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RIS‑assisted near‑field localization 
using practical phase shift model
Saber Hassouna *, Muhammad Ali Jamshed , Masood Ur‑Rehman , Muhammad Ali Imran  & 
Qammer H. Abbasi 

Our research focuses on examining the problem of localizing user equipment (UE) in the uplink 
scenario using reconfigurable intelligent surfaces (RIS) based lens. We carry out a thorough analysis of 
the Fisher information matrix (FIM) and assess the influence of various RIS-based lens configurations 
using an actual RIS phase-dependent amplitude variations model. Furthermore, to reduce the 
complexity of the maximum likelihood (ML) estimator, a simple localization algorithm-based angular 
expansion is presented. Simulation results show superior localization performance when prior location 
information is available for directional and positional channel configurations. The position error 
bound (PEB) and the root mean square error (RMSE) are studied to evaluate the localization accuracy 
of the user utilizing the realistic RIS phase-dependent amplitude model in the near-field region. 
Furthermore, the achievable data rate is obtained in the same region using the realistic RIS phase-
dependent amplitude model. It is noticed that adopting the actual RIS phase-dependent amplitude 
model under the near-field channel increases the localization error and degrades the data rate 
performance for amplitude value less than one so, the unity assumption of the RIS phase shift model 
used widely in the literature is inaccurate.

In the realm of wireless communication networks, radio localization presents a feasible substitute for acquiring 
user location data within environments where global positioning system (GPS) signals are unavailable1. With 
each successive generation of mobile communication, novel features are introduced to facilitate high-speed 
communication, while simultaneously enhancing the precision of localization capabilities2,3. Radio localization 
techniques operate under the fundamental concept that the radio signals contain valuable information regarding 
the positional data of network nodes. In fourth generation (4G) systems, users make use of time-of-arrival (ToA) 
estimation4 in relation to each base station (BS). This estimation relies on factors such as the distance between the 
user and the BS, as well as the clock bias at the user. Using ToA from at least four line-of-sight (LoS) BSs, users 
can calculate three-time difference of arrival (TDoA) measurements to determine their three-dimensional (3D) 
location. In fifth generation (5G) systems that operate in millimeter wave (mm-Wave) frequency bands, both the 
BS and potentially the user are equipped with multiple antennas. In this scenario, the channel is characterized 
by both delays and angles. The receiver determines the angle-of-arrival (AoA), while the transmitter determines 
the angle-of-departure (AoD). This parameterization of the channel considers both the spatial angle and the 
delay in the propagation of signals5–7.

The growing prevalence of applications such as smart factories, automated/assisted driving, and augmented 
reality has led to increasingly stringent requirements for positioning accuracy in 5G and sixth generation (6G) 
communication networks. In 5G, the wider bandwidth and larger antenna arrays have improved localization 
accuracy, making it possible to efficiently localize devices using just one BS8,9. Moreover, the reliability of locali-
zation provided by 5G and 6G communications is of utmost significance. As 5G and 6G systems can operate 
in high-frequency mm-Wave and THz bands, the links between devices are susceptible to obstacles. Since LoS 
propagation is typically necessary for precise location estimation, existing localization methods yield significant 
estimation errors if the LoS link is obstructed10.

