f+

)

(7)

−
dvx

dy
= (γ /α̇)

(
KT

p
exp

(
−
�Ĝ+

0

TR

))(
exp

(
+γ τyxQ

2α̇TR

)

−exp

(
−γ τyx

−→
Q

2ṪR

)
=

(γ
α̇

)(KT

p
exp

(
−
�Ĝ+

0

TR

))(
2sinh

γ τyxQ̃

2α̇TR

)

(8)η =

�γ
α̇

�2
NAh/Qexp


 �̂G+

0

TR




(9)�̂G+
0 ≈ 0.408�Ûvap

(10)η = NAp/Qexp

(
0.408�Ûvap

TR

)

(11)�Ûvap ≈ �Ĥvap − TbR ∼= 9.4TbR

(12)η = NAp/Qexp

(
�Tb

T

)

(13)yi = a+

Nv∑

i=1

bixi +

Nv∑

i=1

cijxixj + · · · +

Nv∑

i=1

Nv∑

j=1

· · ·

Nv∑

k=1

dij...kxixj . . . xk
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In the above equation, the count of independent variables in the experiment is denoted by Nv . From a set of 
measured data with N data points, a matrix can be generated. The measured results −→Vy =

(
y1, y2, . . . , yn

)
 are 

represented on the left-hand side of the matrix, while the independent variables −→Vn = (x1, x2, . . . , xn) are repre-
sented on the right-hand side of the matrix. Both sides of the matrix are produced from the same set of data. 

When two independent variables are coupled, a quadratic polynomial 
(
Nv

2

)
 can be used to estimate the actual 

data. Using Nv parameters, here is a formula for 
(
Nv

2

)
:

The matrix of independent variables can here be built using the vector of new variables −→Vz = (z1, z2, . . . , zn) . 
To modify the parameters of equations, the least squares method is utilized (15). The objective is to maintain the 
square of the deviation from the actual data as small as possible in each column:

In the above equation, Nt denotes the count of datasets used. The measured data is used to construct training 
and testing subsets. The proportion of training and testing subsets is chosen at random. Equations are derived 
using the training set of data (15).  The ideal set of parameters (zi) . Variations from planned results must fulfill 
the following criteria, based on the predefined requirement:

here, ε is an optional/random value. Just the z columns that meet the criteria are kept, whereas the ones that do 
not are deleted. The entire variation is preserved after each repetition and compared to the prior repetitions to 
check if the least variation has been achieved.

Genetic programming (GP)
GP is a breakthrough in optimization computing that combines traditional genetic methods with symbolic 
 improvement53–55. It is predicated on an approach called "tree representation." This form is incredibly flexible 
since trees may represent full models of industrial systems, mathematical formulae, or computer programs. 
Creating model structures like differential equations, kinetic ordering, and steady-state models is best accom-
plished with this  approach56,57. To achieve great variation, GP first creates an initial population, which consists 
of randomly selected individuals (trees). A new generation is finally formed by the software, which evaluates 
the individuals, selects individuals for reproduction, creates new individuals by mutation, crossover, and direct 
 reproduction57. Unlike other optimization techniques, symbolic improvement uses the architectural arrangement 
of many symbols to convey workable solutions (that is, vectors of real values).

Model assessment
Statistical criteria
The models’ validity was tested using the determination coefficient  (R2), standard deviation (SD), average absolute 
relative deviation (AARD%), average relative deviation percent (ARD%),  and root mean square error (RMSE). 
Below are the statistical parameters:

Determination Coefficient  (R2):  R2 is a regression coefficient that shows the model’s accuracy. The model fits 
the data better if it is close to 1.  R2s mathematical formula is as follows:

Average Relative Deviation (ARD%): The relative deviation of the anticipated outcomes from the experimental 
data is determined using the ARD%:

Positive and negative ARD (%) represents a model’s underestimate and overestimate, respectively.
Standard Deviation (SD): SD is a metric used to quantify the degree of dispersion of data around the central 

point. This has the following definition:

(14)zGMDH
i = aAi + bBi + cAiBi + dA2

i + eB2i + f

(15)δ2j =

Nt∑

i=1

[
yi − zGMDH

i

]2
j = 1, 2, . . . ,

(
Nv

2

)

