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Chaotic opposition learning 
with mirror reflection and worst 
individual disturbance grey wolf 
optimizer for continuous global 
numerical optimization
Oluwatayomi Rereloluwa Adegboye 1, Afi Kekeli Feda 2, Opeoluwa Seun Ojekemi 3, 
Ephraim Bonah Agyekum 4, Abdelazim G. Hussien 5,6,7,8* & Salah Kamel 9

The effective meta-heuristic technique known as the grey wolf optimizer (GWO) has shown its 
proficiency. However, due to its reliance on the alpha wolf for guiding the position updates of 
search agents, the risk of being trapped in a local optimal solution is notable. Furthermore, during 
stagnation, the convergence of other search wolves towards this alpha wolf results in a lack of 
diversity within the population. Hence, this research introduces an enhanced version of the GWO 
algorithm designed to tackle numerical optimization challenges. The enhanced GWO incorporates 
innovative approaches such as Chaotic Opposition Learning (COL), Mirror Reflection Strategy (MRS), 
and Worst Individual Disturbance (WID), and it’s called CMWGWO. MRS, in particular, empowers 
certain wolves to extend their exploration range, thus enhancing the global search capability. By 
employing COL, diversification is intensified, leading to reduced solution stagnation, improved 
search precision, and an overall boost in accuracy. The integration of WID fosters more effective 
information exchange between the least and most successful wolves, facilitating a successful exit 
from local optima and significantly enhancing exploration potential. To validate the superiority of 
CMWGWO, a comprehensive evaluation is conducted. A wide array of 23 benchmark functions, 
spanning dimensions from 30 to 500, ten CEC19 functions, and three engineering problems are used 
for experimentation. The empirical findings vividly demonstrate that CMWGWO surpasses the original 
GWO in terms of convergence accuracy and robust optimization capabilities.

Optimization is described as the process of determining the most suitable values for the parameters of a problem 
with the goal to obtain the ideal  solution1. Optimization Algorithms have gained acknowledgment as effective 
instruments for improving various types of single-objective, multi-objective, and many-objective  problems2. The 
effectiveness of these algorithms has resulted in the creation of a large number of swarm intelligence algorithms 
and their extensive use in numerous applications across numerous  fields3. Swarm intelligence algorithms are 
developed by studying the interactions of self-organized living beings in nature and are a subset of Metaheuristic 
Algorithms (MAs)4. Examples of recent MAs include Gannet Optimization Algorithm (GOA)5, African Vul-
tures Optimization Algorithm (AVOA)6, Material Generation Algorithm (MGA)7, Beluga Whale Optimization 
(BWO)8, Archimedes Optimization Algorithm (AOA)9, Artificial Gorilla Troops Optimizer (GTO)10, Dandelion 
Optimizer (DO)11, Golden Eagle Optimizer (GEO)12, Chaos Game Optimization (CGO)13, Fire Hawk Optimizer 
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(FHO)14 and Honey Badger Algorithm (HBA)15. It is also worthwhile to explore certain modified algorithms that 
exhibit exceptional performance, such as Modified Social Group Optimization (MSGO)16, Chaotic Vortex Search 
Algorithm (VSA)17, Modified Marine Predators Algorithm (MMPA)18, and Hybrid Binary Dwarf Mongoose 
Optimization Algorithm (BDMSAO)19. They have found practical applications in various domains, includ-
ing parameter  identification20, feature  selection21,22, Antenna  Optimization23, Image  Segmentation24,25, demand 
 prediction26, Reliability-Based  Design27,28, constrained optimization  problems21,22. These algorithms, however, 
share several challenges, such as a propensity to get trapped in local optimal solutions, sluggish convergence 
rate, and limited precision in identifying the optimal  solution29.

The Grey Wolf Optimizer (GWO) is a Swarm intelligence metaheuristic algorithm developed by Mirjalili et al. 
that emulates the leadership structure and hunting behaviour of grey wolves in the  wild30. The GWO algorithm 
has been successfully used to address different optimization problems, including numerical  optimization31, fea-
ture subset  selection32, engineering  design33, image  analysis34, and other real-world  applications35. Researchers 
have attempted to improve the original GWO by creating various variants, which can be categorized into two 
groups. The first group focuses on implementing distinct optimization strategies to overcome GWO’s limita-
tions. The second group includes variants that combine GWO with other algorithms to enhance its optimization 
capabilities by leveraging the advantages of these combined algorithms.

In the first group, Nadimi-Shahraki et al.36 introduced the Improved Grey Wolf Optimizer (I-GWO) that 
incorporates a novel movement strategy called dimension learning-based hunting (DLH) search strategy, mod-
elled after the solitary hunting tactics used by wolves in the wild. DLH establishes wolf neighbourhoods in a way 
to facilitate the exchange of neighboring information among them. The incorporation of dimension learning in 
the DLH search strategy improves the equilibrium between local and global search and diversity preservation 
in the optimization process. The proposed I-GWO algorithm’s efficacy was assessed using the CEC 2018 test set 
and four real-world problems. I-GWO is contrasted across many tests to six other algorithms. Friedman and 
Mean Absolute Error (MAE) statistical tests are also used to assess the results. In comparison to the algorithms 
employed in the studies, the I-GWO algorithm was highly efficient and frequently outstanding. Mirjalili et al. pro-
posed a Multi-Objective Grey Wolf Optimizer (MOGWO) to address multi-objective problems’  optimization37. 
For that purpose, a fixed-sized external archive was incorporated into the GWO, serving as a repository to store 
and retrieve the best solutions. The incorporated archive influences the definition of social ranking and the 
emulation of grey wolves’ hunting patterns in multi-objective search areas. To assess its performance, the novel 
MOGWO was evaluated on ten multi-objective standard problems and benchmarked against two other popu-
lar MAs. The outputs of the assessments indicate that the MOGWO algorithm surpassed the other MAs under 
consideration in terms of performance. Bansal and Singh suggested an improved grey wolf optimizer to enhance 
the exploration and exploitation capabilities of the traditional  GWO38. Opposition-based learning (OBL) and the 
explorative equation were used to make this improvement. The explorative equation contributed to improving 
GWO’s capacity for exploration. The OBL sped up convergence and prevented the GWO from stagnating. 23 
popular standard functions were used to evaluate the suggested IGWO. The results have been contrasted against 
some recent GWO versions along with additional well-known MAs. The results confirmed that the IGWO has 
better exploration capabilities while yet retaining an excellent speed of convergence. Meidani et al. presented 
another variant called Adaptive GWO (AGWO) that tackles the non-automated variable adjustment and absence 
of precise stopping conditions that frequently result in wasteful consumption of computing  resources39. The 
optimization process was carried out by incorporating an adaptive calibration of the intensification/diversifica-
tion variables depending on the fitness records of the potential solutions. A satisfactory optimal solution can 
be reached by AGWO within a brief period by regulating the stopping criteria depending on the importance of 
fitness increase in the optimization. Through a comprehensive comparative study, they demonstrated that AGWO 
is significantly more efficient than the original GWO and a number of GWO variations that were already in use. 
AGWO achieved this by lowering the number of iterations necessary to arrive at similar solutions to those of 
GWO. Lei et al. introduced Levy Flight to the GWO (LFGWO) to tackle the challenges of premature convergence 
and inadequate  results40. By conducting experiments with eight common algorithms and 23 common benchmark 
functions from CEC 2005, the overall performance of LFGWO was assessed. The findings showed that LFGWO 
performs better than the competing algorithms. Gutpa and Deep introduced a revised RWGWO employing 
a random walk in an effort to enhance the grey wolf ’s search  capabilities41. The algorithm’s performance is 
demonstrated by comparing it with GWO and other advanced algorithms using IEEE CEC 2014 benchmark 
problems. To gauge the effect of enhancing the leaders in the proposed algorithm, a non-parametric test, Wil-
coxon, and Performance Index Analysis were used to analyze outcomes. The findings show that the suggested 
algorithm offers grey wolves greater leadership when searching for prey. Nasrabadi et al. introduced parallelism 
and opposition-based learning methods in an attempt to enhance the basic GWO’s  outcomes42. The setup and 
execution of the revised method on renowned benchmark functions yielded results that showed improvements 
in convergence and accuracy.

In the second group also, noteworthy outcomes were achieved by researchers. By integrating the Elephant 
Herding Optimization (EHO) algorithm with the Grey Wolf Optimizer (GWO), the exploitation and exploration 
performances, as well as the speed of convergence, of the GWO were significantly enhanced by Hoseini et al.43. 
To confirm the effectiveness of the proposed Grey Wolf Optimizer Elephant Herding Optimization (GWOEHO), 
a set of twenty-three benchmark functions and six engineering problems were employed for testing. The perfor-
mance of GWOEHO was compared to that of the GWO and EHO, along with several other popular MAs. The 
statistical analysis using Wilcoxon’s rank-sum test demonstrates that GWOEHO consistently performed better 
than the other algorithms in the majority of function minimization tasks. With the merging of Particle Swarm 
Optimization and Grey Wolf Optimizer, Singh and Singh formed a Hybrid Particle Swarm Optimization and Grey 
Wolf Optimizer (HPSOGWO)44. The major goal was to increase the exploration and exploitation capacities of the 
two algorithms to boost their strengths. A few unimodal, multimodal, and fixed-dimension multimodal testing 
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functions were employed to evaluate the effectiveness and efficacy of the HPSOGWO. The hybrid algorithm 
greatly exceeded the PSO and GWO versions in terms of outcome effectiveness, robustness, speed, and capacity to 
reach the global optimum. Zhao et al. presented another hybrid variant of the grey wolf optimizer that integrates 
opposition-based learning, reinforcement learning, and sine cosine search  strategy45. The novel algorithm was 
employed for scheduling and resource allocation. To validate its effectiveness, six sets of realistic data related 
to space debris tracking were selected. The proposed algorithm’s performance was evaluated in comparison 
with that of other algorithms. The experimental results demonstrate that the proposed algorithm successfully 
tackles the resource allocation and scheduling challenges associated with space debris tracking. Fadheel et al. 
proposed the Sparrow Search Algorithm-Grey Wolf Optimizer (SSAGWO), which is designed for the precise 
tuning of controllers used in frequency  regulation46. The authors succeeded in enhancing the original algorithms’ 
capabilities for exploration and exploitation. SSAGWO was applied to regulate frequency in a two-area Hybrid 
Power System (HPS) simulated in Simulink. To validate the efficacy of the hybrid SSAGWO in controlling the 
frequency of the HPS model, its performance is first evaluated using common benchmark functions. The results 
clearly demonstrate that the hybrid SSAGWO significantly outperforms other state-of-the-art algorithms. J and 
Priya also recently introduced another variant of the GWO, known as the Hybrid Grey Wolf and Improved Par-
ticle Swarm Optimization Algorithm with Adaptive Inertial Weight-based multi-dimensional Learning Strategy 
(HGWIPSOA) to improve the precision and efficiency of task scheduling and resource allocation for Virtual 
Machines (VMs) in cloud  environments47. The algorithm begins by integrating the Grey Wolf Optimization 
Algorithm (GWOA) into the Particle Swarm Optimization (PSO), treating the highest fitness particle as the 
alpha wolf search agent. This integration effectively achieves the task allocation objective for VMs. Additionally, 
the suggested method combines PSO with chaos, Adaptive Inertial Weight, and Dimensional Learning. These 
additional features rely on the best experiences decided by particles to support efficient Load Balancing, with the 
goals of preventing early convergence, improving convergence pace, and enhancing overall search capabilities. 
The HGWIPSOA ’s higher performance was demonstrated in simulation trials, and significant advancements 
were seen. Large tasks were presented in the cloud environment, improvements are constantly seen, putting the 
proposed HGWIPSOA on a level with benchmarked Load Balancing methods.

While these improved GWO variants address the limitations of GWO to a certain degree, there remains 
potential for further enhancement, especially in terms of population diversity, which affects convergence speed, 
precision, and vulnerability to getting trapped in local optima. The original Grey Wolf Optimizer operates by 
utilizing the three most successful wolves in each iteration to guide the search process, resulting in significant 
convergence towards these wolves. However, there are instances where these leading wolves become trapped in 
local extreme points or fail to locate the global optimal solution, particularly in problems with multiple locally 
optimal solutions. Consequently, when the leading wolves encounter local optima, other individuals in the 
population also become susceptible to local extremes. This phenomenon contributes to a decrease in population 
diversity as the wolves converge toward the leaders. Although authors have demonstrated significant progress in 
improving the conventional Grey Wolf Optimizer (GWO) through various enhancement techniques and hybridi-
zation approaches, the literature review reveals a lack of consideration for utilizing physics-inspired techniques 
and leveraging information from the worst wolf to escape local optima and address population diversity. These 
fundamental issues pose challenges to the traditional GWO and serve as the primary motivation for this research. 
This research aims to address these issues by introducing a novel approach called Chaotic Opposition Learning 
with Mirror Reflection and Worst Individual Disturbance Grey Wolf Optimizer (CMWGWO). The CMWGWO 
incorporates three distinct search strategies with unique characteristics to generate and enhance candidate solu-
tions. One of these strategies is Chaotic Opposition learning, which draws inspiration from the concept that the 
opposite of a current solution may yield a superior solution. By leveraging this strategy, population diversity is 
improved throughout the search space, facilitating better escape from local optima. However, since opposition 
learning may lead to suboptimal trapping, chaotic randomness is introduced through chaotic Map functions to 
introduce more randomness to the opposition solution, thereby enabling the algorithm to discover additional 
potential solutions. Additionally, the Mirror Reflection Strategy which is a physics-inspired phenomenon is 
integrated into the updating process to amplify population exploration and expand the search space. This enables 
the population to broaden their search range and approach the optimal solution more closely. Furthermore, 
the Worst individual disturbance strategy is implemented to disrupt the dominance of the leading wolves. This 
approach allows wolves to update their positions based on the worst-performing wolf with a certain probability, 
enabling them to break free from local optima even when the three best-performing wolves are trapped. It also 
promotes better trapping of prey. By incorporating this strategy, the proposed CMWGWO achieves a balance 
between exploration and exploitation by exchanging and merging information between the best and worst wolves, 
ultimately leading to the discovery of the global optimum. CMWGWO distinguishes itself from the recently 
proposed state of art optimizers such as Bonbo Optimizer (BO)48, Quantum-based Avian Navigation optimizer 
Algorithm (QANA)49, and Starling Murmuration Optimizer (SMO)50 by combining the hunting hierarchy of 
GWO, Chaotic Opposition learning, Mirror Reflection Strategy, and Worst Individual Disturbance for enhanced 
exploration and escape from local optima. BO relies on a fission–fusion social strategy inspired by Bonobos, 
QANA integrates quantum principles for navigation, and SMO emphasizes dynamic multi-flock construction for 
effective exploration. Each algorithm has unique features tailored to specific inspirations, making them suitable 
for different optimization challenges. The research presented in this study contributes in the following ways:

(1) A novel Grey Wolf Optimizer (GWO) approach is introduced, incorporating Chaotic Opposition learning, 
Mirror Reflection Strategy, and Worst Individual Disturbance. This innovative GWO variant is specifically 
designed for Global Numerical Optimization problems.
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(2) By incorporating Chaotic Opposition learning into GWO, the algorithm mitigates stagnation and enhances 
diversification, leading to improved solution accuracy.