Alongside their advantages for communication purposes, reflecting intelligent surfaces (RIS)s offer reliable 
and highly precise position estimation capabilities with low cost and high energy efficiency11–13. When the LoS 
link is obstructed, an RIS can establish a virtual LoS link, allowing for accurate delay measurements when utiliz-
ing wideband signals14. Unlike non-reconfigurable scatterers present in the environment, RISs have the ability 
to adjust the phase shifts of their reflecting elements, resulting in a significant beamforming gain. Additionally, 
RISs offer a large number of elements, further contributing to the high resolution achieved in the localization 
process. This capability enables RISs to provide enhanced resolution in AoA for uplink localization or AoD for 
downlink localization15.
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For communication and localization applications involving RISs, it is crucial to have precise and well-defined 
control over the RIS. This requires the development of proper and straightforward models for RIS phase control. 
These models should ideally incorporate various factors such as the effects of mutual coupling16,17, calibration, 
quantization18 and power losses per element19. Most existing studies on RIS localization have focused on ideal 
phase shifters and have neglected the impairments mentioned above. As a result, it remains unknown how these 
proposed localization approaches would perform when these impairments are taken into account. However, 
understanding the impact of these impairments is essential as it can significantly influence the effectiveness and 
reliability of RIS-based localization methods20,21. The current state-of-the-art to intelligent surfaces-based locali-
zation involves investigations employing RIS in either receive mode11 or reflection mode22,23. In receive mode, 
a sizable intelligent surface is utilized to determine the location of a user positioned in front of it, applicable in 
both near-field and far-field scenarios11,11. On the other hand, when operating in reflection mode, a strategy is 
employed to modify the RIS reflection coefficient. This alteration enhances the received signal strength (RSS) 
at various points, thereby improving localization accuracy24. In contrast, a different approach is presented in22, 
where the authors utilize an RIS to support positioning and communication in mm-Wave frequency bands, 
assuming that the mobile device is in the far-field with respect to the RIS. However, this assumption may not 
always hold true, especially when dealing with large surfaces and arrays relative to the distance. Consequently, 
the models involved become less accurate, as the mobile device is situated in the Fresnel region rather than the 
Fraunhofer region. In the Fresnel region, the wavefront exhibits significant curvature and cannot be approxi-
mated as a plane wave. Additionally, disregarding the spherical wavefront omits crucial information regarding 
the mobile device’s location and orientation25–27. Under the spherical wavefront channel model, only a limited 
number of studies have explored the RIS-aided radio localization problem. One notable contribution is the 
development of a near-field codebook in28 designed for extremely large-scale RIS beam training. This involves 
dividing the two-dimensional (2D) plane into several sampled points in the XY coordinate system. Furthermore, 
the authors of29 demonstrated that the characteristics of the transmitted signal, such as the transmit antenna 
type, size, and orientation, can significantly impact received signals in the near field. Considering these factors 
is essential for achieving high-precision localization.

In this paper we extended the work in21. Our research focuses on the exploration of 3D localization using a 
simplified RIS lens design, as described in reference25. This design incorporates adjustable RIS lenses and a sole 
antenna connected to a receiving radio frequency (RF) chain. We address the issue of RIS-aided geometric near-
field localization in scenarios where LoS blockage is present. To tackle this challenge, we presented Fisher infor-
mation analysis with a closed form expression of the Fisher information matrix (FIM), showing the dependence 
of the position error bound (PEB) on the RIS phase profiles. We used three RIS phase profiles random, directional 
and positional configurations to demonstrate the role of RIS in localization and communication in the near-field 
regime. The RIS phase profiles are designed taking into consideration the amplitude and phase responses of the 
RIS by adopting the practical phase-dependent amplitude model30. The random profile gives uniform signal-to-
noise ratio (SNR) in the deployment area while the directional and positional increase the SNR towards the user 
location. Furthermore, we develop a simple localization scheme to reduce the complexity of the maximum likeli-
hood (ML) estimator.The achievable data rate degrades with distance in the near-filed region and this coincides 
with localization error behavior which increases gradually with distance from the RIS. Both achievable data rate 
and localization error show inferior performance when adopting the RIS phase-dependent amplitude model for 
amplitude value less than one so, the unity assumption of the RIS phase shift model used widely in the literature 
leads to over-optimistic and incorrect localization and communication performance results.