(16)δ2j =

N∑

i=Nt+1

[
yi − zGMDH

i

]2
< εj = 1, 2, . . . ,

(
Nv

2

)

(17)R2 =

∑Np

i=1

(
η
exp
i − η

)2
−

∑Np

i=1

(
ηcali − η

exp
i

)2
∑Np

i=1

(
η
exp
i − η

)2

(18)ARD% =
100

NP

∑

j=1

(
η
exp
j − ηestj

η
exp
j

)

(19)SD =


 1

N − 1

NP�

j=1

�
η
exp
j − ηestj

η
exp
j

�2



1
2
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Average Absolute Relative Deviation (AARD%): The relative absolute deviation is used to quantify the dif-
ference between the actual or real data and the projected or represented data. It is shown by the equation that 
follows:

Root Mean Square Error (RMSE): The RMSE is a frequently used statistical analysis approach for estimating 
the discrepancies between experimental and expected values. It goes by the name:

When calculating the average IL viscosity using experimental/real data,the experimental/real viscosity (η) and 
the number of data points NP are represented by the variables “est”, and “exp”, respectively.

Graphical assessment of the models
Several graphical plots were used in this research to further evaluate the suggested models and measure their 
predicted performances. Among the visualization plots are diagrams showing the cumulative frequency and 
error distribution. In order to measure the distribution of error around the zero line and to indicate whether 
the model has a tendency to make mistakes, the percentage of relative deviation is displayed against target/real 
values in the error distribution. The cross-plot displays the estimated/represented value of the model in relation 
to the experimental data. After that, a slope line with a 45° unit is constructed to connect the experimental and 
represented/predicted values. A more accurate model is indicated by more data points that are shown along this 
line. The bulk of approximations will be inside a standard error range if the cumulative frequency is calculated 
from the absolute relative error.

Results and discussion
Development of models
Using 2813 points of data (45 ionic liquids) collected from the literature, models were developed. Table 2‘s 
“Total” refers to the whole set of data (2813 data points) that were used for analysis and modeling in the current 
research. The database was split into training sets (which made up 80% of the overall dataset) and test sets (20% 
of the total dataset) at random. The 563 data points in the "testing" set were used to track over-fitting errors and 
the reliability of the built models. The "training" subset (2250 data sets) caused changes to the model’s structure 
and tuning parameters. T, P, Mw,  Vc,  Tb,  Tc,  Pc and w were the input parameters, and IL viscosity was the output 
(Table 1).

To begin with, the GMDH method was used to build a new empirical correlation. The viscosity of ILs with 
5, 6, and 7 inputs was found to be:

5 Inputs:

(20)
AARD(%) : 100×

∑NP
j=1

∣∣∣∣
η
nep
j −ηestj

η
exp
j

∣∣∣∣
NP

(21)RMSE =

√√√√ 1

NP

NP∑

j=1

(
η
exp
j − ηestj

)2

(22)

η = −2.87789+ T ∗ 0.0143915− T ∗ N1 ∗ 0.00131975− T2 ∗ 1.78556e − 05+ N1 ∗ 1.51847− N22 ∗ 0.0215748
N1 = −0.0340483+ P ∗ 0.00199063− P ∗ N2 ∗ 0.000467152− P2 ∗ 4.36465e − 06+ N2 ∗ 1.00943

N2 = −0.00484172+ N9 ∗ 0.535395+ N8 ∗ N3 ∗ 1.92525− N2
8 ∗ 1.11778+ N2 ∗ 0.4892− N2

2 ∗ 0.814881

N3 = 0.00291747+ N5 ∗ 0.258276+ N5 ∗ N4 ∗ 9.67431− N2
4 ∗ 5.13243+ N4 ∗ 0.759826− N2

4 ∗ 4.54534

N4 = −0.265189+ Tc ∗ 0.00125932+ Tc ∗ N8 ∗ 0.000298289− T2
c ∗ 8.18089e − 07+ N6 ∗ 0.53522+ N2