(3) The integration of the Mirror Reflection Strategy into the GWO updating process amplifies population 
exploration and expands the search space. This enables the algorithm to explore a wider range of potential 
solutions.

(4) The proposed worst individual disturbance strategy reduces the probability of the algorithm getting stuck 
in local optima. By exchanging information between the best and worst wolves, it enhances population 
diversity and improves the algorithm’s ability to trap prey.

(5) The performance of the proposed algorithm is thoroughly evaluated by comparing it to nine other algo-
rithms across twenty-three test functions. This evaluation provides insights into its effectiveness and effi-
ciency.

(6) In addition to numerical optimization problems, the proposed algorithm is also evaluated on three engi-
neering design issues, demonstrating its applicability and effectiveness in solving practical problems.

The subsequent sections of this paper are organized as follows: “Grey wolf optimizer (GWO)” section pro-
vides an introduction to the background of GWO. In “Proposed CMWGWO” section, the proposed algorithm’s 
mechanism is explained and the proposed CMWGWO is presented. The complexity of the new CMWGWO is 
discussed in “Computational complexity of CMWGWO” section, The experimental results are discussed and 
displayed in “Experiments and result analysis” section. Lastly, “Conclusion” section concludes the paper and 
outlines future research directions.

Grey wolf optimizer (GWO)
GWO, an optimization algorithm inspired by the hierarchical structure and hunting dynamics of grey  wolves30, 
employs a population division into four levels denoted as α,β , δ and ω . The uppermost level comprises the α 
wolf, followed by the β wolf in the subsequent tier, and the δ wolf in the third tier. The remaining wolves, situ-
ated in the lowermost layer, are known as ω wolves or search wolves as seen in Fig. 1. The α,β and δ wolves serve 
as leaders, each with a count of one. In GWO, the objective is for the ω wolves, representing the search wolves, 
to update their position and attain the optimal solution. Meanwhile, the α,β , and δ wolves represent the best, 
Second best, and third-best Solutions, respectively. The hunting behavior of grey wolves is primarily directed 
by the leading wolves ( α,β , and δ ), guiding the iterative position updates of the search wolves ( ω ) based on the 
leaders’ locations. This iterative process can be mathematically described as the formula governing the movement 
of the grey wolves in pursuit of their prey

where t  represents the current iteration count, ∗ denotes the product operation, Xp represents the position vector 
of the prey, X represents the position vector of a grey wolf, and the calculation formulas for random vectors A 
and C are expressed as follows:

The utilization of random vectors and linearly decreasing values to optimize the position updates in GWO is 
discussed below. Figure 2 illustrates the potential areas that the ω wolf can occupy around the prey by adjusting 

(1)D = C ∗ Xp(t)− X(t)

(2)X(t + 1) = Xp(t)− A ∗ D

(3)A = 2a ∗ r1 − a

(4)C = 2r2.

Figure 1.  Hierarchical model of GWO.
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the parameters A and C . The random variables r1 and r2 aid the search wolves in reaching different points 
depicted in Fig. 2, both variables are within [0, 1], a decrease from 2 to 0 over the increment of iteration number. 
The parameters A and C play a crucial role in the exploration and exploitation behaviour of GWO. A takes on a 
random value within the range of [− a , a ]. When A > 1 and C > 1 , the population demonstrates a preference for 
exploration. Conversely, when A < 1 and C < 1 , the population exhibits a tendency towards exploitation. The 
formulas governing the tracking of the grey wolves to target their prey are as follows:

The distances between the lead wolves and search wolves in this situation are represented by the symbols Da , 
Dβ , and Dδ , respectively. The locations of the lead wolves are shown by the symbols Xα , Xβ , and Xδ . While X1 , 
X2 , and X3 represent the step size and direction of the ω wolf towards the lead wolves, respectively, C1 , C2 , and 
C3 are random vectors. Equation (6) is used to determine the wolf ’s ultimate location. Algorithm 1 shows the 
iterative process of GWO.

(5)

{
Da = C1 ∗ Xα − X
Dβ = C2 ∗ Xβ − X
Dδ = C3 ∗ Xδ − X{
X1 = Xα − A1 ∗ Dα

X2 = Xβ − A2 ∗ Dβ

X3 = Xδ − A3 ∗ Dδ

(6)X(t + 1) = X1 + X2 + X3

3
.

Figure 2.  Illustration of search wolf during exploration and exploitation.
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Algorithm 1 Steps of GWO

Proposed CMWGWO
Chaotic opposition learning (COL)
Opposition-based learning (OBL) stands as a robust Optimizer improvement methodology in the domain of 
intelligence computation, initially introduced by  Tizhoosh51. Generally, MAs begin with random initial solutions 
and iteratively strive to move closer to the global best solution. The termination of the search process occurs 
when specific predetermined requirements are met. In the absence of pertinent advance information about 
the solution, convergence might require a considerable amount of time. To address this, OBL incorporates a 
novel approach, depicted in Fig. 3, which involves assessing the fitness values of the current solution and the 
matching opposing solution at the same time. The superior individual is then retained for the next iteration, 
thereby promoting population diversity effectively. Notably, the opposite candidate solution has nearly a 50% 
higher chance of being closer to the global optimum compared to the current  solution52. Consequently, OBL 
has gained widespread adoption as it significantly enhances the optimization performance of various  MAs53,54. 
The mathematical representation of OBL is as follows:

The opposite solution is denoted by X̂ , while X represents the current solution. lb and ub correspond to the 
lower and upper limits of the search area. As evidenced by Eq. (7), OBL has the limitation of producing the 
opposite solution at a given  position55. This approach proves effective during the initial optimization phases. 
However, as the search process advances, there is a possibility that the opposite solution may end up close to 
a local optimum. Consequently, other individuals in the population might rapidly gravitate towards this area, 
leading to premature convergence and reduced solution accuracy. In response to this issue, the random oppo-
sition-based learning (ROBL) strategy which incorporates random perturbations to modify Eq. (7) as follows 
was introduced in this work:

(7)X̂ = lb+ ub− X.

Figure 3.  Graphical illustration of opposition learning.
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rand is an arbitrary value taken from the interval [0, 1]. While ROBL demonstrates some improvement in 
population diversity and is efficient in mitigating local optima, its convergence speed remains unsatisfactory. 
Chaos is the unpredictability observed in nonlinear structures, which possess dynamic, random, and ergodic 
properties. Incorporating chaos theory in algorithms facilitates the acceleration of convergence and strengthens 
the capability to maintain diversity. The CMWGWO includes a hybrid approach that combines normal OBL 
with chaotic maps, referred to as the chaotic opposition learning (COL) strategy. The mathematical expression 
for COL is provided below:

X̂CO represents the inverse solution of X, and φ denotes the value of the chaotic map. The chaotic Map intro-
duced in this work is calculated as given in Eq. (10)

The visual representation of the COL implemented in this work is displayed in Fig. 4. The illustration depicts 
that with the introduction of Chaos, the opposition solution, instead of falling in the same position can avoid 
getting trapped in the local Optimal by falling in random positions.

Mirror reflection strategy (MRS)
The mirror reflection principle describes the phenomena that occur when light comes into contact with the 
boundary between two different  media56. This principle comes into play when a portion of the incident light 
returns to the original medium. There are two basic rules that govern mirror reflection. Firstly, the angle at 
which the light is reflected (angle of reflection) is equivalent to the angle at which it strikes the surface (angle of 
incidence). Secondly, the reflected and the incident ray lie on opposite sides of an imaginary line denoted the 
"normal" that is perpendicular to the surface at the point of reflection. Drawing inspiration from these well-
established principles, the proposed CMWGWO includes a Mirror Reflection Learning (MRL) strategy. In the 
MRL strategy, we represent the incident angle direction of a potential solution on the x-axis to denote its loca-
tion. Simultaneously, the reflected angle direction on the x-axis represents the mirrored version of the solution. 
The MRL method explores both the potential solutions and their mirror reflections, to choose the best solution 
thereby expanding the search area. Figure 5 gives a visual demonstration of the concept of mirror-reflection 
learning. The potential answers are chosen within the [lb, ub] interval. The halfway between lb and ub is denoted 
by O = (X0, 0) and X(a, 0) denotes an arbitrary variable inside the same interval, (b, 0) is the location of Xm , the 
mirror reflection of X . The following Eqs. (11) to (14)  define the relationship between incident and reflection 
angles and subsequently provide a method for determining the mirror-reflected solution. They are based on the 
first law of mirror reflection previously mentioned in the subsection: The angle of reflection is equal to the angle 
of incidence. Equation (11) and (12) establishes the relationship between the incident angle (α) and the reflection 
angle (β) using the tangent function:

By considering α as the incident angle and β as the reflection angle, Eq. (13) can be derived following the 
first rule of reflection.

(8)X̂ = lb+ ub− rand ∗ X

(9)X̂CO = lb+ ub− ϕ ∗ X

(10)ϕi+1 =
{
1, ϕi = 0

1
mod(ϕi ,1)

, otherwise

(11)tanα = X0 − a

A0

(12)tanβ = b− X0

B0
.

Figure 4.  Graphical illustration of chaotic opposition learning.
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To simplify Eq. (14), a variable �m is introduced such that B0 = �mA0, resulting in the following expression:

Equation (16) provides the expression of �m.

Here, µ and Q are the elasticity coefficients and neighborhood radius, both occurring inside the interval of 
[0,1], and r1 and r2 are arbitrary values between 0 and 1. The inverse solution’s updated equation is expressed 
as follows:

In this work, we have uniquely incorporated the levy mechanism into Eq. (17). This incorporation is motivated 
by its potential to significantly contribute to the exploration–exploitation balance, which is a crucial aspect in 
improving the performance of CMWGWO. The Levy flight, inspired by the Levy distribution, possesses unique 
characteristics that facilitate long-range exploration in the search  space57. By leveraging this feature, MRS can 
effectively escape local optima, thus promoting the exploration of promising regions that may lead to superior 
solutions. Moreover, the Levy flight mechanism enhances the algorithm’s capability to diversify the search pro-
cess, which helps maintain population diversity and mitigate premature convergence issues.

Worst individual disturbance (WID)
Majority of the improved variants of the GWO algorithm focus on increasing the chances of population individu-
als converging towards the best wolf. For example, the Grey Wolf Optimizer based on a new Weighted Distance 
(GWO-WD) introduced by Yan et al. eliminates and repositions several of the worst  individuals58. However, it 
is important to reflect on the natural laws that Grey wolves must adhere to while hunting. During the process 
of surrounding their prey, Grey wolves encounter both the chance of successfully encircling the prey and the 
potential risk of the prey evading capture. This phenomenon is accurately modelled in the HHO algorithm that 
mimics the hunting behaviour of Harris hawks when they catch  rabbits59. In HHO, there is a probability that the 
rabbit being chased by the hawk may escape. In that case, while the global optimal individual guides the entire 
population towards the best solution, there is a risk of getting stuck in a local optimum, leading to stagnation 
and failure to escape the local optimal space. Based on this idea, the proposed CMWGWO incorporates a worst 
individual disturbance strategy to escape local optima in case of unsuccessful encircling leading to a greater and 
more dynamic exploration of the search area as illustrated in Fig. 6, thus increasing the chances of finding better 
solutions. Equation (18) represents the encirclement phase, taking into account the global worst wolf:

(13)
X0 − a

A0
= b− X0

B0

(14)b = B0(X0 − a)

A0
+ X0

(15)b = (�m + 1)X0 − �ma = (0.5�m + 0.5)× (lb+ ub)− �ma.

(16)�m =
{
1+ µQ, if r1 > r2
1− µQ, otherwise

(17)Xm = (0.5�m + 0.5)×
(
low + up

)
− �mX ∗ Levy().

(18)Xt+1
i = rand ∗ Xt

α − A ∗
∣∣C ∗ Xt

α − Xt
i

∣∣+ (1− rand) ∗ Xt
w .

Figure 5.  Illustration incident reflected light on a mirror surface.
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In the equation, Xt
w represents the global worst wolf, and rand is a randomly generated number from the 

interval [0,1]. rand and (1–rand ) are assigned randomly to Xt
α and Xt

w . Due to the uncertainty introduced by 
rand  and its random variation between 0 and 1, the search process is influenced not only by the global optimal 
individual but also by Xt

w . A higher value of rand implies a more pronounced impact of the optimal individual 
on the formula, bringing the wolves closer to the target, effectively simulating a successful prey encirclement 
scenario. In contrast, if rand is small, the impact of the worst individual on the formula becomes prominent, 
replicating the situation where wolves fail to encircle their prey effectively.

CMWGWO is an improved variant of the GWO algorithm, incorporating three novel techniques (WID, 
COL, and MRS) to enhance its performance. The algorithm starts by initializing a population of grey wolves as 
eventual solutions to an optimization problem. Each wolf ’s fitness is evaluated, and the best-performing wolves 
( α,β , δ ) and Worst the Worst wolf are identified. The main loop iteratively updates wolf positions using calcu-
lated parameters A, a, and C . The WID technique is applied with a probability of a random number less than 
p1 and when |A|< 1 to some wolves. |A|< 1 implies the exploitation phase in other words, during this phase, if 
the best wolf gets trapped in suboptimal or the prey evades capture, the population can weaken the leadership 
of the best wolf to avoid convergence towards local optimal by using the information exchange between the 
best wolf and worst to break out of local optimal, furthermore the population is able to keep track of the prey 
effectively, followed by COL with a probability of p3 , and MRS with a probability of p2 to improve diversity and 
amplify population exploration by expanding the search space respectively, all these improvements are subject 
to boundary constraints. The process continues until a termination condition is met. These newly introduced 
techniques aim to improve the exploration and exploitation abilities of the original GWO, potentially leading to 
improved optimization results. The step-by-step procedure of CMWGWO is expressed in Algorithm 2 and the 
graphical illustration is given in Fig. 7.