The rest of the paper is organized as follows: “System model” presents the system model which includes the 
signal and the RIS models in addition to the problem statement. The FIM analysis is given in “Fisher information 
matrix (FIM) analysis”, while the location estimation is shown in “Low complexity estimation”. “Achievable data 
rate in the near field regime” discusses the achievable data rate in the near-field regime. The simulation results 
and the conclusion are given in “Simulation results” and “Conclusion”, respectively.

Notations
Bold letters are used to represent vectors, while bold capital letters are used for matrices. To indicate the element 
in the B th row and C th column of matrix A, it is expressed as [A]B,C . The notation AB:C,K:L refers to a matrix 
that consists of rows from B to C and columns from K to L , taken from matrix A. The ⊙ operator denotes the 
Hadamard product of vectors, E{.} represents the expectation operator, and † denotes the pseudo-inverse of a 
matrix. The ones and zeros column vectors represent 1N and 0N respectively with size N. Lastly, the f(d) represents 
the probability density function (PDF) of a random vector d.

System model
Geometry and signal model
We provide a detailed description of the system model utilized for localization in 3D with the help of the RIS 
lens. Additionally, we will introduce the near-field channel and the realistic amplitude-dependent phase model 
to evaluate the performance of the PEB, root mean square error (RMSE) and the achievable data rate.

We examine a wireless setup comprising of a single user transmitting from position p = [x, y, z]⊤ , and an 
N-element RIS lens positioned in the XY plane with reference point [0, 0, 0]⊤ . The RIS lens is placed near a single 
antenna equipped with a corresponding RF chain for reception. The antenna is located at p ant ∈ R

3 . In Fig. 1a, 
the system setup is depicted to present the components of the communication system, while Fig. 1b presents 
the 3D coordinate system that shows the positional and angular information of the user and RIS. The spacing 
between the horizontal and vertical elements is set to �/2 where, � is the wavelength of the carrier frequency. The 
n th element of the RIS lens is located at En =

[
xn, yn, 0

]⊤ ∈ R
3 which is equivalent to the spherical coordinate 
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ℓn[cos�n, sin�n, 0]
⊤ ∈ R

3 . The ℓn refers to the element’s distance from the RIS origin to the element n and �n 
is the nth element azimuth angle as illustrated in Fig. 1b. Each element exhibits a directivity pattern described by 
D(θ ,ϕ) = cos2(ϕ) cos(θ) , where ϕ ∈ [0, 2π] represents the azimuth angle between the X-axis and the vertical 
projection of p on the XY plane and θ ∈ [0,π/2] represents the elevation angle between the Z-axis and the user 
location p. From this point forward, we will refer to the AoAs as θ and ϕ . Using the aforementioned notations, 
we define the wave vector k(ϕ, θ) = 2π

�
[cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)]⊤ . To express the unknown position 

vector of the user, p, we can utilize the wave vector. It can be represented as p = −�Qk(θ ,ϕ)/2π , where Q is 
the Euclidean distance between p and the reference location of the RIS, denoted as Q � ‖p‖ . Additionally, we 
model the prior knowledge of the user’s location as a Gaussian PDF f(p). This PDF is characterized by a mean, 
µp ∈ R

3 , and a covariance matrix cp ∈ R
3×3 . In the given scenario, the user transmits a narrowband signal St 

over a series of T transmissions to the receive antenna through the RIS elements. The transmitted signal follows 
the requirements that the E

{
|St |2

}
= Es . In general, we presume that St =

√
Es  for any given transmission t. 