6 ∗ 0.0574476

N5 = 0.408599+ Tc ∗ 0.000100432+ Tc ∗ N7 ∗ 0.000381021− T2
c ∗ 2.89505e − 07+ N7 ∗ 0.350992+ N2

7 ∗ 0.086781

N6 = 0.40796− Pc ∗ 0.0250195+ Pc ∗ N7 ∗ 0.00115096+ P2
c ∗ 0.000437153+ N7 ∗ 0.854595+ N2

7 ∗ 0.0297431

N7 = 0.274614+ P ∗ N11 ∗ 0.0015094+ P2 ∗ 6.77239e − 06+ N9 ∗ 0.605881+ N2
8 ∗ 0.100009

N8 = 7.44079− T ∗ 0.0412914− T ∗ N10 ∗ 0.00645033+ T2 ∗ 5.49978e − 05+ N10 ∗ 3.16623

N9 = 10.5667− T ∗ 0.0467936− T ∗ w ∗ 0.00582271+ T2 ∗ 5.09471e − 05+ w ∗ 4.83785− (w)2 ∗ 1.60314

N10 = 0.865852+ P ∗ 0.00233429+ P2 ∗ 4.66924e − 06+ w ∗ 2.3876− (w)2 ∗ 1.18929

Table 1.  Dataset statistics acquired in this work.

T (K) P (mPa) Tc (K) Pc (bar) Tb (K) W Mw (g/mole) Exp.Viscosity (MPa s)

Mean 325.62 24.45 1005.87 22.30 723.94 0.60 346.66 191.97

Std 30.92 37.94 280.58 10.05 173.84 0.28 88.09 442.93

Min 253.15 0.06 520.06 2.63 410.77 0.22 201.23 1.13

25% 303.15 0.10 736.99 16.02 586.74 0.34 279.08 25.81

50% 323.15 6.00 1038.70 20.98 712.68 0.53 340.29 64.00

75% 343.15 40.00 1269.93 27.65 862.44 0.87 419.37 177.00

Max 573.00 298.90 1534.60 57.61 1130.30 1.10 515.13 9667.59
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The 6 Inputs:

7 Inputs:

Furthermore, the equations below proposed for 5, 6, and 7 inputs in GP model:
5 Input:

(23)

η = −3.49184+ T ∗ 0.0171992− T ∗ N1 ∗ 0.0016858− T2 ∗ 2.10848e − 05+ N1 ∗ 1.68321− N2
1 ∗ 0.033313

N1 = 0.0365592− N5 ∗ N3 ∗ 5.74908+ N2
5 ∗ 2.80849+ N2 ∗ 0.958807+ N2

2 ∗ 2.94393

N2 = −0.895957+M ∗ 0.00539033+M ∗ N3 ∗ 0.000164955− (M)2 ∗ 7.8437e − 06+ N3 ∗ 0.960834

N3 = 0.00291747+ N5 ∗ 0.258276+ N5 ∗ N4 ∗ 9.67431− N2
5 ∗ 5.13243+ N4 ∗ 0.759826− N2

4 ∗ 4.54534

N4 = −0.265189+ Tc ∗ 0.00125932+ Tc ∗ N6 ∗ 0.000298289− T2
c ∗ 8.18089e − 07+ N6 ∗ 0.53522+ N2

6 ∗ 0.0574476

N5 = 0.408599+ Tc ∗ 0.000100432+ Tc ∗ N7 ∗ 0.000381021− T2
c ∗ 2.89505e − 07+ N7 ∗ 0.350992+ N2

7 ∗ 0.086781

N6 = 0.40796− Pc ∗ 0.0250195+ Pc ∗ N8 ∗ 0.00115096+ (P2
c ∗ 0.000437153+ N7 ∗ 0.854595+ N2

7 ∗ 0.0297431

N6 = 0.40796− Pc ∗ 0.0250195+ Pc ∗ N8 ∗ 0.00115096+ (P2
c ∗ 0.000437153+ N7 ∗ 0.854595+ N2

7 ∗ 0.0297431

N7 = 0.274614+ P ∗ N8 ∗ 0.0015094+ P2 ∗ 6.77239e − 06+ N8 ∗ 0.605881+ N2
8 ∗ 0.100009

N8 = 10.5667− T ∗ 0.0467936− T ∗ w ∗ 0.00582271+ T2 ∗ 5.09471e − 05+ w ∗ 4.83785− (w)2 ∗ 1.60314

(24)

η = −0.0100846− N7 ∗ N1 ∗ 2.82949+ N2
7 ∗ 1.37207+ N1 ∗ 1.01023+ N2

1 ∗ 1.45152.