Figure 6.  Information exchange between alpha wolf and worst wolf.
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Figure 7.  CMWGWO flow chart.
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Algorithm 2 Steps of CMWGWO

Computational complexity of CMWGWO
To analyze the computational complexity of the CMWGWO algorithm, we need to assess the complexity of 
each individual step and the number of iterations performed in the while loop. The breakdown of the steps and 
analysis of complexity is given below:

1. Random initialization: Initializing the grey wolf population Xi(i = 1, 2, 3 . . . n) involves generating random 
values for each individual wolf ’s position in the search space. The complexity of this step is O(n) , where n is 
the size of the population and big O denotes CMWGWO’s  complexity60,61.

2. Fitness evaluation: Evaluating the fitness of each grey wolf requires evaluating the objective function of each 
individual. The computational complexity of this step depends on the complexity of the objective function 
and how it scales with the problem size. The complexity of evaluating the objective function as O

(
fitness

)
.

3. Finding the α,β , δandWorst : This step involves identifying the best, second-best, third-best, and worst grey 
wolves based on their fitness values. The complexity of finding these wolves is O(n).

4. The main loop (While loop): The main optimization loop iterates until the termination condition is met 
(t < Maxit) . The number of iterations is determined by Maxit , so we can denote the complexity of the while 
loop as O(Maxit).

5. Calculations within the loop: Within each iteration of the while loop, there are three separate techniques 
included in traditional GWO. The complexity of each of these techniques can be denoted as O(1) since they 
involve basic arithmetic operations and comparisons.
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6. Boundary checks are carried out once each wolf ’s new position has been determined to make sure that 
it remains inside the bounds of the search area. The dimension of the search area and the effectiveness of 
the boundary-checking method determine how complicated these boundary checks are. Boundary check 
complexity is expressed as O(d) , where d is the search area ’s dimensionality. The computational complexity 
of the CMWGWO algorithm can be approximated as expressed in Eq. (19), due to the introduction of these 
new techniques it is evident that the complexity of CMWGWO is higher than that of the original GWO:

Experiments and result analysis
In this part, we will carry out tests to verify CMWGWO’s efficacy while highlighting the improvement it offers. 
To confirm their effectiveness, each mechanism’s analysis will be used to comprehensively assess the improve-
ment techniques used. To support the validity of CMWGWO’s superiority, studies will also be undertaken to 
evaluate the optimization performance of CMWGWO with various improved versions of GWO. The enhanced 
GWO in this work will also be put up against original algorithms, further demonstrating the optimization value 
of GWO. Benchmarking the performance of several algorithms using a variety of complex tasks is an important 
 step62. Therefore we will put CMWGWO through 23 benchmark functions, 10 CEC 2019 functions, and 3 real-
world engineering situations to show its supremacy. The 23 benchmark functions are specifically described in 
Table 1, together with their mathematical formulations, dimensions, and theoretically ideal values. Researchers 
have carefully chosen these test functions from a list of frequently used CEC  functions63. Table 1 displays a set of 
7 unimodal functions (F1-F7), each containing a single minimum value. These functions are ideal for evaluating 
the algorithm’s exploitation performance, as they test its ability to converge to the global minimum. Additionally, 
Table 1 includes 6 multimodal functions (F8-F13), which differ from F1-F7 by having numerous local optimal. 
These functions  assess the algorithm’s exploration  capability64, as they require it to search for multiple optimal 
solutions. Their expressions are provided in Table 1. Moreover, F14-F23 are multimodal functions as well, but 
they have a fixed dimensionality. In addition to 23 functions, CEC 2019 functions (C1–C10) are employed. The 
intricacy of this test suite has been increased by shifting and rotating them relative to the usual functions. Table 2 
includes the details of the test suite. Throughout this work we will carry out 500 iterations with a population size 
of 50, in order to preserve the validity of the studies 30 repeated runs will be carried out to lessen the effects of 
population randomness and population concentration brought on by randomness, and the average value (AVG), 
standard deviation (STD) and Best will indicate the outcomes of each algorithms optimization.

Statistical and non-parametric analysis of each improvement technique contribution
Three strategies WID, COL, and MRS, are used by the CMWGWO algorithm to improve optimization per-
formance. Three GWO variations were evaluated on 23 functions to show the impact of various techniques on 
GWO. Each variant denotes the employment of a single strategy: WIDGWO denotes the only application of 
the WID strategy, COLGWO denotes the sole application of the COL strategy, and MRSGWO denotes the sole 
application of the MRS approach. CMWGWO stands for the entire combination of all three methodologies. By 
contrasting the AVG, STD, and Best of the outcomes attained by each method across several functions, as shown 
in Table 3, the impacts of these techniques on GWO’s search capability can be investigated. The average and best 
values provided by the COLGWO, WIDGWO, and MRSGWO algorithms are typically better than those of the 
conventional GWO, demonstrating that these three optimization techniques significantly enhance the algorithm’s 
optimization accuracy in both exploration and exploitation. Additionally, CMWGWO surpasses COLGWO, 
WIDGWO, and MRSGWO in the majority of functions when considering average values, best values, and stand-
ard deviations of their results, outperforming all three optimization procedures. This shows that using all three 
of these procedures together enhances GWO’s optimization speed and guarantees stable optimization capability.

The nonparametric Wilcoxon signed-rank test was used across the 23 functions to compare the differences 
between the 4 distinct GWOs and CMWGWO in Table 3 at a significance threshold of 5% recorded as a P Value 
in Table 3. Table 3 also shows the contrast between CMWGWO and various GWOs. The symbols “+”, “−”, and 
“=” denote that CMWGWO is more superior to, less superior than, and identical to the comparison algorithm. 
According to the results, CMWGWO performs better than the original GWO in 17 out of 23 functions and is 
inferior to GWO in just 2 of them. Using the three strategies, CMWGWO exceeds COLGWO, CIGWO, and 
MRSGWO in 16 functions, 17 functions, and 14 functions, respectively. This indicates that the three strategies 
employed in CMWGWO complement each other, compensating for the shortcomings of GWO and significantly 
enhancing its performance across different test functions that test both the diversification and intensification 
capacity of CMWGWO. Notably, when comparing CMWGWO to other variants of GWO, including the tradi-
tional GWO in Table 3, the difference is less than 0.05 as indicated by the P Value, implying significant improve-
ments in performance. The exception is MRSGWO, where CMWGWO shows no significant difference because it 
achieves similar results to MRSGWO in some functions, this also shows that the MRS being part of CMWGWO 
contributes to its exceptional performance. The Friedman Average (FRD-AVG) of CMWGWO is 1.80, ranking 
first among the five algorithms, and the FRD-AVG of the GWOs with other strategies is also smaller than that 
of the original GWO. This highlights that CMWGWO’s overall performance surpasses other GWO variants and 
the traditional GWO in the comprehensive ranking using the Friedman Rank.

Figure 8 presents the convergence paths of CMWGWO and other variants based on different techniques, 
with the goal of evaluating the distinct performance of CMWGWO in achieving convergence while dealing with 
optimization functions. The study involves comparing CMWGWO with other algorithms derived from differ-
ent techniques and the traditional GWO. The outcomes clearly demonstrate that CMWGWO outperforms the 
traditional GWO and other variants developed from different techniques in terms of convergence precision, 

(19)O(n)+ O
(
fitness

)
+ O(n)+ O(Maxit)+Maxit ∗ (3 ∗ O(1)+ n ∗ (O(1)+ O(d))).
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particularly on all unimodal functions except F5. Remarkably, CMWGWO showcases exceptional convergence 
rates and successfully reaches the best optimal solution for F10, F11, F14-19, F21, and F23, showcasing its profi-
ciency in handling multimodal functions. Comparatively, CMWGWO exhibits better convergence efficiency than 
GWO and other counterparts. These findings provide compelling evidence that the population diversification 
adjustments and the introduction of enhanced exploration techniques have significantly contributed to the suc-
cess of CMWGWO. The experimental data strongly support the notion that CMWGWO has greatly improved 
its optimization capability and convergence performance.

Dimension impact statistical analysis and non-parametric test of 23 test functions
CMWGWO is compared with several variants of GWO and Original algorithms, namely  GWO30, Adaptive GWO 
(AdGWO)39, GWO based on Aquila exploration (AGWO)65, Augmented GWO & Cuckoo Search (AGWOCS)66, 
Random Walk GWO (RWGWO) 41, Hybrid-Flash Butterfly Optimization Algorithm (HFBOA) 67, Chimp Opti-
mization Algorithm (CHOA)68, Particle Swarm Optimization (PSO)69 and Sine Cosine Algorithm 70 in this sec-
tion on 23 functions while varying the dimension of each function. The parameters of this algorithm can be found 
in Table 4. Other parameters like iteration, population, and number of runs are set to 50, 500, and 30, respectively.

Table 1.  Mathematical of 23 benchmark function.

Function Range Dim Fmin

f1(x) =
∑n

i=1 x
2
i [− 100,100] 30/100/200/500 0

f2(x) =
∑n

fmin
|xi | +

∏n
i=1 |xi | [− 10,10] 30/100/200/500 0

f3(x) =
∑n

i=1

(∑i
j−1 xj

)2 [− 100,100] 30/100/200/500 0

f4(x) = min{|xi |, 1 ≤ i ≤ n} [− 100,100] 30/100/200/500 0

f5(x) =
∑n−1

i=1 100i
(
xi+1 − x2i

)2 + (xi − 1)2 [− 30,30] 30/100/200/500 0

f6(x) =
∑n

i=1 ([xi + 0.5])2 [− 100,100] 30/100/200/500 0

f7(x) =
∑n

i=1 ix
4
i + random[0, 1) [− 1.28,1.28] 30/100/200/500 0

f8(x) =
∑n

i=1 −xisin
(√

|xi |
)

[− 500,500] 30/100/200/500  − 418.9892 × dim

f9(x) =
∑n

i=1

[
x2i − 10cos(2πxi)+ 10

]
[− 5.12,5.12] 30/100/200/500 0

f10(x) = −20exp


−0.2

���� 1

n

n�

i=1

x2i




− exp

�
(1/n)

n�

i=1

cos(2πxi)

�
+ 20+ e

[− 32,32] 30/100/200/500 0

f11(x) = 1/4000
∑n

i=1

∑
x2i −

∏n
i=1 cos

(
xi/

√
i
)
+ 1 [− 600,600] 30/100/200/500 0

f12(x) = π/n

{
n−1∑

i=1

(
yi − 1

)2[
1+ 10sin2

(
πyi+1

)]
+

(
yn − 1

)2
}

+
n∑

i=1

u(xi , 10, 100, 4)+ π/n10sin
(
πy1

)

yi = 1+ xi + (1/4)u(xi , a, k,m) =
{

k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

[− 50,50] 30/100/200/500 0

f13(x) = 0.1

{
n∑

i=1

(xi − 1)2
[
1+ sin2(3πxi + 1)

]
+ (xn − 1)2

[
1+ sin2(2πxn)

]
}

+ 0.1sin2(3πx1)+
n∑

i=1

u(xi , 5, 100, 4)

[− 50,50] 30/100/200/500 0

f14(x) =
(
(1/500)+

∑25
j=1 1/j +

∑2
i=1

(
xi − aij

)6)−1 [− 65,65] 2 1

f15(x) =
∑11

i=1

[
ai − x1

(
b2i + bix2

)
/b2i + bix3 + x4

]2 [− 5,5] 4 003

f16(x) = 4x21 − 2.1x41 + 1/3x61 + x1x2 − 4x22 + 4x42 [− 5,5] 2  − 1.0316

f17(x) =
(
x2 − 5.1/4π2x21 + 5/πx1 − 6

)2 + 10(1− (1/8π))cosx1 + 10 [− 5,5] 2 0.398

f18(x) =
[
1+ (x1 + x2 + 1)2

(
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)]

×
[
30+ (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)] [− 2,2] 2 3

f19(x) = −
∑4

i=1 ciexp
[
−
∑3

j=1 aij
(
xj − pij

)2] [1, 3] 3  − 3.86

f20(x) = −
∑4

i=1 ciexp
[
−
∑j=1

j=1 aij
(
xi − pij

)2] [0,1] 6  − 3.32

f21(x) = −
∑5

i=1

[
(X − ai)(X − ai)

T + ci
]−1 [0,10] 4  − 10.1532

f22(x) = −
∑F=1

i=1

[
(X − ai)(X − ai)

T + ci
]−1 [0,10] 4  − 10.4028

f23(x) = −
∑10

i=1

[
(X − ai)(X − ai)

T + ci
]−1 [0,10] 4  − 10.5363
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By raising the dimension (Dim) of functions F1–F13 in the benchmark suite to 30, 100, 200, and 500, the 
effectiveness of CMWGWO in tackling high-dimensional optimization problems was assessed in this section. 
Tables 5, 6, 7 and 8 showcase the statistical experiment findings based on AVG (average), STD (standard devia-
tion) and Best results for each function on the benchmark suite with Dim = 30, 100, 200, and 500, respectively, 
CMWGWO got remarkable FRD-AVG ranking values of 2.11, 1.73, 1.79, and 1.67, demonstrating that CMW-
GWO consistently ranks top across all dimensions it can be inferred that CMWGWO show robustness in complex 
problem handling as it maintain superior performance compared to other algorithm. The data shown in Tables 5, 
6, 7 and 8 confirms the efficacy of each technique introduced to this variant of GWO.

For functions F1–F7, in Table 5 (functions F1–F6), Table 6 (functions F1–F3, F5–F7), Table 7 (Functions 
F1–F3, F5–F7) and Table 8 (Functions F1–F7) CMWGWO obtained the best solution in these functions as the 
complexity of problem increased with the dimension. This suggests that CMWGWOO has the ability to converge 
to the global optimal value. This observation demonstrated that the CMWGWO has a high exploitative ability 
while solving unimodal functions compared to the original GWO. In addition, GWO variations such as AdGWO 
and AGWOCS produced competitive results. Moving on to F8-F13 in Tables 5, 6, 7 and 8, CMWGWO consist-
ently outperforms other competitors and GWO variants, in functions F8, F11-F13. Furthermore, in Table 5, 
F21-F23, which are fixed-dimension functions, CMWGWO maintains superior performance in F14-F19, F21, 
and F23. The superior performance of CMWGWO can be attributed to the improvement strategies. COL main-
tains high diversity during optimization, MRS improves population exploration capacity, and WID enhances the 
population’s ability to approach the optimal solution while reducing the dominance of the best wolf in order to 
escape local optima in multi-peaked problems (F13-F24). The P Value results from the Wilcoxon signed-rank test 
on the 23 benchmark suite at Dim = 30, 100, 200, and 500, shown in Tables 5, 6, 7 and 8, confirm that CMWGWO 
is significantly superior to other competitors. The statistical analysis further verifies that CMWGWO effectively 
enhances optimization performance in the search process.