The received signal at the output of the RF receiver can be represented mathematically for each time instance t as:

where, vt = diag
(
vt,0 . . . vt,N−1

)
 is the reflection coefficients for N RIS lens elements at time t and vt,n represents 

the amplitude ∈ (0, 1] and phase shift ∈ [0, 2π) for RIS element n at time t. The practical RIS phase shift model 
is provided next. Furthermore, ϑ = − 2πQ

�
+ ϑsync represents the phase synchronization between the receiver 

and transmitter. The vector hant ∈ C
N×1 comprises the gains of the propagation channels from the RIS to the 

receiver. The vector Ŵ(p) ≥ 0N represents the amplitudes of the propagation channels between the RIS elements 
and the transmitter while, the channel phases can be represented by the vector V(p) ∈ C

N×1 . The noise vector 
Zt represents uncorrelated zero-mean additive Gaussian noise with a variance of N0/2 per real dimension. By 
introducing ut = vthant , we can define U = [u1, u2, . . . , uT ] ∈ C

N×T . Additionally, S = [S1,S2, . . . ,ST ]
⊤ and 

Z = [Z1,Z2, . . . ,ZT ]
⊤ . In this context, the measurement vector r = [r1, r2, . . . , rT ]

⊤ can be represented as:

The model employed in signal processing literature for the localization of objects in the near-field is essentially 
the far-field model of electromagnetics, or a closely related approximation29. This work neglects the considera-
tion of electromagnetic near-field effects within the Fraunhofer distance. In the near-field channel model, the 
steering vector V(p) for a specific position p is defined as:

and the amplitude Ŵ(p) = Ŵ1N is constant for all RIS elements. In the improved near-field channel model, 
however, the upper bound of the amplitudes Ŵ(p) can be presented as per26:

(1)rt = ejϑh⊤antvt(Ŵ(p)⊙ V(p))St +Zt ,

(2)r = ejϑdiag(S)U⊤(Ŵ(p)⊙ V(p))+Z .

(3)[V(p)]n = exp

(

−j
2π

�

(∥
∥p− En

∥
∥−Q

)
)

,

Figure 1.   (a) System setup, (b) coordinate system.
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where, the terms, Xn = {�/2+ (xn − x),�/2− (xn − x)} , Yn =
{
�/2+

(
yn − y

)
,�/2−

(
yn − y

)}
 and 

B(x, y) =
√

x2/z2 + y2/z2 + 1 . Furthermore, � = �/2 is the spacing between RIS elements so each n th ele-
ment of the RIS lens, with n = 1, 2, . . . ,N , have the size A = �×�.

The model described in Eq. (3) represents the conventional near-field model, wherein the amplitude remains 
unchanged, but the phase changes according to the distance from each element of the RIS. On the other hand, 
the model presented in Eq. (4) corresponds to an enhanced near-field model, as proposed in26. In this improved 
model, the element’s amplitude is determined by its relative position to the location of the user, while the phase 
remains unchanged, as in Eq. (3). In comparison to the conventional and enhanced near-field channels, the phase 
in the far-field channel is given by [V(p)]n = exp

(
−jE⊤

n k(θ ,ϕ)
)
 , while the amplitude remains unchanged for 

all RIS elements Ŵ(p) = Ŵ1N.

RIS phase shift model
Amplitude variations
We adopt the practical model proposed in30 which describes the fundamental relationship between the reflec-
tion amplitude and the phase shift of the RIS. Consequently, we examine the near-field localization aided by RIS 
by incorporating an actual RIS amplitude model, which is based on the corresponding circuit setup of single 
RIS elements. In Fig. 2a, the equivalent model for the n-th reflecting element is illustrated as a parallel resonant 
circuit and its impedance is given by30:

The bottom layer inductance, top layer inductance, effective capacitance, effective resistance, and carrier fre-
quency of the incident signal are represented as I1, I2,Cn,�

ohm
n  and f respectively. The reflection coefficient vt,n 

describes the portion of the reflected electromagnetic wave that is attributable to the discontinuity in impedance 
between the element impedance Zn

(
Cn,�

ohm
n

)
 and free space impedance Zo:

vt,n being a function of Cn,�
ohm
n  and f, allows us to control and programme the reflected electromagnetic waves 

by changing the values of Cn,�
ohm
n  and f. Cn has values that vary from 0.15 pF to 1.5 pF, �ohm

n = 1 ohm, Zo = 377 , 
and f = 4GHz . The RIS element will scatter a sinusoidal signal impinging at frequency f with an amplitude of 
∣
∣vt,n