N1 = −0.0134572+ P ∗ 0.0021813− P ∗ N2 ∗ 0.000587268− P2 ∗ 5.26484e − 06+ N2 ∗ 0.982197+ N2
2 ∗ 0.00878339;

N2 = 0.17471− Pc ∗ 0.0126706+ Pc ∗ N3 ∗ 0.00161699+ Pc2 ∗ 0.00019748+ N3 ∗ 0.959782;
N3 = −0.502724+M ∗ 0.00270637−M ∗ N4 ∗ 0.000181006−M2 ∗ 3.44871e − 06+ N5 ∗ 1.06462;
N4 = 0.0538836− w ∗ 0.420022− w ∗ N5 ∗ 0.0630102+ w2 ∗ 0.347037+ N5 ∗ 1.06542;

N5 = −0.159217+ N11 ∗ 0.558586+ N11 ∗ N6 ∗ 4.28637− N112 ∗ 2.45863+ N6 ∗ 0.681851− N2
6 ∗ 1.90027;

N6 = −0.629478+ N18 ∗ 0.82026+ N18 ∗ N7 ∗ 0.147292− N182 ∗ 0.232333+ N7 ∗ 0.683362;

N7 = 0.646958− Tb ∗ 0.000378377+ Tb ∗ N8 ∗ 0.000677083− T2
b ∗ 3.17028e − 07+ N8 ∗ 0.236567+ N2

8 ∗ 0.089335;

N8 = 0.274614+ P ∗ N10 ∗ 0.0015094+ P2 ∗ 6.77239e − 06+ N10 ∗ 0.605881+ N2
10 ∗ 0.100009;

N9 = 7.44079− T ∗ 0.0412914− T ∗ N16 ∗ 0.00645033+ T2 ∗ 5.49978e − 05+ N16 ∗ 3.16623;
N10 = 10.5667− T ∗ 0.0467936− T ∗ w ∗ 0.00582271+ T2 ∗ 5.09471e − 05+ w ∗ 4.83785− w2 ∗ 1.60314;
N11 = 0.865852+ P ∗ 0.00233429+ P2 ∗ 4.66924e − 06+ w ∗ 2.3876− w2 ∗ 1.18929;

N12 = 0.162458− Pc ∗ Tb ∗ 7.76995e − 05+ P2
c ∗ 0.000712479+ Tb ∗ 0.00695937− T2

b ∗ 4.56726e − 06;

(25)Log(η) =


c17

c0��
c1

ln(c2Tc )
−

�
c3T−

c4
c5w

��
−(c6P+(c7+c8P))

�

�
c9

ln(c10Pc)
−

�
(c11+c12P)

c13
−

�
c14T −

c15
c16w

��� + c18




Table 2.  Calculated the statistical requirements for the developed correlations.

Statistical criteria RMSE SD R2 AARPE, %

7 Input: T, P,  Tc,  Pc,  Tb, w, Mw

GP

Train 115.62 0.317 0.864 24.378

Test 246.78 0.331 0.723 24.833

Total 226.66 0.328 0.798 24.742

GMDH

Train 53.54 0.116 0.987 9.171

Test 83.46 0.198 0.947 13.269

Total 65.69 0.136 0.979 8.144

6 Input: T, P,  Tc,  Pc, w, Mw

GP

Train 161.96 0.319 0.884 24.593

Test 284.10 0.375 0.588 27.674

Total 224.16 0.362 0.699 26.056

GMDH

Train 94.490 0.152 0.959 10.581

Test 93.975 0.205 0.909 15.977

Total 94.095 0.164 0.955 11.662

5 Input: T, P,  Tc,  Pc, w

GP

Train 214.27 0.309 0.663 23.824

Test 272.36 0.481 0.5358 32.101

Total 261.18 0.353 0.650 27.824

GMDH

Train 99.374 0.1146 0.955 8.0798

Test 121.34 0.236 0.855 16.911

Total 104.178 0.146 0.944 10.951
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6 Input:

c0 = 0.26945; c1 = 15.569; c2 = 0.7941; c3 = 0.5728; c4 = −12.046; c5 = 14.544; c6 = 0.2556; c7 = 0.3401;

c8 = 1.3188; c9 = 0.26945; c10 = −0.043257; c11 = 15270; c12 = −1.1226.
7 Input:

c0 = 14.019; c1 = 2.0204; c2 = 0.25903; c3 = 2.8184; c4 = 0.88752; c5 = 1.5553; c6 = 0.46073;

c7 = 1.2408; c8 = 2.0204; c9 = 0.25903; c10 = 2.8184; c11 = 0.88752; c12 = 0.91528; c13 = 2.02; c14 = 1.8657;

c15 = −3.4975; c16 = 1.0567; c17 = 1.3443; c18 = −3.4975; c19 = 1.553; c20 = 11.329; c21 = 2.3349; c22 = 1213.7; c23 = −3.6512.
The critical temperature and pressure values of the IL are denoted Tc and Pc, respectively.  There is also an 

acentric factor (w), temperature (T), and pressure (P), as well as IL molecular weight (Mw), critical volume 
(Vc), and IL boiling temperature (Tb). The other parameters are the adjustable correlation coefficients (Table 2).

The RMSE, SD,  R2, and AARPE% for the proposed correlation are calculated for the GP and GMDH models 
in Table 2.

The cross-plots on the results of the experimental viscosity data and the predicted data for the given cor-
relation are displayed in Fig. 2. Around the unit-slope line, this figure shows a medium-uniform distribution of 
forecasts. The viscosity of the ILs that were taken from the database was estimated using temperature (T) and 
boiling temperature (Tb), in accordance with Eyring’s theory (Eq. 13). AARD stands for 21.86%. The expected 
vs experimental IL viscosity is also plotted in a logarithmic cross-plot in Fig. 2. The data points were somewhat 
near the diagonal line, indicating moderate conformity. But data indicates that Arrhenius reliance does not 
match the experimental transport characteristics of ILs, which is why Eyring’s theory does not hold up. In fact, 
ILs viscosity decreased as temperature rose, and this feature has to be changed by new model improvements. In 
order to define the thermal characteristics of ILs, the Vogel–Tamman–Fulcher (VTF) development is frequently 
used. This provides the basis for a complex energy landscape with several local potential energy minimums and 
a broad variety of energy  barriers58,59.

The white-box machine learning models were carried out using GP and GMDH and compared to ET and 
Mousavi’s  model25. "White-box" models in machine learning are those that are easy for experts in the applica-
tion area to understand. These models, in general, provide a fair mix between explainability and accuracy. The 
numerical assessment of the created methods is presented in Table 3. With the use of a GMDH optimizer, it was 
shown that the usage of seven inputs was the best design for forecasting the viscosity of ILs since it can anticipate 
the whole data collection with more accuracy than other approaches (AARD% = 8.14).

c0 = 12.339; c1 = 0.352; c2 = 0.25504; c3 = −0.46065; c4 = 17.271;

c5 = 2.5053; c6 = 0.47496; c7 = 12.343; c8 = −0.34241;

c9 = 12.343; c10 = 0.80501; c11 = −8.0693; c12 = −0.34241; c13 = 8.3702;

c14 = −0.46065; c15 = 13.934; c16 = 2.5053; c17 = −5409.2; c18 = −1.09.