Statistical and non-parametric analysis of CEC 2019 functions
To evaluate the proposed optimizers performance in intricate objective functions, the AVG, STD, and Best were 
used as assessment metrics to gauge the precision as well as the reliability of the CMWGWO and other optimizers. 
It is evident from the statistics in Table 9 that CMWGWO obtains the most optimum solution for five out of ten 
functions. It is extremely crucial to highlight that the effectiveness of CMWGWO is a substantial advancement 
beyond the traditional GWO as well as other methods in C1, C4, C6, C7, C8, and C9 in terms of AVG. This 
significant enhancement is anticipated as a result of the addition of improvement strategies to enhance CMW-
GWO’s capacity to enhance local and global search while preserving variety. As a consequence, CMWGWO’s 
overall performance has significantly improved. Based on the Wilcoxon signed-rank test  the P Values in Table 9, 
CMWGWO shows statistically significant improvement compared to AdGWO, AGWO, CHOA, HFBOA, GWO, 
AGWOCS, RWGWO, PSO, and SCA (P < 0.05). The Friedman test ranks CMWGWO as the best-performing 
algorithm among the ten, indicating its overall superiority in terms of these metrics. This shows that with MRS, 
COL, and WID, CMWGWO is able to maintain stability in overcoming local optimal and keeping population 
diversity consistent throughout the iteration process in challenging problems.

Convergence and box plot analysis on 23 functions and CEC 2019 functions
Figures 9, 10, 11 and 12 compare the CMWGWO method with nine different cutting-edge algorithms using con-
vergence curves and box plots on 23 functions (30 dim) and CEC 2019 respectively. These charts show how each 
algorithm’s average accuracy changes as the number of iterations rises, as shown in Figs. 9 and 10. The distribu-
tion of the final optimal solutions attained by each method is shown by the box plots. The minimum, maximum, 
lower quartile (Q1), median, upper quartile (Q3), and any outliers can all be viewed clearly inside the box plots in 
Figs. 11 and 12. The best set of solutions from each iteration of 30 iterations is displayed by a box plot, while the 
orange line inside the box denotes the median. Notably, an outlier is a data point that deviates significantly from 
the norm and is identified by a red “+” sign. This comparison’s goal is to illustrate and assess the variations in opti-
mization performance between CMWGWO and other cutting-edge algorithms. The convergence curves provide 

Table 2.  CEC 2019 test suite.

No Function names Range Dim Fmin

c1 Storn’s Chebyshev polynomial fitting problem [−8, 192, 8, 192] 9 1

c2 Inverse Hilbert matrix problem [−16, 384, 16, 384] 16 1

c3 Lennard–Jones minimum energy cluster [−4, 4] 18 1

c4 Rastrigin’s function [−100, 100] 10 1

c5 Griewank’s function [−100, 100] 10 1

c6 Weierstrass function [−100, 100] 10 1

c7 Modified Schwefel’s function [−100, 100] 10 1

c8 Expanded Schaffer’s F6 function [−100, 100] 10 1

c9 Happy Cat function [−100, 100] 10 1

c10 Ackley function [−100, 100] 10 1
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CMWGWO GWO COLGWO WIDGWO MRSGWO

F1

 Avg 4.64E−240 1.73E−36 1.27E−76 1.26E−191 1.93E−53

 Std 0 1.17E−36 2.43E−77 0 1.03E−53

 Best 6.03E−261 1.44E−90 2.19E−194 6.94E−75 4.96E−38

F2

 Avg 1.64E−128 7.35E−22 3.37E−43 4.84E−104 1.02E−27

 Std 1.39E−128 6.64E−22 2.86E−43 4.52E−104 6.32E−28

 Best 4.13E−136 3.38E−50 1.42E−105 3.49E−33 1.83E−22

F3

 Avg 1.22E−170 4.85E−7 3.81E−50 2.82E−124 9.10E−11

 Std 0 1.23E−7 3.14E−50 1.53E−124 5.37E−11

 Best 3.59E−188 2.08E−63 4.24E−131 4.32E−25 1.02E−10

F4

 Avg 2.97E−92 7.45E−8 3.95E−30 8.63E−77 7.08E−11

 Std 2.04E−92 7.14E−8 1.76E−30 7.14E−77 1.16E−11

 Best 1.00E−96 6.77E−37 2.76E−79 9.79E−23 4.86E−9

F5

 Avg 1.18 2.66E+1 2.67E+1 2.76E+1 1.31E−1

 Std 6.66E−1 7.27E−1 6.48E−1 6.06E−1 9.57E−2

 Best 3.82E−3 2.60E+1 2.66E+1 3.62E−2 2.55E+1

F6

 Avg 7.51E−6 4.85E−1 3.51E−1 2.26 3.92E−5

 Std 5.81E−6 2.83E−1 2.67E−1 3.04E−1 1.01E−5

 Best 3.33E−7 2.08E−5 1.60 2.39E−5 3.81E−5

F7

 Avg 4.76E−5 1.50E−3 5.15E−5 1.02E−4 9.95E−4

 Std 3.85E−5 6.22E−4 4.73E−5 9.38E−5 9.77E−4

 Best 4.70E−6 4.34E−7 9.13E−6 3.30E−5 3.37E−4

F8

 Avg − 1.06E+4 − 6.35E+3 − 5.73E+3 − 3.13E+3 − 1.09E+4

 Std 1.79E+3 1.00E+3 1.40E+3 3.12E+2 1.69E+3

 Best − 1.26E+4 − 8.06E+3 − 3.94E+3 − 1.26E+4 − 8.06E+3

F9

 Avg 9.11 1.03E+1 0 0 1.53E+1

 Std 6.47 1.00E+1 0 0 1.42E+1

 Best 0 0 0 0 1.71E−13

F10

 Avg 8.00E−16 3.81E−14 4.00E−15 4.00E−15 5.07E−15

 Std 7.98E−16 3.57E−15 0 0 4.98E−15

 Best 4.44E−16 4.00E−15 4.00E−15 4.44E−16 3.24E−14

F11

 Avg 0 3.72E−3 0 0 1.70E−3

 Std 0 2.50E−3 0 0 5.18E−4

 Best 0 0 0 0 0

F12

 Avg 3.61E−5 2.48E−2 3.01E−2 1.52E−1 4.15E−6

 Std 3.19E−5 1.14E−2 1.64E−2 3.49E−2 1.88E−6

 Best 4.83E−7 6.53E−3 8.92E−2 1.36E−6 6.31E−3

F13

 Avg 4.77E−4 3.44E−1 3.96E−1 1.39 5.44E−5

 Std 4.18E−4 1.56E−1 2.18E−1 1.93E−1 2.65E−5

 Best 4.67E−6 2.97E−5 9.43E−1 1.94E−5 8.80E−2

F14

 Avg 9.98E−1 3.55 2.18 4.20 9.98E−1

 Std 0 3.52 1.90 4.11 0

 Best 9.98E−1 9.98E−1 9.98E−1 9.98E−1 9.98E−1

Continued
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information on how the best solution values change when the search process of each approach is performed. 
A low value representing the best solution found indicates that the approach is more capable of optimization. 
The box plots, on the other hand, give details about how the best results from each approach are distributed. A 
technique is more stable and hence more resistant to changes in the search space if the approach’s box sizes in 
the box plots are smaller. To put it another way, the box plots illustrate how consistently each approach finds the 
ideal answer while the convergence curves show how effectively each method achieves that goal.

The CMWGWO technique displays quick convergence in its early phases, as seen in Fig. 9. It’s interesting 
to note that the CMWGWO approach continues to explore high-quality regions while other algorithms tend to 
have a flattened curve meaning they can easily be stuck in local optimal. Furthermore, according to the findings, 
CMWGWO demonstrates quicker convergence for all functions other than F7 in uni-modal functions (F1-F7). 
The suggested technique, however, performs better for multimodal functions than current approaches, with 
better results for functions F8, F11, F12, and F13. Additionally, the suggested method exhibits admirable and 
exceptional convergence for functions F14–F19, F21, and F23, categorized as fixed-dimension functions. Notably, 
the CMWGWO outperforms AGWO, AdGWO, and AGWOCS in establishing a balance between convergence 

Table 3.  Statistical and non-parametric test comparison of GWO outcomes using different techniques. 
Significant values are in [bold].

CMWGWO GWO COLGWO WIDGWO MRSGWO

F15

 Avg 3.13E−4 2.38E−3 1.05E−3 9.80E−4 4.01E−4

 Std 1.30E−5 5.16E−4 2.41E−5 4.05E−4 2.78E−4

 Best 3.08E−4 3.07E−4 3.08E−4 3.07E−04 3.07E−04

F16

 Avg − 1.03 − 1.03 − 1.03 − 1.03 − 1.03

 Std 0 0 0 0 0

 Best − 1.03E+00 − 1.03 − 1.03 − 1.03 − 1.03

F17

 Avg 3.98E−1 3.98E−1 3.98E−1 3.98E−1 3.98E−1

 Std 0 0 0 0 0

 Best 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01

F18

 Avg 3 3 3 3 5.70

 Std 0 0 0 0 1.04

 Best 3 3 3 3 3

F19

 Avg − 3.86 − 3.86 − 3.86  − 3.86 − 3.86

 Std 0 1.83E−3 2.54E−3 3.79E−3 1.83E−3

 Best − 3.86 − 3.86 − 3.86 − 3.86 − 3.86

F20

 Avg − 3.24 − 3.25 − 3.24 − 3.21 − 3.26

 Std 9.15E−2 7.68E−2 7.87E−2 9.98E−2 6.75E−2

 Best − 3.32 − 3.32 − 3.32 − 3.32 − 3.32

F21

 Avg − 9.99 − 8.24 − 7.85 − 8.76 − 6.27

 Std 6.37E−1 2.90 3.05 2.27 2.04

 Best − 1.02E+1 − 1.02E+1 − 1.02E+01 − 1.02E+1 − 1.02E+1

F22

 Avg − 1.03E+1 − 1.04E+1 − 9.54 − 9.86 − 6.97

 Std 5.65E−1 0 2.07 1.62 2.31

 Best − 1.04E+1 − 1.04E+1 − 1.04E+1 − 1.04E+1 − 1.04E+1

F23

 Avg − 1.05E+1 − 1.03E+1 − 8.30 − 9.78 − 7.20

 Std 0 9.73E−1 3.06 1.86 2.35

 Best − 1.05E+1 − 1.05E+1 − 1.05E+1 − 1.05E+1 − 1.05E+1

P Value – 2.54E−3 3.60E−3 2.47E−3 1.59E−1

(+|=|−) – (17|4|2) (16|6|1) (17|5|1) (14|4|5)

FRD-AVG 1.80 3.63 3.17 3.24 3.15

RANK 1 5 3 4 2
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and divergence. Figure 9’s comparison further demonstrates that CMWGWO maintains higher convergence 
accuracy than other techniques. These findings confirm that, in comparison to the traditional GWO approach, 
the modifications made in this work not only improve the trade-off between exploration and exploitation, it also 
demonstrate the method’s capacity to avoid local optima and get close to the overall best outcome. Three crucial 
strategies WID, COL, and MRS were incorporated into the CMWGWO technique to increase its effectiveness 
in this area. While the COL technique increases population variation throughout the search process, the MRS 
strategy enables the wolf agent to keep investigating the optimum solution. The WID tactic also effectively traps 
prey, all these add to the efficiency of CMWGWO. Furthermore, the CMWGWO approach is able to find prob-
able solutions inside the problem domain characterized by shifted, rotated, and hybrid in CEC 2019 functions 
in Fig. 10 because of the combination of various tactics, which finally results in improved diversity and more 
accurate solutions in functions C1, C4, C6, C7, C8, and C9. The boxplot analysis of each function also makes it 
quite evident that CMWGWO has strong stability as seen in Figs. 11 and 12. This suggests that the CMWGWO’s 
approach to exploration and exploitation capabilities is well-balanced.

Figure 8.  Convergence plot of different improvement techniques.
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Exploration and exploitation analysis
Exploration and exploitation stages are often two essential phases in optimization algorithms. The Algorithm pri-
oritizes exploration in the first stage with the goal of identifying areas of the feasible domain space that have 
promising prospects for improved candidate solutions. The algorithm then progressively moves from the explora-
tion to the exploitation , putting more effort into looking for better candidate solutions close to the existing best 
solution. An algorithm’s optimization efficiency is largely influenced by how well its exploration and exploitation 
capabilities are balanced. The chances of discovering improved candidate solutions may increase with more 
exploration capabilities, but the speed of convergence may be slowed. On the other hand, increasing the exploi-
tation capabilities might hasten convergence but increase the chance of being stuck in local optima. To establish 
a delicate balance between the exploration and exploitation phases, we enhanced CMWGWO’s exploitation 
and exploration. This balance is essential since it affects the effectiveness of optimization as a whole. In order 
to locate high-quality solutions quickly while avoiding premature convergence to local optima, The algorithm 
must ideally balance exploration and exploitation. To enhance the algorithm’s efficacy and resilience in tackling 
optimization issues.

Figure 8.  (continued)
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In this part, the exploration and exploitation stages of the CMWGWO are numerically investigated and 
compared to the traditional GWO. We use Eqs. (20) to (23) to determine the proportion of these two phases in 
order to more accurately characterize the algorithm’s exploration and exploitation process while it is running.

The percentages of the algorithm’s exploration and exploitation stages are shown by the symbols % EPR and 
% EPL , respectively. The diversity of all population members in the technique is denoted by Div and Divmax 
denotes the highest diversity value thus far observed among the population members. Furthermore, Divj stands 
for the diversity of the jth dimension throughout the whole population. The algorithm’s parameters n and dim 
correspond to the population’s size and the problem’s dimension, respectively. While median

(
xj
)
 designates 

the median value of the jth dimension across all population members, xj specifies the jth dimension of the ith 
member in the technique.