∣
∣ and a phase shift of arg

(
vt,n

)
 . For example, in the case of a one-bit RIS, one positive-intrinsic-negative (PIN) 

diode is required per RIS element, and more diodes are needed for more resolution but at the cost of complex 
design. Consequently, the RIS is adjusted by using multiple PIN diodes numbers assigned to every element. Two 
alternative capacitance values can be used with each PIN diode. Figure 2b illustrates the responses of amplitude 
and phase for different values of capacitances. It was found that because the amplitude response and phase shifts 
of the reflecting element are typically non-linearly linked, they cannot be controlled separately. The reflection 
amplitude , as illustrated in Fig. 3, achieves a modest value at phase shift equals zero, but it grows consistently 
as the phase shift reaches 180◦ or −180◦ and asymptotically approaches one. As a consequence, it is incorrect for 
many earlier research to assume that the amplitude response value is one. The reflecting phase shift provided 
by each capacitance value varies. For instance, the capacitance values of 0.5011 pF and 0.3732 pF correspond 
to phases of −90◦ and 90◦ respectively, and will provide a 180◦ phase shift spacing per element. Figure 2b shows 
the different values of the phase and amplitude responses with their corresponding capacitance values at center 
frequency f = 4GHz.

The actual model considers variations in the amplitude, which are, in turn, determined by the phase, contrary 
to the commonly held assumption in the literature, which assumes a constant amplitude. More specifically, 
the performance loss in localization resulting from the discrepancy between the ideal and the actual model 
responses will be explored in this work. In the term, vt = diag

(
vt,0 . . . vt,N−1

)
 , let vt,n = βt,n

(
�t,n

)
ej�t,n where, 

�t,n ∈ [−π ,π) is the phase shift and βt,n
(
�t,n

)
∈ [0, 1] is the amplitude. The amplitude as a function of the 

phase can be represented as:

The constants βmin ≥ 0 , φ ≥ 0 , and γ ≥ 0 , are parameters associated with the particular circuit implementation 
being considered. It should be noted that when βmin = 1 (or γ = 0 ), Eq. (7) is essentially the same as the ideal 
phase shift model with unity amplitude. Figure 4 shows the amplitude variations for different values of βmin . It 
is evident from Fig. 4 that when βmin = 1 , the amplitude response is one while, it fluctuates between zero and 
one when βmin < 1.

(4)
[Ŵ(p)]2n = (4π)−1

∑

x ∈ Xn

y ∈ Yn

xy
(
y2 + z2

)
B(x, y)

+ 2 tan−1

(
xy

z2B(x, y)

)

,

(5)Zn

(

Cn,�
ohm
n

)

=
j2π fI1

(

j2π fI2 + 1
j2π fcn

+�ohm
n

)

j2π fI1 +
(

j2π fI2 + 1
j2π fcn

+�ohm
n

) .

(6)vt,n =
Zn

(
Cn,�

ohm
n

)
− Zo

Zn

(
Cn,�ohm

n

)
+ Zo

.

(7)βt,n
(
�t,n

)
= (1− βmin )

(
sin (�n − φ)+ 1

2

)γ

+ βmin .
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Figure 2.   (a) Structure of the RIS including its reflecting element and the equivalent RLC circuit model and (b) 
amplitude and phase responses for different elements and their corresponding capacitance values.

Figure 3.   Reflected amplitude vs. phase shift for RIS element.
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Using this realistic model, we have designed the RIS phase profiles for directional and positional channel 
models. A design of phase profile is provided next.