(26)Log(η) =

(
c11

(exp
(
exp(c0w)

)
+ c1)

(c2T + c3Pc)(((((c4 − c5)− c6T)− c7P)+ c8T)−
exp(c9M)

c10w
)
+ c12

)

(27)

Log(η) =


 c0�

ln
���

c1Tc +
c2Tc
c3

�
c4w + (c5T + (c6Tb − c7Tb))

��
(ln(((c8Tc + c9Tcc10)c11M + (c12T + (c13Tc + c14Pc ))))c15 − c16T)+

�
ln(c17T)c18 +

�
exp(ln(c19Tc20))− c21P

��� ∗ c22 + c23
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Figure 2.  Cross plot of the proposed Eyring’s theory for viscosity of ILs.
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Statistical evaluation
To illustrate the error margin, many statistical metrics were computed for both created models with different 
inputs, including ARD, AARD, RMSE, SD, and  R2. As more input data was provided, the AARD, ARD, SD, and 
RMSE values for the test and training datasets decreased, as seen in Table 3 for the GP and GMDH models. . 
The following is a breakdown of the models based on how accurate they are: Mousavi et al. correlation < Eyring 
theory < GP < GMDH. As a result, the GMDH model may produce more reliable estimates than the other estab-
lished models.

Graphical error analysis
A number of graphical error evaluations developed from the GP and GMDH models were examined in order to 
offer a more lucid evaluation of the models’ efficacy. To evaluate the models, the predicted viscosity measurements 
were compared to the experimental measurements shown in  Fig. 3(a–c).  For the GP and GMDH models, there 
is a high formation of points around the unit slope in both the test and training datasets. The observed viscosity 
values are shown to be more accurate by the GMDH correlations than by the GP and Mousavi et al. correla-
tions (Fig. 3c). As indicated in Fig. 3, the data distribution for GMDH correlation with 7 inputs is more on the 
slop line than the GMDH data with 5 and 6 inputs. The GMDH decreases overall relative deviation, resulting 
in the smallest error margin.

The AARE% of the white-box machine learning models is shown against the number of input parameters 
in Fig. 4. Comparing the GP model with experimental data indicated that it was less accurate, less flexible, and 
less well-suited than the GMDH model. Furthermore, the GMDH model with 7 inputs showed higher accuracy 
with experimental viscosity data in comparison to the GMDH trained on 5 and 6 inputs.

To show the models’ level of competence, comparative graphs are used, such as cumulative frequency 
plots. The GMDH has the maximum cumulative frequency for a given absolute relative deviation, as seen in 
Fig. 5. To put it another way, the GMDH model predicted almost 70% of the data points as we got closer to the 
ARD of less than 4%, but the corresponding values for the GP models were 9%, 11%, and 10%, respectively.

Figure 6 presents a comparison of the created models with respect to their relative deviations. The model’s 
ability to precisely predict the viscosity of ILs is demonstrated by the dense cluster of dots surrounding the zero 
line.  As can be seen, the GMDH model with 5, 6, and 7 inputs estimated viscosity better than GP, Eyring theory, 
and Mousavi et al. correlations.

Figure 7 compares the acentric factor, molecular weight, boiling temperature, critical temperature / pressure, 
temperature, and pressure impacts (7 inputs) on AARD (%) for the GMDH and GP models under investigation.  
According to our findings, the GP model is more sensitive to changes, which leads to greater parameter values 
than the GMDH model, which was shown to be less susceptible. The GP model, for instance, is very temperature-
sensitive (Fig. 7a). Thus, the GMDH model may be applied in a wide range of temperatures with a lower relative 
error of ARE <15%,  whereas the GP model can only be utilized in a narrow range of temperatures (381-445 K) 
with a minimum relative error of 14.6%. 

AARD values of 8.14% and 25.76% for the 7 inputs are displayed in Table 3 and are thus retained for future 
analyses since they are among the best responses for the GMDH and GP models. Based on the GMDH and GP 
correlations, Fig. 8 shows how temperature and pressure affect 1-ethyl-3-methylimidazolium hexafluorophos-
phate. The anticipated viscosity of ILs using both models is consistent with the experimental dataset, as expected. 
Viscosity assessments for ILs using GP correlations are, in turn, inconsistent, as seen in Fig. 8, and come with 
large error margins. As can be observed  in Fig. 8b, there is a physical link between the temperature and the 
GMDH model; but, as the pressure increases, neither model can adequately represent the experimental data.