Specific illustrations depicting unimodal and multimodal functions selected from the functions utilized in 
the previous experiment are used to analyze the algorithm’s exploration and exploitation levels during their 
search process, as shown in Fig. 13. The first column compares the convergence curves of CMWGWO and 
GWO, while the second and third columns show the exploration and exploitation phases of CMWGWO and 
GWO, respectively. F1, F3, and F5 are categorized as unimodal functions, whereas F10 and F23 are categorized 
as multimodal. The balance of the suggested CMGWO and GWO for unimodal and multimodal functions is 
shown in Fig. 13 by the convergence and diversity patterns. It is clear that when compared to the original GWO 
approach, the CMWGWO method shows enhanced exploration of optimum solutions. Additionally, CMWGWO 
outperforms GWO in terms of striking a balance between the algorithm’s exploitation and exploration stages.

The percentage of exploration length ( % EPR) attained by the CMWGWO approach is as follows when looking 
at the second column of Fig. 13: 1.1164% for F1, 1.5338% for F3, 1.2949% for F5, 3.4933% for F10, and 32.4377% 
for F23. Furthermore the % EPL is 98.8836% for F1, 98.4662% for F3, 98.7051% for F5, 96.5067% for F10, and 
67.5623% for F23. The suggested CMWGWO approach exhibits an increase of around 2.1% on the unimodal 
functions F1, F3, and F5 in the exploration phase when compared to the % EPR attained by GWO in the unimodal 
functions. Additionally, there is an increase of around 19% in the exploration phase compared to GWO for the 
multimodal functions F10 and F23. It can be concluded that the proposed CMWGWO more efficiently divides 
the execution time between the exploitation and exploration phases of the algorithm based on the convergence 
curves of CMWGWO and GWO on F1, F3, F5, F10, and F23. To put it another way, it shows a greater balance 
between the two stages, which enhances performance.

Computation time analysis
Tables 10 and 11 present a comparison of the average computation time of CMWGWO and its competitors. A 
detailed analysis of CMWGWO highlights that it generally necessitates more CPU time when compared to other 
methods. This can be attributed to CMWGWO’s incorporation of MRS, COL, and WID, wherein each method is 

(20)% EPR = Div

Divmax
× 100

(21)% EPL = |Div − Divmax|
Divmax

× 100

(22)Divj =
1

n

n∑

i=1

∣∣∣median
(
xj
)
− x

j
i

∣∣∣

(23)Div = 1

dim

dim∑

j=1

Divj

Table 4.  Parameter settings.

Optimizer Settings

AdGWO a0 = 2 , γ = 0.95

AGWO a0 = 2 , B = 0.8

AGWOCS a0 = 2

RWGWO a0 = 2

GWO a0 = 2

HFBOA a = 0.1 , p = 0.6 , µ = 4 , β0 = 1,α0 = 0.2 and c0 = 0.35

CHOA f = [0, 2.5]

PSO c1, c2 = 2,ω2 = 0.9,ω1 = 0.2

SCA a = 2

CMWGWO a0 = 2 , p1 = 0.5p2 = 0.1, p3 = 0.3
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AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CMWGWO

F1

 Avg 1.12E−59 1.31E−124 4.13E−51 5.89E−37 2.48E−8 9.97E−29 7.81E−6 3.87 1.73E−36 4.64E−240

 Std 4.99E−60 9.63E−125 3.00E−51 5.72E−37 2.11E−8 9.70E−29 7.65E−6 2.28 1.17E−36 0

 Best 8.34E−64 2.14E−127 3.36E−54 6.74E−39 4.03E−16 4.95E−63 5.91E−07 2.34E−02 4.96E−38 6.03E−261

F2

 Avg 1.73E−35 5.50E−55 1.20E−30 8.48E−22 2.62E−6 1.15E−1 6.34 7.65E−3 7.35E−22 1.64E−128

 Std 1.64E−35 1.06E−55 9.66E−31 7.36E−22 1.62E−6 4.70E−2 5.43 5.81E−3 6.64E−22 1.39E−128

 Best 3.30E−37 5.20E−57 2.38E−32 6.18E−23 4.31E−09 8.11E−15 9.46E−04 8.26E−05 1.83E−22 4.13E−136

F3

 Avg 1.61E−19 1.70E−5 6.16E−13 2.32E−6 2.64E−1 3.07E−21 4.17E+1 5.91E+3 4.85E−7 1.22E−170

 Std 1.20E−19 2.30E−6 5.96E−13 1.26E−6 2.08E−1 1.82E−21 2.04E+1 5.82E+3 1.23E−7 0

 Best 3.20E−28 9.28E−8 9.91E−18 1.21E−10 1.11E−08 1.24E−78 1.11E+01 3.44E+02 1.02E−10 3.59E−188

F4

 Avg 8.66E−14 7.59E−90 1.08E−13 6.47E−8 4.79E−3 1.68E−18 8.16E−1 2.45E+1 7.45E−8 2.97E−92

 Std 6.62E−14 1.64E−90 1.07E−13 6.33E−8 1.09E−3 7.10E−19 2.48E−1 1.07E+1 7.14E−8 2.04E−92

 Best 1.78E−19 1.00E−96 5.83E−16 8.06E−9 5.77E−6 4.35E−39 4.83E−1 5.25 4.86E−9 1.00E−96

F5

 Avg 2.85E+1 2.86E+1 2.67E+1 2.70E+1 2.90E+1 2.89E+1 7.90E+1 1.50E+4 2.66E+1 1.18

 Std 3.49E−1 3.77E−1 5.83E−1 8.83E−1 6.79E−2 3.20E−2 5.39E+1 1.24E+4 7.27E−1 6.66E−1

 Best 2.78E+1 2.75E+1 2.59E+1 2.58E+1 2.87E+1 2.88E+1 1.71E+1 2.99E+1 2.55E+1 3.82E−3

F6

 Avg 4.18 4.94 9.87E−1 2.90E−1 4.10 4.94 7.84E−4 9.61 4.85E−1 7.51E−6

 Std 5.86E−1 5.58E−1 2.89E−1 2.34E−1 5.53E−1 3.39E−1 7.66E−4 6.67 2.83E−1 5.81E−6

 Best 3.29 3.71 5.00E−1 2.90E−5 3.32 4.04 9.31E−8 4.25 3.81E−5 3.33E−7

F7

 Avg 4.99E−5 1.56E−3 1.09E−3 1.52E−3 8.82E−4 2.81E−5 2.95 5.60E−2 1.50E−3 4.76E−5

 Std 4.53E−5 6.28E−7 7.00E−4 6.37E−4 7.44E−4 2.03E−5 1.79 5.36E−2 6.22E−4 3.85E−5

 Best 1.11E−6 4.95E−6 1.91E−4 5.26E−4 1.49E−5 1.03E−6 3.82E−2 4.11E−3 3.37E−4 4.70E−6

F8

 Avg − 2.76E+3 − 2.63E+3 − 8.65E+3 − 8.73E+3 − 5.75E+3 − 2.45E+3 − 5.66E+3 − 3.79E+3 − 6.35E+3 − 1.06E+4

 Std 3.91E+2 5.09E+2 7.72E+2 5.54E+2 5.41E+1 4.32E+2 1.25E+3 2.36E+2 1.00E+3 1.79E+3

 Best − 3.86E+3 − 3.84E+3 − 1.04E+4 − 9.94E+3 − 5.91E+3 − 3.39E+3 − 7.88E+3 − 4.28E+3 − 8.06E+3 − 1.26E+4

F9

 Avg 0 0 3.79E−15 9.35 7.34E−2 0 9.71E+1 3.58E+1 1.03E+1 9.11

 Std 0 0 3.39E−15 8.59 3.85E−2 0 3.42E+1 3.35E+1 1.00E+1 6.47

 Best 0 0 0 5.68E−14 5.68E−14 0 3.71E+01 3.05E−02 1.71E−13 0

F10

 Avg 4.44E−16 4.44E−16 7.43E−15 3.89E−14 3.38E−5 4.44E−16 5.17E−3 1.40E+1 3.81E−14 8.00E−16

 Std 0 0 6.48E−16 3.50E−15 1.92E−5 0 2.55E−3 8.46 3.57E−15 7.98E−16

 Best 4.44E−16 4.44E−16 4.00E−15 2.89E−14 8.52E−9 4.44E−16 5.83E−4 2.42E−2 3.24E−14 4.44E−16

F11

 Avg 0 0 5.33E−4 1.53E−3 2.20E−3 0 8.20E−3 8.31E−1 3.72E−3 0

 Std 0 0 4.95E−4 3.41E−4 1.88E−4 0 7.48E−3 4.32E−1 2.50E−3 0

 Best 0 0 0 0 2.22E−16 0 8.09E−8 1.25E−01 0 0

F12

 Avg 6.31E−1 6.97E−1 8.28E−2 2.30E−2 5.97E−1 4.25E−1 6.93E−3 2.65E+1 2.48E−2 3.61E−5

 Std 3.11E−1 2.01E−1 2.02E−2 1.37E−2 2.34E−1 1.21E−1 2.73E−3 1.43E+1 1.14E−2 3.19E−5

 Best 3.24E−1 4.05E−1 5.62E−2 1.03E−5 3.61E−1 1.87E−1 3.63E−9 9.32E−1 6.31E−3 4.83E−7

F13

 Avg 2.32 2.61 9.23E−1 3.31E−1 2.84 2.49 3.67E−3 3.62E+3 3.44E−1 4.77E−4

 Std 2.72E−1 1.67E−1 2.05E−1 1.61E−1 8.22E−2 2.82E−1 2.46E−3 3.52E+3 1.56E−1 4.18E−4

 Best 1.69 2.08 4.58E−1 1.06E−1 2.58 1.45 1.84E−7 2.45 8.80E−2 4.67E−06

F14

 Avg 5.07 8.59 2.12 1.20 1.33 9.98E−1 1.98 1.53 3.55 9.98E−1

 Std 3.20 3.84 1.91 5.46E−1 3.91E−1 0 1.85 8.91E−1 3.52 0

 Best 2.01 2.21 9.98E−1 9.98E−1 9.98E−1 9.98E−1 9.98E−1 9.98E−1 9.98E−1 9.98E−01

Continued
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independently executed in the course of the optimization process. Consequently, the CPU time of CMWGWO 
does not consistently outperform the compared methods due to its inherent complexity, as elucidated in Eq. 19. In 
Figs. 14 and 15, it becomes evident that CMWGWO requires greater computational time than the original GWO 
and other GWO variants such as AdGWO, AGWO, AGWOCS, and RWGWO. Nonetheless, despite its increased 
computational demands, CMWGWO exhibits remarkable efficiency, surpassing these algorithms in terms of 
performance. Taking into consideration the substantial contributions of CMWGWO, a harmonious balance 
can be achieved between attaining high accuracy and effectively managing the time required to solve problems.

Engineering problem application
Based on the constraints and particular needs of the optimization method they are employing, researchers 
must take thorough and well-founded assessments. They need efficient tools that provide them the ability to 
make wise decisions within a logical framework in order to do this 71,72. By using it to solve three traditional 
engineering constraint issues, the performance of CMWGWO is carefully assessed in this context. The purpose 
of this inquiry is to confirm the useful and practical uses of the CMWGWO approach. The three issues under 

AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CMWGWO

F15

 Avg 1.95E−3 5.02E−3 3.84E−4 1.74E−3 2.12E−3 3.71E−4 4.47E−3 9.56E−4 2.38E−3 3.13E−4

 Std 1.18E−3 4.21E−4 1.76E−4 4.30E−4 3.20E−4 4.37E−5 2.83E−3 3.76E−4 5.16E−4 1.30E−5

 Best 5.75E−4 3.12E−4 3.09E−4 3.07E−4 1.51E−3 3.16E−4 3.64E−4 4.05E−4 3.07E−4 3.08E−4

F16

 Avg − 1.03 − 1.01 − 1.03 − 1.03 − 1.02 − 9.92E−1 − 1.03 − 1.03 − 1.03 − 1.03

 Std 1.83E−3 4.64E−2 0 0 2.39E−2 6.53E−2 0 0 0 0

 Best − 1.03 − 1.03 − 1.03 − 1.03 − 1.03 − 1.03 − 1.03 − 1.03 − 1.03 − 1.03

F17

 Avg 4.42E−1 4.20E−1 3.98E−1 3.98E−1 1.18 3.98E−1 3.98E−1 3.99E−1 3.98E−1 3.98E−1

 Std 7.55E−2 2.55E−2 0 0 6.54E−1 3.05E−4 0 8.61E−4 0 0

 Best 3.98E−1 3.98E−1 3.98E−1 3.98E−1 4.19E−1 3.98E−1 3.98E−1 3.98E−1 3.98E−1 3.98E−1

F18

 Avg 3.17 3.04 3.00 3.00 3.06 3.01 3.00 3.00 3.00 3.00

 Std 7.97E−1 1.26E−1 0 0 1.42E−1 8.60E−3 0 0 0 0

 Best 3 3 3 3 3 3 3 3 3 3

F19

 Avg − 3.78 − 3.80 − 3.86 − 3.86 − 3.47 − 3.43 − 3.86 − 3.85 − 3.86 − 3.86

 Std 1.57E−1 7.36E−2 2.54E−3 1.83E−3 2.71E−1 3.20E−1 0 4.50E−3 1.83E–3 0

 Best − 3.86 − 3.86 − 3.86 − 3.86 − 3.83 − 3.83 − 3.86 − 3.86 − 3.86 − 3.86

F20

 Avg − 2.81 − 2.94 − 3.29 − 3.25 − 1.79 − 1.95 − 3.24 − 2.97 − 3.25 − 3.24

 Std 1.54E−1 2.24E−1 3.97E−2 6.91E−2 4.37E−1 4.05E−1 1.19E−1 2.40E−1 7.68E−2 9.15E−2

 Best − 3.07 − 3.22 − 3.32 − 3.32 − 2.89 − 2.9 − 3.32 − 3.2 − 3.32 − 3.32

F21

 Avg − 2.69 − 2.80 − 6.21 − 9.18 − 7.40E− 1 − 5.22 − 7.24 − 3.14 − 8.24 − 9.99

 Std 1.59 1.41 1.98 2.08 3.60E−1 1.04 3.12 1.92 2.90 6.37E−1

 Best − 4.9 − 5.36 − 9.49 − 1.02E+1 − 2.15 − 8.51 − 1.02E+1 − 6.6 − 1.02E+1 − 1.02E+1

F22

 Avg − 2.12 − 2.65 − 6.56 − 1.00E+1 − 8.66E−1 − 4.92 − 9.06 − 3.87 − 1.04E+1 − 1.03E+1

 Std 1.04 1.45 1.88 1.34 3.53E−1 6.08E−1 2.54 1.84 0 5.65E−1

 Best − 4.54 − 5.68 − 9.74 − 1.04E+1 − 1.83 − 7.45 − 1.04E+1 − 7.13 − 1.04E+1 − 1.04E+1