Design of phase profile
The accuracy of determining the user location relies on the selection of the profiles of the RIS phases vt , 
while the amplitudes are not assumed to be one as mentioned widely in the literature, however, they are dis-
tributed from [0, 1]. To eliminate the impact of phases in the channel hant , we assign vt = vant ṽt , where the 
known phases vant = diag

(
uant,0, . . . , uant,N−1

)
 are chosen such that 

[
h⊤antvant

]

n
=

∣
∣
[
h⊤ant

]

n

∣
∣,∀n31. Where 

uant,n =
[
(h ant /|h ant |)∗

]

n
 . This approach leverages the information about hant to ensure the desired outcome. 

We are now left with the task of designing ṽt = diag
(
ṽt,0, . . . , ṽt,N−1

)
 . We examine three configurations for 

ṽt,n, ∀n, t . Firstly for the random configuration, we assign ṽt,n = exp
(
j�t,n

)
 where, �t,n ∼ U(0, 2π) are indepen-

dently and randomly distributed for every nth RIS element and tth time instant. Secondly, we set the directional 
phase configuration as ṽt,n = exp

(
+jE⊤

n k
(
θ(k),ϕ(k)

))
 . The priori PDF f(p) is used to generate the phase samples 

of θ(k) and ϕ(k) . Lastly, the positional phase configuration is obtained as ṽt,n = exp
(
+j 2π

�

(∥
∥p(k) − En

∥
∥−Q(k)

))
 . 

We use the f(p) to extract the position p(k) and the distance Q(k) samples. To comprehend the difference among 

Figure 4.   Amplitude variations for different values of βmin , γ = 0 and φ = 1.5.

Figure 5.   SNR in dB for random, directional and positional phase profile at βmin = {0.1, 1}.
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various phase profiles and demonstrate the impact of the actual phase shift model outlined in Eq. (7), we illus-
trate SNR as a function of the location for a single realization of the three phase profiles as per Fig. 5. We assume 
a priori position distribution with mean µp = [−0.1,−0.1,−0.1]⊤ ∈ R

3 and covariance cp = 0.01I3 ∈ R
3×3 . 

Figure 5 shows the random, directional, and positional SNR for different values of βmin = {0.1, 1} . Generally, 
in the random scenario, we notice that the SNR remains consistent across all locations with decreased SNR near 
the outer edges of the RIS subject to the pathloss. However, higher SNR is attained in the selected direction 
[−0.1,−0.1,−0.1]⊤ ∈ R

3 for both directional and positional cases with decreased SNR in the other areas com-
pared to the random scenario. This phenomenon can be elucidated in the following manner: the directional and 
positional phase profiles concentrate energy toward the user’s direction, resulting in a value of 

∥
∥U⊤V(p)

∥
∥2 ≈ 0 

approximately equal to 0 for the majority of locations p that deviate from the actual user location. Consequently, 
tuning the RIS phase profile will improves the PEB and the localization accuracy. Furthermore, when βmin = 0.1 , 
the SNR degrades in all three scenarios in comparison with the case of the ideal lossless model βmin = 1 . The SNR 
dB levels at the location (-1,1.5) is shown for different values of βmin for the random, directional and positional 
cases. The SNR can be given as follows:

Problem statement
Our objective is to develop the PEB and create a simplified algorithm for the estimation of the user position p, 
along with the unknown channel gain Ŵ , based on the T transmission instances and the observations rt men-
tioned in Eq. (1). We assume that the practical model in Eq. (5) and its associated RIS parameters, βmin , φ , and 
γ are known. In this paper, we put the assumption that these parameters are available for the case of the uplink 
single-user scenario when the RIS act as lens21. In addition to localization and unlike the widely used far-field 
model in the literature, we have investigated the effect of the practical phase shift model on the achievable data 
rate in the near-field regime taking into consideration the random, directional and positional RIS phase profiles.