Identifying outliers in experimental data, GMDH, and GP models
Finding data that significantly differs from the bulk of the data in a database is the aim of outlier (or aberrant) 
 identification60,61. Leverage is a well-known approach for doing  this60,62. Standardized residuals (R) and the Hat 
matrix (H) are  used62. The R value for each data point can be found using the below equation:

Table 3.  Statistical comparison between the Eyring modified model correlations and new developed 
correlation model with various inputs.

AARD (%) RMSE SD R2

GP—5 inputs 27.82 261.18 0.35 0.65

GMDH—5 inputs 10.95 104.17 0.14 0.94

GP—6 inputs 26.05 224.16 0.36 0.70

GMDH—6 inputs 11.66 94.09 0.16 0.95

GP—7 inputs 24.74 226.66 0.32 0.79

GMDH—7 inputs 8.14 65.69 0.13 0.98

Eyring modified model 25.76 371.97 0.33 0.29

Mousavi et al. correlation 28.34 394.12 0.36 0.20
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Figure 3.  Comparison of the cross plots of the predicted correlations. Subfigures include: Fig 3(a) with 7 inputs 
(3a-1: GMDH, 3a-2: GP), Fig 3(b) with 5 inputs (3b-1: GMDH, 3b-2: GP), Fig 3(c) with 3 inputs (3c-1: GMDH, 
3c-2: GP), and Fig 3(d) (modified Eyring model).
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MSE stands for mean square error (MSE), while the ith data point’s error and iith Hat indices (Leverage) are 
represented by zi and Hii

63. In addition, the following formula may be used to calculate Hat index (or Leverage):64

here, X represents a two-dimensional q × w matrix (where “q” shows the number of data and “w” is the count 
of input variables). Also, Xt is transpose of matrix. The outliers were investigated using the Williams plot after 
the R and H values were measured. In addition, the Leverage limit (H*), a parameter defined as 3a/b, where b 
stands for the count of data points and a is the number of model parameters plus one, is applied in this approach.

The calculated R values must be within [− 3, + 3] standard deviations in order to encompass 99.7% of the 
normally distributed  data17,62. The model is statistically valid if a significant proportion of data points are in the 
range of  H∗ ≥ H ≥ 0 and 3 ≥ R ≥ −317. Since they are highly expected yet outside of the application domain, 
data points in the range of  −3 ≤ R ≤ 3 and H∗ ≤ H are  referred to as "Good High Leverage" points. Conversely, 
data points with R values larger than or less than -3 are referred to as "Bad High Leverage" data points. These 
regions are beyond the applicability range of the model and have significant levels of uncertainty. It is clear that 
reliable data significantly affect the GMDH (7 inputs) model’s performance, making it the best model used in 
this study.   The H* value, as per the suggested model, was 0.0085. The GMDH model’s Williams plot is shown 
in Fig. 9 into the statistically significant range of  0 ≤ H ≤ 0.0085 and −3 ≤ R ≤ 3, all data points appear to fit 
into the established GMDH model. Less residual value normalization leads to an increase in reliability. However, 

(29)H = X
(
XtX

)−1
Xt

24.74

26.06 27.82

8.14

11.66 10.95

0

5

10

15

20

25

30

35

7 input 6 input 5 input

GP GMDH

A
A

P
R

E
 (

%
)

Figure 4.  Comparison between the AARE values of the GMDH and GP models.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

GMDH (7 Input)
GP (7 Input)
GMDH (6 Input)
GP (6 Input)
GP (5 Input)
GMDH (5 Input)

Cu
m

ul
at

iv
e F

re
qu

en
cy

Absolute relative deviation, %

Figure 5.  Absolute relative deviation cumulative frequency for various models based on GMDH and GP 
models.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8666  | https://doi.org/10.1038/s41598-024-55147-w