F23

 Avg − 2.49 − 2.84 − 6.28 − 1.01E+1 − 1.02 − 5.22 − 9.81 − 4.23 − 1.03E+1 − 1.05E+1

 Std 1.32 1.53 2.24 1.74 3.39E−1 9.99E−1 2.13 1.36 9.73E−1 0

 Best − 5.57 − 7.51 − 9.99 − 1.05E+1 − 2.29 − 8.89 − 1.05E+1 − 6.69 − 1.05E+1 − 1.05E+1

P Value 1.30E−3 8.76E−4 5.49E−3 5.39E−4 2.62E−4 3.59E−3 1.96E−4 5.96E−5 2.54E−3 –

(+|=|−) (19|2|2) (20|1|2) (17|2|4) (18|4|1) (22|0|1) (17|3|3) (18|5|0) (21|2|0) (17|4|2) –

AVG 5.98 6.57 4.22 4.24 7.7 5.57 6.15 7.8 4.67 2.11

RANK 6 8 2 3 9 5 7 10 4 1

Table 5.  Statistical comparison of CMWGWO with GWO variants and original algorithms with Dim = 30. 
Significant values are in [bold].
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AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CMWGWO

F1

 Avg 3.93E−23 8.27E−7 2.10E−21 1.60E−16 3.75E−3 1.96E−25 1.06E+1 9.34E+3 1.09E−16 1.90E−183

 Std 7.74E−24 6.12E−7 1.80E−21 1.58E−16 1.95E−3 1.91E−25 2.85 5.27E+3 7.46E−17 0

 Best 5.88E−31 1.37E−9 1.34E−22 2.52E−17 1.58E−6 3.87E−76 4.08 3.32E+3 2.50E−17 1.18E−208

F2

 Avg 9.99E−19 4.63E−8 2.72E−14 1.96E−10 4.95E−3 2.96E+48 1.11E+2 5.19 2.09E−10 2.96E−100

 Std 7.74E−19 2.32E−9 1.85E−14 7.94E−11 3.81E−3 1.36E+48 2.91E+1 4.50 6.89E−11 1.53E−100

 Best 1.80E−19 6.94E−10 1.06E−14 1.09E−10 8.99E−04 1.86E+34 5.15E+1 6.57E−1 1.08E−10 1.85E−108

F3

 Avg 2.44E−11 1.05E+3 5.68E+2 1.51E+3 8.19E+1 1.36E−19 1.30E+4 2.29E+5 8.62E+2 2.43E−144

 Std 4.98E−12 1.68E+2 1.61E+2 1.49E+3 7.29E+1 2.73E−20 3.13E+3 4.38E+4 6.74E+2 6.93E−145

 Best 2.45E−17 5.34E−5 6.80E−1 1.11E+2 2.49E−2 4.99E−67 7.90E+3 1.54E+5 5.38E+1 7.18E−158

F4

 Avg 2.26E−7 2.24E−47 2.62E−3 2.13E+1 3.71E−1 4.39E−20 1.01E+1 8.89E+1 9.95E−1 3.89E−56

 Std 7.57E−8 1.68E−48 1.45E−3 1.58E+1 3.18E−1 3.21E−20 1.09 2.19 8.60E−1 1.78E−56

 Best 1.70E−10 1.04E−50 5.36E−5 3.91E-1 1.75E−2 1.06E−49 7.17 8.44E+1 1.61E−1 5.48E−69

F5

 Avg 9.87E+1 9.88E+1 9.79E+1 9.72E+1 9.90E+1 9.89E+1 1.21E+4 1.12E+8 9.73E+1 5.33E+1

 Std 2.61E−1 8.60E−2 6.36E−1 8.79E−1 1.46E−1 4.07E−2 1.15E+4 5.25E+7 7.74E−1 4.87E+1

 Best 9.80E+1 9.86E+1 9.65E+1 9.58E+1 9.87E+1 9.89E+1 3.52E+3 3.55E+7 9.59E+1 3.74E−3

F6

 Avg 2.11E+1 2.17E+1 1.35E+1 7.44 1.93E+1 2.21E+1 1.03E+1 8.56E+3 7.70 2.34E−3

 Std 1.28 6.97E−1 7.15E−1 1.05 8.39E−1 7.00E−1 4.48 4.99E+3 9.24E−1 2.33E−3

 Best 1.90E+1 1.97E+1 1.16E+1 5.14 1.78E+1 1.97E+1 4.92 5.63E+2 6.03 4.94E−6

F7

 Avg 1.09E−4 6.27E−4 3.56E−3 5.28E−3 1.21E−2 3.92E−5 2.83E+2 1.33E+2 5.62E−3 5.14E−5

 Std 8.18E−5 9.41E−5 1.91E−3 1.99E−3 8.02E−3 3.37E−5 1.32E+2 6.80E+1 2.44E−3 4.16E−5

 Best 3.08E−6 2.24E−6 8.33E−4 2.35E−3 1.59E−4 3.10E−7 7.30E+1 3.17E+1 2.48E−3 5.09E−6

F8

 Avg −5.02E+3 −4.40E+3 −2.77E+4 −2.34E+4 −1.82E+4 −4.58E+3 −1.30E+4 −6.96E+3 −1.63E+4 −3.43E+4

 Std 7.15E+2 7.48E+2 1.71E+3 1.31E+3 1.03E+2 7.60E+2 3.76E+3 4.72E+2 4.26E+3 5.73E+3

 Best −6.89E+3 −5.83E+3 −3.18E+4 −2.67E+4 −1.84E+4 −6.40E+3 −1.99E+4 −7.95E+3 −2.00E+4 −4.19E+4

F9

 Avg 7.57E−15 0 1.86E−13 1.96E+1 1.28 0 7.32E+2 2.66E+2 1.93E+1 4.38E+1

 Std 2.33E−15 0 9.18E−14 1.04E+1 6.88E−1 0 7.45E+1 1.27E+2 1.22E+1 4.03E+1

 Best 0 0 0 1.25E−11 1.39E−4 0 5.58E+2 6.42E+1 1.24E−7 0

F10

 Avg 6.23E−14 7.81E−4 4.67E−12 1.26E−9 7.61E−3 4.44E−16 3.13 1.94E+1 1.31E−9 9.18E−16

 Std 4.33E−14 5.22E−4 3.16E−12 5.19E−10 7.32E−3 0 2.64E−1 3.66 7.01E−10 8.17E−16

 Best 7.55E−15 4.44E−16 8.03E−13 5.01E−10 4.12E−4 4.44E−16 2.27 5.59 4.49E−10 4.44E−16

F11

 Avg 3.70E−18 7.73E−2 3.70E−18 1.78E−3 2.60E−2 0 2.20E−1 9.89E+1 2.73E−3 0

 Std 1.49E−18 3.94E−2 9.71E−19 4.52E−4 2.02E−2 0 4.27E−2 5.65E+1 4.04E−4 0

 Best 0 0 0 2.22E−16 3.66E−5 0 1.37E−1 3.51 1.11E−15 0

F12

 Avg 9.90E−1 3.83E+4 4.05E−1 1.95E−1 8.79E−1 9.27E−1 2.62 2.72E+8 2.11E−1 2.82E−5

 Std 8.05E−2 3.20E+4 5.74E−2 3.83E−2 9.56E−2 7.77E−2 1.40 1.09E+8 5.08E−2 2.78E−5

 Best 8.30E−1 8.21E−1 3.21E−1 1.16E−1 7.03E−1 6.12E−1 7.94E−1 1.07E+8 1.48E−1 1.06E−6

F13

 Avg 9.64 9.75 7.60 5.98 9.81 9.82 3.46E+1 4.69E+8 5.90 1.66E−3

 Std 1.61E−1 9.62E−2 3.83E−1 4.87E−1 1.16E−1 1.84E−1 1.56E+1 2.08E+8 3.98E−1 1.65E−3

 Best 9.22 9.57 6.77 4.93 9.52 9.16 7.98 2.05E+8 4.99 8.29E−5

Continued
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consideration are as follows: Welded Beam Design Problem (WBDP)73, Three Truss Bar (TTB)74,75 and I-Beam 
Design Problem(IBDP)76,77.

Welded beam design (WBDP)
In the welded beam problem, a stiff support member needs to be welded to a beam. The ideal cost problem, 
depicted in Fig. 16, is used to estimate the beam’s ideal dimensions in order to reduce  costs78. Four main factors, 
namely, weld seam thickness (h(x1) ), steel bar length (l (x2) ), steel bar height (t (x3) ) and steel bar thickness (b 
(x4) ), have an impact on the production cost. Additionally, the model is subject to four constraints: buckling load 
(Pc), shear stress (τ), beam internal bending stress (σ), and end deflection rate (δ). The mathematical expression 
of this problem can be stated as in Fig. 16.

Objective function

Subject to:

where

(24)F(X) = 1.10471x21x2 + 0.04811x3x4(14.0+ x2).

(25)g1(X) = τ(X)− τmax ≤ 0

(26)g2(X) = σ(X)− σmax ≤ 0

(27)g3(X) = x1 − x4 ≤ 0

(28)g4(X) = 0.10471x21 + 0.04811x3x4(14.0+ x2)− 5.0 ≤ 0

(29)g5(X) = 0.125− x1 ≤ 0

(30)g6(X) = δ(X)− δmax ≤ 0

(31)g7(X) = P− Pc(X) ≤ 0

(32)τ(X) =
√

(τ ′)2 + 2τ ′τ ′′
x2

2R
+ (τ ′′)2

(33)τ ′ = P√
2x1x2

, τ ′′ = MR

J
,M = P

(
L+ x2

2

)

(34)R =

√
x22
4

+
(
x1 + x3

2

)2

(35)J = 2

{
√
2x1x2

[
x22
12

+
(
x1 + x3

2

)2
]}

(36)σ(X) = 6PL

x4x
2
3

, δ(X) = 4PL3

Ex33x4

(37)Pc(X) =
4.013E

√
x23x

6
4

36

L2

(
1− x3

2L

√
E

4G

)

Table 6.  Comparison of CMWGWO with GWO variants and original algorithms with Dim = 100. Significant 
values are in [bold].

AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CMWGWO

P Value 2.31E−2 1.59E−2 1.59E−2 1.59E−2 1.59E−2 1.82E−1 1.47E−3 1.47E−3 1.59E−2 –

(+|=|−) (12|0|1) (12|0|1) (12|0|1) (12|0|1) (12|0|1) (9|1|3) (13|0|0) (13|0|0) (12|1|0) –

FRD-AVG 4.27 4.82 4.64 6.45 6 3.18 8.45 9.82 5.64 1.73

RANK 3 5 4 8 7 2 9 10 6 1
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AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CMWGWO

F1

 Avg 1.97E−13 8.51 5.36E−13 2.52E−10 5.66E−1 1.15E−24 2.24E+2 5.24E+4 2.47E−10 3.02E−168

 Std 7.96E−14 3.27 4.45E−13 1.21E−10 5.10E−1 4.27E−25 3.05E+1 2.24E+4 9.98E−11 0

 Best 1.89E−22 3.30E−02 8.96E−14 9.05E−11 1.42E−2 2.94E−81 1.47E+2 8.32E+3 1.08E−10 1.77E−187

F2

 Avg 2.80E−13 1.35E−4 2.99E−9 8.88E−7 1.06E−1 9.45E+100 4.16E+2 2.62E+1 9.12E−7 4.05E−90

 Std 1.58E−13 1.21E−4 1.39E−9 2.46E−7 5.53E−2 6.43E+99 5.85E+1 1.88E+1 2.49E−7 3.65E−90

 Best 8.22E−14 4.09E−6 1.21E−9 4.85E−7 3.28E−2 4.06E+88 3.16E+2 2.55 5.22E−7 5.38E−98

F3

 Avg 8.47E−8 4.19E+4 3.96E+4 4.54E+4 1.10E+3 6.17E−18 6.82E+4 9.42E+5 4.25E+4 1.42E−136

 Std 1.58E−8 1.84E+4 3.35E+4 1.92E+4 6.56E+2 2.70E−18 1.57E+4 2.35E+5 1.66E+4 1.28E−136

 Best 4.37E−12 5.86E−5 4.32E+2 1.80E+4 1.10E+1 9.60E−58 4.08E+4 5.79E+5 1.51E+4 7.66E−151

F4

 Avg 3.29E−6 3.61E−74 1.44E+1 3.76E+1 2.59 4.90E−19 1.75E+1 9.63E+1 2.45E+1 3.91E−38

 Std 1.66E−6 3.23E−74 1.18E+1 1.34E+1 2.12 9.72E−20 1.25 7.36E−1 5.43 8.25E−39

 Best 4.78E−9 1.49E−76 3.23E−1 1.74E+1 1.79E−1 3.14E−43 1.50E+1 9.40E+1 1.26E+1 6.35E−52

F5

 Avg 1.99E+2 2.00E+2 1.98E+2 1.98E+2 3.03E+2 1.99E+2 3.58E+5 5.53E+8 1.98E+2 1.58E+2

 Std 1.83E−1 3.08 3.46E−1 6.40E−1 2.32E+2 0 5.27E+4 1.78E+8 6.29E−1 7.94E+1

 Best 1.98E+2 1.99E+2 1.97E+2 1.96E+2 1.99E+2 1.99E+2 2.58E+5 2.70E+8 1.96E+2 3.61E−1

F6

 Avg 4.51E+1 6.12E+1 3.51E+1 2.45E+1 4.46E+1 4.74E+1 2.22E+2 4.90E+4 2.45E+1 4.39E−3

 Std 1.40 4.91E+1 9.85E−1 1.45 3.05 5.76E−1 3.55E+1 2.30E+4 1.32 4.38E−3

 Best 4.24E+1 4.53E+1 3.33E+1 2.07E+1 4.01E+1 4.53E+1 1.67E+2 9.57E+3 2.21E+1 3.91E−4

F7

 Avg 1.20E−4 2.52E−2 8.91E−3 1.23E−2 4.30E−2 7.94E−5 2.57E+3 1.47E+3 1.33E−2 4.98E−5

 Std 1.15E−4 2.35E−3 4.44E−3 3.16E−3 2.33E−4 7.67E−5 5.03E+2 4.36E+2 4.07E−3 3.65E−5

 Best 5.43E−6 2.49E−5 2.50E−3 8.07E−3 5.34E−4 2.37E−6 1.63E+3 3.78E+2 7.10E−3 7.91E−6