Fisher information matrix (FIM) analysis
Considering the practical phase shift model in “System model”, the baseband observations at the receiver for the 
transmitted pilots after time t in the near field regime can be rewritten using Eqs. (1) and (2) as:

where, ut,n = vt,n[hant]n =
(
βt,n

(
�t,n

)
ej�t,n

)

[hant]n and the amplitude βt,n
(
�t,n

)
 is defined in (7). The model 

in (9) can be represented in a vector form.

where, U(�) = [u1(�) . . . uT (�)] ∈ C
N×T  is the matrix of the RIS profile, depending on the val-

ues of the RIS amplitude circuit parameters � = [βmin ,φ, γ ]
⊤ in (7). Considering the noise free vector 

ξ =
√
EsŴe

jϑU⊤(�)V(p) and the 8× 1 vector of unknown parameters ϒ =
[
Ŵ,ϑ , p⊤,βmin,φ, γ

]⊤ , the FIM 
J(ϒ) ∈ R

8×8 is defined as32.

The FIM diagonal and off-diagonal elements can be generated from the partial derivatives. However, we put the 
assumption that the RIS phase profile and the related amplitude circuit parameters are known at the receiver so, 
the 8× 1 vector of unknown parameters ϒ =

[
Ŵ,ϑ , p⊤,βmin,φ, γ

]⊤ can be reduced to ϒ =
[
Ŵ,ϑ , p⊤

]⊤ . We 
can represent (11) as follows:

where, JŴ,Ŵ � [J(ϒ)]1,1 is the first diagonal element of J(ϒ) , Jϑ ,ϑ � [J(ϒ)]2,2 is the second diagonal element and 
Jp,p � [J(ϒ)]3:5,3:5 are the third, fourth and fifth diagonal elements of J(ϒ) . The off-diagonal elements above and 
below the main diagonal are 

[
JŴ,p Jϑ ,p

]⊤
� [J(ϒ)]1:2,3:5 and 

[
Jp,Ŵ Jp,ϑ

]
� [J(ϒ)]3:5,1:2 respectively. To determine 

the diagonal and off-diagonal elements of the FIM J(ϒ) , we need to calculate the partial derivatives 
∂ξ/∂Ŵ =

√
Ese

jϑU⊤V(p)  ,  ∂ξ/∂ϑ =
√
EsŴje

jϑU⊤V(p)  a n d  ∂ξ/∂p =
√
EsŴe

jϑU⊤F(p)  ,  w h e r e 
F(p) �

∂V(p)
∂p = j 2π

�

(

diag(V(p))W⊤ + V(p)
p⊤

d

)

∈ C
N×3  a n d  W = [w0,w1, . . . ,wN−1]  w i t h 

wn =
(
En − p

)
/
∥
∥En − p

∥
∥ . Consequently, the elements inside the FIM can be written as follows:

(8)SNR = 1

T

T∑

t=1

EsŴ
2

N0

∣
∣
∣u⊤t V(p)

∣
∣
∣

2
.

(9)rt = Ŵejϑ
N∑

n=1

[V(p)]nut,nSt +Zt ,

(10)r =
√
EsŴe

jϑU⊤(�)V(p)+ Z ,

(11)J(ϒ) = 2

N0
ℜ
{(

∂ξ

∂ϒ

)H
∂ξ

∂ϒ

}

.

(12)J(ϒ) =





JŴ,Ŵ JŴ,ϑ JŴ,p
Jϑ ,Ŵ Jϑ ,ϑ Jϑ ,p
Jp,Ŵ Jp,ϑ Jp,p


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where ℜ(.) and ℑ(.) are the real and imaginary of a complex number and the positive semidefinite matrix 
� = U∗U⊤.

Definition 1 Equivalent FIM (EFIM): Given a parameter vector � �
[
�⊤

1 ,�
⊤
2

]⊤ with related FIM.