www.nature.com/scientificreports/

However, 24 suspicious data points, or fewer than 1% of the total data in Fig. 9, either  R <  − 3 or R > 3, making 
them outliers with considerable uncertainty. Furthermore, 77 data points, or  3% of all data had H > 0.0085. These 
points are all in the range of   −3 ≤ R ≤ 3 , which indicates that they are all Good High Leverage regardless of 
their Hat (Leverage) values.
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Figure 6.  Error distribution plots of the developed correlations compared to the Eyring modified and Mousavi’s 
models. Fig 6(a) with 7 inputs (6a-1: GMDH, 6a-2: GP), Fig 6(b) with 6 inputs (6b-1: GMDH, 6b-2: GP), Fig 
6(c) with 5 inputs (5c-1: GMDH, 5c-2: GP), and Fig 6(d) (6d-1: modified Eyring model, 6d-2: modified Mousavi 
model).
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Variables’ relative importance
When taking the GMDH model, all input variables were tested to see how much of an influence they had on 
the viscosity of ILs. The relative significance of the inputs with respect to one another is shown in Fig. 10. One 
measure used to evaluate each input parameter’s impact on the pure viscosity of ILs as a model output is the 
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Figure 7.  AARE for the correlations between the GMDH and GP correlations with 7 inputs.  Temperature; 
pressure; critical temperature; critical pressure; boiling temperature; acentric factor; and molecular weight are 
represented by (a–g).
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relevance factor (r). Negative values indicate an inverse correlation between the input and output parameters, 
and vice versa. Relevance Factor ( r ) values are analyzed in accordance with the following  equation65:

where n represents the number of datasets. Also, the j-th value, and the mean of the I-th input are respectively 
represented by the variables,Ii,j , and Ii. Whereas η denotes the average value of the predicted ILs viscosity, while 
ηj represnts the j-th value of the represented/expected viscosity. Based on the GMDH (as the output), Fig. 10 
displays the relative effects of each parameter on the pure viscosity of ILs. It is demonstrated that temperature 
and the acentric factor significantly affect the model’s output. 

Viscosity increases with an increase in pressure or acentric factor in pure ionic liquids. As Fig. 10 illus-
trates, increasing T ,Mw ,Vc ,Tb,Tc , and Pc parameters will result in a decrease in  the viscosity of ILs, since they 
have negative relevance factors. Moreover, the temperature has the most significant effect on the viscosity of ILs 
compared to other inputs.

We compared our models to a nonlinear artificial neural network (ANN) model using a dataset of 8,523 
IL-water mixture viscosity data  points16. The assessment included critical performance indicators such as mean 
absolute error (MAE) and R-squared  (R2). The results show that the GP and GMDH models have equivalent, if 
not greater, prediction accuracy, with benefits in simplicity and interpretability. This comparative research not 
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Figure 8.  Correlation of the 1-butyl-3-methylimidazolium hexafluorophosphate viscosity for the generated 
correlation (7 input) with experimental data. (a) Viscosity-temperature; (b) Viscosity-pressure.
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only supports our models’ effectiveness but also highlights their potential as reliable methods for forecasting IL 
viscosity. Our target in this research was in line with the goal of obtaining better predictions about the physical 
features of  ILs15. The main concern, though, is making accurate predictions regarding the viscosity of pure IL. 
We used the genetic programming (GP) and group method of data handling (GMDH) techniques to do this. In 
particular, our study adds custom models with clear benefits, focusing on accuracy and ease of use in determin-
ing the viscosity of pure ILs.

Conclusions
The GMDH model was obtained by modeling 2813 experimental findings from 45 ILs based on temperature, 
pressure, molecular weight, critical volume, and acentric factor. Furthermore, IL viscosity was calculated using 
temperature and boiling temperature in accordance with Eyring’s hypothesis. There were statistical and graphi-
cal comparisons between GMDH and experimental data in order to evaluate the model’s efficacy. AARD, ARD, 
RMSE, and  R2 parameters indicated that the GMDH model performed rather well. Using the relevance factor, 
the impact of input characteristics on the model’s target parameter was also investigated. The relevance factor 
illustrated that the temperature is the most important parameter affecting ILs viscosity. Finally, the employed 
dataset’s reliability and validity were assessed using the leverage statistics. In our case, Williams’ plot was applied 
to study the established paradigm’s applicability domain and data collection. Only a small number of data points 
were found to be outside the realm of applicability.  In light of all the above, the developed GMDH model is able 
to accurately forecast IL viscosity and obtain IL physicochemical parameters in different chemical engineering 
processes.
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