F8

 Avg −6.96E+3 −6.28E+3 −5.68E+4 −3.92E+4 −3.59E+4 −6.28E+3 −1.99E+4 −1.04E+4 −2.48E+4 −7.16E+4

 Std 8.06E+2 1.35E+3 2.48E+3 2.38E+3 2.88E+2 1.28E+3 6.75E+3 9.14E+2 1.06E+4 1.19E+4

 Best −8.52E+3 −9.95E+3 −6.27E+4 −4.32E+4 −3.63E+4 −8.69E+3 −3.45E+4 −1.25E+4 −3.64E+4 −8.38E+4

F9

 Avg 2.50E−13 1.25E+1 1.92E−9 4.32E+1 6.52 0 1.88E+3 5.37E+2 4.35E+1 1.08E+2

 Std 5.54E−14 2.31 3.19E−10 2.05E+1 6.36 0 9.24E+1 1.73E+2 2.17E+1 1.03E+2

 Best 0 0 9.09E−13 1.96E+1 3.25E−2 0 1.73E+3 1.82E+2 1.46E+1 0

F10

 Avg 1.77E−10 4.67E−5 5.28E−8 1.27E−6 4.46E−2 4.44E−16 5.91 1.96E+1 1.19E−6 1.04E−15

 Std 8.02E−11 2.62E−5 2.72E−8 3.12E−7 3.33E−2 0 2.80E−1 3.40 3.09E−7 7.77E−16

 Best 1.71E−12 4.44E−16 1.02E−8 8.46E−7 4.33E−3 4.44E−16 5.48 7.27 6.30E−7 4.44E−16

F11

 Avg 4.19E−15 5.40E−2 2.39E−3 3.21E−3 1.75E−1 0 1.10 4.59E+2 4.08E−3 0

 Std 1.78E−15 4.31E−2 1.56E−4 1.96E−3 1.60E−1 0 2.76E−2 1.97E+2 2.81E−3 0

 Best 0 0 1.90E−13 4.53E−11 4.13E−3 0 1.03 2.18E+2 2.22E−11 0

F12

 Avg 1.04 1.07 3.98E+1 4.41E−1 9.78E−1 1.05 2.64E+1 1.36E+9 4.30E−1 2.15E−5

 Std 5.41E−2 5.16E−2 1.72E+1 5.93E−2 6.69E−2 4.38E−2 7.26 4.74E+8 4.59E−2 1.80E−5

Best 9.09E−1 9.93E−1 5.68E−1 3.49E−1 8.89E−1 9.36E−1 1.45E+1 6.70E+8 3.61E−1 1.93E−8

F13

 Avg 1.96E+1 3.59E+2 1.80E+1 1.63E+1 2.00E+1 1.99E+1 1.57E+3 2.52E+9 1.62E+1 2.02E−3

 Std 1.03E−1 1.08E+2 4.74E−1 5.02E−1 4.04E−1 1.49E−1 9.22E+2 7.26E+8 5.72E−1 1.91E−3

 Best 1.94E+1 1.96E+1 1.69E+1 1.55E+1 1.95E+1 1.94E+1 4.38E+2 1.35E+9 1.47E+1 4.72E−5

P Value 1.92E−2 1.59E−2 1.59E−2 1.59E−2 1.31E−2 9.12E−2 1.47E−3 1.47E−3 1.59E−2 –

Continued
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Based on the data shown in Table 12, the results reveal that the CMWGWO method attains the smallest cost 
for WBDP, measuring 1.670217726. This outcome highlights a significant advantage over the GWO, RWGWO, 
and AGWOCS algorithms. Clearly, CMWGWO effectively meets the requirements of the design problem with 
the lowest cost, leading to reduced engineering consumption. These findings demonstrate the practical superi-
ority of CMWGWO in achieving optimal solutions, resulting in cost-effective designs and resource savings in 
engineering applications.

Three truss bar (TTB)
Firstly introduced by Ray and Saini, the three bar truss design optimization problem is a classic engineering 
optimization problem in structural  mechanics79. The problem consists of two variables and three constraints. It 
involves finding the optimal dimensions of a truss made of three bars to achieve certain design objectives while 
respecting constraints such as buckling, stress, and bending, as presented in Fig. 17.

Objective function:

Subject to by:

where l = 100 cm; P = 2 kN
cm2 ; σ = 2 kN

cm2 .
The information in Table 13 makes it readily apparent that the CMWGWO approach earns the top spot in 

terms of best costs. This result shows that the CMWGWO, works remarkably well for this particular situation. 
It verifies the suggested algorithm’s superiority over competing approaches and shows that it can produce cost-
optimization solutions that are both highly competitive and superior.

I‑beam design problem (IBDP)
The I-beam design problem, as shown in Fig. 18, involves a beam subjected to two  pressures80. The goal is to 
design an I-beam with minimal vertical deflection. The structural parameters of the problem consist of height, 
length, and two thicknesses. The mathematical representation of this problem is presented below:

Objective function:

Subject to:

where 10 ≤ z1 ≤ 50 , 10 ≤ z2 ≤ 80 , 0.9 ≤ z3, z4 ≤ 5.
The CMWGWO is compared to a number of optimization techniques as seen in Table 14, Table 14 displays 

the experimental results. It is evident from observing the data that CMWGWO obtains the smallest vertical 

(38)P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi

(39)τmax = 13, 600 psi, σmax = 30, 000 psi, δmax = 0.25 in.

(40)f (x1, x2) = l ×
(
2
√
2x1 + x2

)
.

(41)G1 =
√
2x1 + x2√

2x12+ 2x1x2
P − σ ≤ 0

(42)G2 =
x2√

2x12+ 2x1x2
P − σ ≤ 0

(43)G3 =
1√

2x2 + x1
P − σ ≤ 0

(44)f (z) = 5000

z3×(z2−2z4)
3

12 +
(
z1×z34

6

)
+ 2b× z4

(
z2 − z4

2

)2 .

(45)

g1(z) = 2z1 × z3 + z3 × (z2 − 2z4) ≤ 300,

g2(z) =
18z2 × 104

z3(z2 − 2z4)
3 + 2z1z3

(
4z24 + 3z2(z2 − 2z4)

) + 15z1 × 103

z23(z2 − 2z4)+ 2z3z
3
1

≤ 56,

Table 7.  Comparison of CMWGWO with GWO variants and original algorithms with Dim = 200. Significant 
values are in [bold].

AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CMWGWO

(+|=|−) (12|0|1) (11|0|2) (12|0|1) (12|0|1) (12|0|1) (10|1|2) (13|0|0) (13|0|0) (12|0|1) –

FRD-AVG 4.21 6.71 4.33 4.96 6.00 3.88 8.67 9.58 4.88 1.79

RANK 3 8 4 6 7 2 9 10 5 1
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AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CMWGWO

F1

 Avg 3.33E−8 2.19E+2 6.79E−4 4.96E−5 6.24E+1 9.53E−24 4.22E+3 1.81E+5 5.45E−5 1.82E−149

 Std 3.16E−8 5.80E+1 6.64E−5 2.05E−5 5.59E+1 7.15E−24 3.05E+2 7.89E+4 1.80E−5 1.40E−149

 Best 1.74E−15 8.29E−5 1.31E−5 2.14E−5 1.18E+1 6.98E−64 3.66E+3 7.62E+4 2.90E−5 1.12E−169

F2

 Avg 9.09E−9 1.53E−1 2.01E−5 1.31E−3 2.59 2.07E+265 1.12E+55 1.00E+2 1.38E−3 1.50E−83

 Std 5.25E−9 2.32E−2 8.18E−6 1.44E−4 9.25E−1 4.14E+264 3.02E+54 6.27E+1 2.21E−4 7.27E−84

 Best 2.96E−9 0 1.07E−5 1.03E−3 1.46 1.20E+253 1.18E+3 2.11E+1 9.05E−4 1.69E−89

F3

 Avg 2.96E−4 5.05E+5 4.71E+5 4.87E+5 4.04E+4 9.91E−18 4.85E+5 6.47E+6 4.63E+5 1.60E−130

 Std 2.59E−4 3.54E+5 1.35E+5 1.05E+5 3.19E+4 4.30E−18 1.43E+5 1.30E+6 9.38E+4 9.66E−131

 Best 1.65E−8 6.20E−6 1.56E+5 3.02E+5 6.23E+2 2.78E−59 3.19E+5 4.27E+6 2.49E+5 5.11E−143

F4

 Avg 9.34E−5 1.57E−1 4.03E+1 6.28E+1 8.15 4.93E−20 2.62E+1 9.89E+1 6.05E+1 3.93E−25

 Std 1.04E−5 1.23E−1 3.21 4.08 5.59 7.29E−21 1.10 3.27E−1 3.87 2.62E−25

 Best 8.72E−7 4.10E−5 3.47E+1 5.42E+1 1.83 2.62E−36 2.40E+1 9.81E+1 5.19E+1 1.84E−37

F5

 Avg 4.99E+2 3.72E+5 3.32E+6 4.97E+2 2.86E+3 4.99E+2 2.01E+7 1.95E+9 4.97E+2 2.99E+2

 Std 0 1.37E+5 4.95E+5 3.65E−1 2.14E+3 0 2.09E+6 4.22E+8 2.63E−1 2.43E+2

 Best 4.99E+2 4.99E+2 5.38E+2 4.96E+2 6.39E+2 4.99E+2 1.73E+7 1.05E+9 4.96E+2 7.47E−2

F6

 Avg 1.20E+2 2.01E+3 1.06E+2 8.53E+1 1.76E+2 1.22E+2 4.26E+3 1.95E+5 8.48E+1 1.31E−2

 Std 1.55 1.07E+2 1.22 2.85 5.34E+1 7.30E−1 3.21E+2 7.23E+4 2.25 9.79E−3

 Best 1.17E+2 1.22E+2 1.04E+2 7.97E+1 1.24E+2 1.21E+2 3.75E+3 3.05E+4 8.03E+1 6.11E−4

F7

 Avg 2.25E−4 1.00E+1 5.17E−1 4.30E−2 1.73E−1 8.90E−5 3.86E+4 1.38E+4 4.22E−2 5.06E−5

 Std 8.62E−5 9.36 4.19E−1 1.10E−2 1.64E−1 8.12E−5 6.20E+3 3.11E+3 1.16E−2 4.57E−5

 Best 4.69E−6 1.12E−5 5.65E−2 2.61E−2 2.35E−2 1.97E−7 2.56E+4 8.47E+3 2.62E−2 3.55E−6

F8

 Avg − 1.09E+4 − 9.57E+3 − 1.43E+5 − 7.09E+4 − 8.89E+4 − 9.76E+3 − 3.37E+4 − 1.59E+4 − 5.69E+4 − 1.67E+5

 Std 1.69E+3 1.51E+3 2.86E+3 4.15E+3 8.65E+2 1.63E+3 1.17E+4 1.08E+3 2.00E+4 2.75E+4

 Best − 1.55E+4 − 1.21E+4 − 1.48E+5 − 8.05E+4 − 9.04E+4 − 1.30E+4 − 5.93E+4 − 1.94E+4 − 7.47E+4 − 2.09E+5

F9

 Avg 2.22E−8 6.94E−1 6.15E−3 1.11E+2 7.57E+1 0 6.13E+3 1.08E+3 1.18E+2 1.18E+2

 Std 1.12E−8 9.85E−2 2.62E−3 3.06E+1 4.42E+1 0 2.30E+2 4.76E+2 4.07E+1 4.81E+1

 Best 1.82E−12 0 5.28E−7 5.70E+1 1.63E+01 0 5.75E+3 4.07E+2 5.92E+1 0

F10

 Avg 7.96E−6 1.87E−1 4.42E−4 3.35E−4 4.94E−1 4.44E−16 1.10E+1 2.00E+1 3.22E−4 1.75E−15

 Std 3.95E−6 6.59E−2 2.99E−4 4.75E−5 2.68E−1 0 4.03E−1 2.47 6.55E−5 1.74E−15

 Best 1.98E−9 4.00E−15 1.67E−4 2.64E−4 1.28E−1 4.44E−16 1.02E+1 1.19E+1 2.14E−4 4.44E−16

F11

 Avg 1.78E−12 3.07 2.00E−2 9.85E−3 1.39 0 2.26E+1 1.75E+3 6.51E−3 0

 Std 1.05E−12 2.11 1.12E−2 2.21E−3 4.58E−1 0 7.76 6.67E+2 2.85E−3 0

 Best 9.99E−16 0 8.43E−5 3.87E−6 7.66E−1 0 8.06 4.53E+2 2.98E−6 0

F12

 Avg 1.12 4.97E+5 4.25E+6 7.18E−1 6.32E+1 1.13 9.33E+4 5.89E+9 7.33E−1 3.10E−5

 Std 2.54E−2 4.18E+5 2.19E+6 9.49E−2 4.36E+1 2.04E−2 3.57E+4 8.28E+8 7.32E−2 2.79E−5

 Best 1.07 1.13 2.62E+5 5.94E−1 1.01 1.08 2.88E+4 3.86E+9 6.32E−1 1.30E−6

F13

 Avg 4.97E+1 2.33E+6 2.21E+7 5.15E+1 6.61E+4 5.00E+1 2.22E+6 9.77E+9 5.12E+1 4.49E−3

 Std 1.24E−1 1.55E+6 2.00E+7 2.51 3.95E+4 9.32E−2 5.96E+5 2.21E+9 1.50 4.22E−3

 Best 4.94E+1 4.97E+1 3.28E+3 4.81E+1 5.05E+1 4.97E+1 1.38E+6 4.93E+9 4.69E+1 2.39E−5

Continued
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Table 9.  Statistical comparison of CMWGWO with GWO variants and original algorithms on CEC 2019. 
Significant values are in [bold].

AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CWGWO

C1

 Avg 1 1 4.754E+6 1 1.006 1 8.743E+8 4.679E+6 7.536E+4 7.426E+4

 Std 1.449E−10 0 4.496E+6 7.418E−8 3.112E−2 0 5.207E+8 4.248E+6 4.128E+4 3.386E+3

 Best 1 1 1.009 1 1 1 1.606E+8 4.301E+3 2.027E+1 1

C2

 Avg 4.814 8.670E+1 6.756E+3 4.334 7.811 5 3.189E+4 4.729E+3 6.632E+2 9.071E+2

 Std 3.140E−1 4.623E+1 1.834E+3 1.897E−1 6.584 2.464E−3 8.466E+3 2.137E+3 3.893E+2 5.668E+2

 Best 4.267 5 3.608E+3 4.218 4.655 4.986 1.731E+4 1.782E+3 1.644E+2 7.330E+1

C3

 Avg 9.299 9.168 4.340 4.438 9.400 5.214 7.565 9.209 4.216 4.330

 Std 7.188E−1 1.111 1.067 1.628 6.000E−1 2.521E−1 1.464 1.425 2.852 2.648

 Best 7.394 6.563 2.597 1.004 8.188 4.423 4.609 6.628 1.411 1.413

C4

 Avg 7.614E+1 8.533E+1 3.748E+1 3.885E+1 1.206E+2 8.221E+1 4.040E+1 5.172E+1 2.143E+1 1.575E+1

 Std 1.319E+1 1.117E+1 8.041 7.709 9.305 1.265E+1 1.246E+1 7.286 1.271E+1 4.324

 Best 4.676E+1 6.771E+1 2.130E+1 2.674E+1 1.010E+2 5.994E+1 1.891E+1 3.952E+1 5.778 7.008

C5

 Avg 3.105E+1 4.062E+1 3.432 3.531 1.420E+2 5.796E+1 1.156 1.214E+1 2.211 1.399

 Std 1.630E+1 1.712E+1 9.553E−1 2.038 2.786E+1 1.904E+1 9.247E−2 3.661 2.030 1.496E−1

 Best 1.333E+1 9.521 2.116 2.144 8.929E+1 2.880E+1 1.039 6.682 1.242 1.169

C6

 Avg 9.894 9.694 4.595 5.357 1.136E+1 1.218E+1 3.811 7.877 2.744 2.552

 Std 1.344 1.709 8.233E−1 1.035 1.230 1.057 1.605 1.313 1.032 1.204

 Best 7.377 6.894 2.948 3.980 9.011 8.786 1.002 5.940 1.355 1.192

C7

 Avg 2.121E+3 2.367E+3 1.283E+3 1.392 1.999E+3 1.725E+3 1.145E+3 1.597E+3 9.047E+2 7.220E+2

 Std 2.386E+2 2.868E+2 2.953E+2 2.678 1.684E+2 1.878E+2 2.938E+2 1.646E+2 4.690E+2 3.016E+2

 Best 1.548E+3 1.662E+3 8.144E+2 9.256 1.512E+3 1.139E+3 5.975E+2 1.206E+3 1.325E+2 1.810E+2

C8

 Avg 5.046 5.197 3.997 4.220 5.199 5.186 4.287 4.572 4.021 3.653

 Std 2.152E−1 2.390E−1 3.652E−1 4.092E−1 1.131E−1 2.090E−1 4.297E−1 2.007E−1 4.610E−1 5.217E−1

 Best 4.358 4.367 3.198 3.092 4.960 4.724 3.271 3.977 2.817 2.704

C9

 Avg 2.245 2.427 1.340 1.352 3.267 4.441 1.236 1.639 1.223 1.219

 Std 4.894E−1 7.474E−1 7.861E−2 8.106E−2 7.781E−1 4.956E−1 1.245E−1 1.557E−1 7.844E−2 5.521E−2

 Best 1.427 1.425 1.225 1.212 1.839 3.241 1.079 1.396 1.126 1.117

C10

 Avg 2.151E+1 2.153E+1 2.102E+1 2.037E+1 2.149E+1 2.131E+1 2.132E+1 2.129E+1 2.147E+1 2.057E+1

 Std 1.765E−1 1.041E−1 1.833 2.595 7.569E−2 8.690E−2 1.655E−1 9.469E−1 1.186E−1 3.655

 Best 2.115E+1 2.124E+1 1.248 1.302E+1 2.132E+1 2.112E+1 2.102E+1 1.632E+1 2.119E+1 1.232E

P Value 3.329E−3 3.329E−3 5.062E−3 5.751E−3 3.329E−3 3.329E−3 9.344E−3 5.062E−3 1.097E−2 –

(+|=|−) (8|0|2) (8|0|2) (10|0|0) (7|0|3) (8|0|2) (8|0|2) (9|0|1) (10|0|0) (7|1|2) –

FRD-AVG 6.70 7.45 4.50 3.65 8.30 6.75 5.10 6.50 3.60 2.45

RANK 7 9 4 3 10 8 5 6 2 1

Table 8.  Comparison of CMWGWO with GWO variants and original algorithms with Dim = 500. Significant 
values are in [bold].

AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CMWGWO

P Value 1.31E−2 5.77E−3 8.78E−3 7.13E−3 5.77E−3 6.19E−2 2.22E−3 1.47E−3 2.22E−3 –

(+|=|−) (12|0|1) (12|0|1) (12|0|1) (12|0|1) (12|0|1) (10|1|2) (13|0|0) (13|0|0) (12|0|1) –

FRD-AVG 3.63 7.42 6.08 4.88 5.83 3.25 8.17 9.58 4.50 1.67

RANK 3 8 7 5 6 2 9 10 4 1
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deflection, measuring 0.013074119. This outstanding outcome demonstrates that, when compared to other 
optimization techniques, CMWGWO provides the best answer for this particular problem design type.

Conclusion
This paper introduces CMWGWO with the primary objective of addressing the limitations of the original GWO. 
These limitations include premature convergence, insufficient diversity within the population, subpar global 
search capabilities, and susceptibility to be trapped in local optimum due to convergence towards the best wolf. 
CMWGWO employs three strategies to overcome these limitations. Firstly, the WID strategy is employed to 
enhance population diversity by facilitating better information exchange between the best and worst wolves. 
This improvement enables the algorithm to escape stagnation and explore a more extensive range of solu-
tions. Secondly, the algorithm incorporates the embedded COL search mechanism to increase the likelihood of 
individuals approaching the global optimum. By doing so, it elevates the optimization accuracy and alleviates 
stagnation issues. Lastly, the integration of MRS amplifies population exploration and significantly expands the 
search space. As a result, CMWGWO is able to effectively explore a wider range of potential solutions, enhancing 
its overall performance in optimization tasks.

Figure 9.  Convergence trajectory of CMWGWO and nine compared optimizers on 23 functions.
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The experiments in this study involve the testing of 23 functions and 10 CEC 2019 with distinct characteris-
tics. The initial comparison includes WID_GWO, COL_GWO, MRS_GWO, GWO, and CMWGWO to confirm 
the effectiveness of the optimization mechanisms introduced in this paper. Furthermore, CMWGWO is pitted 
against well-known GWO variants, namely RWGWO, AGWO, AdGWO, and AGWOCS. The results clearly 
demonstrate that CMWGWO outperforms these competitive algorithms significantly, a fact that becomes evi-
dent when examining the convergence curves of these algorithms. In contrast to the original algorithms, such 
as CHOA, SCA, HFBOA, and PSO, CMWGWO exhibits a robust exploration ability and improves solution 
accuracy substantially. Extensive testing on high-dimensional problems, coupled with exploitation and diversity 
analysis, further confirms its capability to achieve higher-quality solutions. Lastly, the application of CMWGWO 
to WBDP, TTB, and IBDP problems showcases its effectiveness in effectively solving these typical engineering 
constraint problems, thereby highlighting its potential for practical applications.

Although CMWGWO can surpass the original GWO and other rival algorithms, its optimization performance 
can yet be enhanced. Tables 5, 6, 7 and 9 display the results of such functions i.e. F7 and F9 functions. This proves 
the No Free Lunch theorem that no single optimizer is efficient for all problems. To attain greater solution accu-
racy, we intend to improve CMWGWO’s exploration and exploitation capabilities going forward. This will need 

Figure 9.  (continued)
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combining more modification approaches, such as applying novel population initializing strategies, hybridizing 
with other algorithms, and adaptively lowering some parameters in a nonlinear way. Additionally, CMWGWO 
has difficulties when tackling large-scale and complicated issues; therefore, future work will entail extensive tests 
on complex problems and comparison with more state-of-the-art algorithms. CMWGWO requires more time 
than the original GWO, making it necessary to take into account parallel computing in the next research stage 
to speed up the procedure. A fascinating research path also involves merging CMWGWO with machine learn-
ing. Furthermore, the applicability of CMWGWO can be extended to various real-world optimization problems 
across different fields. For instance, it can be effectively utilized in optimal power flow problems 81, classification 
of  neuroimaging82, heat removal  systems83, and water distribution  systems84. Expanding CMWGWO’s potential, 
it would be reasonable to explore the development of a multi-objective version of the algorithm, catering to 
complex multi-objective challenges that require simultaneous optimization of multiple criteria.

Figure 10.  Convergence trajectory of CMWGWO and nine compared optimizers on CEC 2019.
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Figure 11.  Box plot of CMWGWO and nine compared optimizers on 23 functions.
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Figure 11.  (continued)
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Figure 12.  Box plot of CMWGWO and nine compared optimizers on CEC 2019 functions.
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Figure 13.  Exploration and exploitation comparison of CMWGWO and GWO.
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Table 10.  Computation time comparison of CMWGWO with GWO variants and original algorithms on 23 
functions. Significant values are in [bold].

AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CMWGWO

F1 2.929 3.449 2.76 10.845 18.835 15.471 9.423 9.347 10.195 14.85

F2 3.649 5.497 4.133 10.832 20.889 17.563 9.599 9.357 10.808 16.247

F3 8.074 8.882 7.493 13.242 23.149 75.456 11.85 11.56 13.006 20.253

F4 5.651 16.02 5.101 10.672 20.812 14.597 9.431 9.187 10.619 6.489

F5 5.82 6.657 5.255 10.893 20.91 19.381 9.618 9.393 10.834 16.361

F6 5.721 6.538 5.162 10.769 20.857 16.815 16.136 9.267 10.761 9.547

F7 5.895 6.708 5.252 10.507 21.024 21.457 9.268 8.996 10.44 15.761

F8 5.733 6.547 5.175 10.792 20.896 16.059 9.659 9.294 10.71 16.211

F9 5.746 6.565 5.094 10.315 20.709 16.291 9.042 8.773 10.286 15.452

10 5.909 6.741 5.318 10.937 20.774 21.203 9.789 9.435 10.882 16.456

F11 5.964 6.779 5.371 10.993 20.853 17.185 9.837 9.498 10.936 16.499

F12 6.554 7.371 5.954 11.671 21.627 37.714 10.427 10.121 11.54 17.39

F13 6.819 7.648 6.137 11.972 22.142 42.986 10.616 10.314 11.863 17.8

F14 8.204 7.991 8.596 8.544 9.199 200.195 7.942 7.968 8.116 14.072

F15 1.545 1.554 2.033 1.905 3.537 22.842 1.692 1.645 1.844 2.959

F16 0.86 0.798 1.45 0.8 1.825 13.688 0.703 0.677 0.783 1.314

F17 0.88 0.799 1.472 0.822 1.841 14.02 0.717 0.687 0.796 1.33

F18 0.92 0.84 1.514 0.862 1.879 15.245 0.759 0.735 0.838 1.425

F19 1.722 1.702 2.273 1.944 3.204 31.981 1.731 1.7 1.882 3.151

F20 2.271 2.37 2.674 3.041 5.277 33.054 2.73 2.661 2.986 4.794

F21 3.691 3.749 4.195 4.437 5.934 82.535 3.862 4.052 4.222 7.302

F22 4.62 4.652 5.126 5.525 6.936 108.332 4.778 5.05 5.193 8.995

F23 6.013 6.05 6.539 7.007 8.429 146.07 6.178 6.559 6.688 11.705

TOTAL AVG 4.573478 5.474217 4.525087 7.796826 13.97991 43.48435 7.20813 6.794609 7.662087 11.14622

Table 11.  Computation time comparison of CMWGWO with GWO variants and original algorithms on CEC 
2019. Significant values are in [bold].

AdGWO AGWO AGWOCS RWGWO CHOA HFBOA PSO SCA GWO CMWGWO

C1 5.877 1.858 1.913 2.519 4.851 10.600 2.215 4.187 2.365 3.687

C2 8.998 2.919 2.641 4.226 8.276 10.581 3.694 4.857 3.998 5.983

C3 9.795 3.308 2.765 4.716 9.147 10.634 4.038 9.209 4.544 6.722

C4 12.691 3.998 3.762 5.055 6.863 41.514 4.495 5.717 4.688 7.425

C5 5.906 4.043 3.729 5.060 6.840 41.247 4.473 12.136 4.733 7.371

C6 4.159 4.435 4.278 5.569 7.221 47.230 4.900 7.877 5.154 7.995

C7 3.898 4.068 4.026 5.322 6.841 41.479 4.564 1.375 4.792 7.364

C8 3.915 3.944 4.017 5.301 6.845 41.204 4.679 4.572 4.856 7.383

C9 3.941 3.927 4.030 5.254 6.862 40.863 4.669 1.639 4.884 7.302

C10 3.914 4.096 4.039 4.910 6.874 41.027 4.705 2.285 4.898 7.416

Total Avg 6.309 3.660 3.520 4.793 7.062 32.638 4.243 5.385 4.491 6.865
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Figure 14.  Comparison of optimizer average computation time on 23 functions.

Figure 15.  Comparison of optimizer average computation time on CEC 2019 functions.

Figure 16.  Welded beam design problem.
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Table 12.  Results of CMWGWO and other algorithms on WBDP. Significant values are in [bold].

Optimal Cost h l t b

CMWGWO 1.670217726 0.198832 3.337365 9.192024 0.198832

GWO 1.670556251 0.198805 3.338965 9.191231 0.198871

SCA 1.70353017 0.199921 3.290179 9.359652 0.200145

RWGWO 1.670846301 0.198712 3.339064 9.196423 0.198813

PSO 1.674171966 0.198372 3.347039 9.215288 0.198767

AGWOCS 1.690831828 0.192598 3.491132 9.200901 0.199905

AdGWO 1.692837585 0.204689 3.266280 9.065060 0.204561

AGWO 1.672764540 0.197565 3.363120 9.194295 0.198916

CHOA 1.726704789 0.194029 3.430487 9.522930 0.198357

HFBOA 1.708626666 0.198331 3.522627 9.224930 0.200026

Figure 17.  Three bar truss design problem.

Table 13.  Results of CMWGWO and other algorithms on TTB. Significant values are in [bold].

Optimal weight X1 X2

CMWGWO 263.8958434 0.788581 0.408515

GWO 263.8959482 0.788386 0.409066

SCA 263.9022373 0.787461 0.411747

RWGWO 263.8959996 0.788735 0.40808

PSO 263.8964742 0.789473 0.405999

AGWOCS 263.8984792 0.788959 0.407473

AdGWO 264.0293293 0.776680 0.443508

AGWO 263.8978898 0.789184 0.406827

CHOA 263.9262500 0.786991 0.413315

HFBOA 263.8980334 0.790019 0.404466
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Data availability
The data obtained through the experiments are available upon request from the corresponding author.
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