Then, the EFIM of �1 is given by Schur complement as33,34

As per this definition, it should be noted that J�1 is the FIM of �1 under the assumption that �2 is known. Addi-
tionally, J�1�2 J

−1
�2

J⊤�1�2
 quantifies the amount of information lost due to the uncertainty surrounding �2 . Taking 

into account Definition 1, the equivalent FIM of the user position is given as:

Consequently, the PEB is represented as:

The RMSE of any unbiased estimator p̂ can be bounded by an inequality:

Low complexity estimation
Maximum likelihood (ML) estimation
The joint PDF can be expressed as32,35:

where the noise free term ξ(ϒ) = G
∑N

n=1[V(p)]nut,nSt , G = Ŵejϑ . Consequently, the ML estimate of the chan-
nel gain and user location:

Differentiating the term d(G, p) and set equal to zero, yields to the estimate that maximize the likelihood function 
∂d(G,p)

∂G
= 0 . Consequently, solving for G will lead to the estimate as a function of p.

Therefore, the estimate p can be computed as:

Simple user localization
The framework of the user localization problem in spherical coordinates is used to solve (22). This framework 
gives rise to a three-step estimation process outlined below. Initially, we represent each exponential term in the 
far-field, V(ϕ, θ) =

[

e−jk(ϕ,θ)⊤E1 , . . . , e−jk(ϕ,θ)⊤EN

]

 as [V(ϕ, θ)]n = exp
(
−j 2π

�
ℓn sin(θ) cos (ϕ −�n)

)
 . We utilize 

Jacobi-Anger expansion method21 to express [V(ϕ, θ)]n as:

(13)J(ϒ) = 2Es

N0





VH(p)�V(p) ŴVH(p)�V(p) Ŵℜ
�
VH(p)�F(p)

�

Ŵ
�
VH(p)�V(p)

�
Ŵ2VH(p)�V(p) Ŵ2I

�
VH(p)�F(p)

�

Ŵℜ
�
VH(p)�F(p)

�
Ŵ2J

�
VH(p)�F(p)

�
Ŵ2R

�
FH(p)�F(p)

�



,

(14)J� =
[

J�1 J�1�2

J�1�2 J�2

]

.

(15)Je�1
= J�1 − J�1�2 J

−1
�2

J⊤�1�2
.

(16)
J(p) = [J(ϒ)]3:5,3:5 − [J(ϒ)]3:5,1:2[J(ϒ)]−1

1:2,1:2[J(ϒ)]1:2,3:5

= 2Ŵ2Es

N0
ℜ
{

FH(p)

[

�− �V(p)VH(p)�

VH(p)�(p)

]

F(p)

}

.

(17)PEB =
√

trace
([

J−1(ϒ)
]

3:5,3:5

)

.

(18)PEB ≤ RMSE �

√

E
{
�p̂− p�2

}
.

(19)f (r | ϒ) =
(

1

πN0

)T

exp

(

− 1

N0
�r − ξ(ϒ)�2

)

,

(20)

[Ĝ, p̂] = argmax
G,p

f (r | G, p)

= argmin
G,p

∥
∥
∥r −

√
EsGU

⊤V(p)
∥
∥
∥

2

︸ ︷︷ ︸

d(G,p)

.

(21)Ĝ(p) = VH(p)U∗r
√
Es
∥
∥U⊤V(p)

∥
∥2

.

(22)p̂ = argmin
p

∥
∥
∥r −

√
EsĜ(p)U

⊤V(p)
∥
∥
∥

2
.
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where L > 2π
�
ℓmax sin θ is the number of terms in the expansion that gives sufficient precision for high-quality 

approximation. Consequently, T ≥ Tthr = 2L+ 1 is adopted for low complexity solution as per Algorithm 1. Fur-
thermore, Jm(·) is the m-th order Bessel function of the first kind. The expansion in (23) can be represented as:

where 
[
gn(θ)

]

m
= jmJm

(
− 2π

�
ℓn sin(θ)

)
e−jm�n and [h(ϕ)]m = ejmϕ . It can be readily confirmed that 

V(θ ,ϕ) ≈ G⊤(θ)h(ϕ) , where G(θ) =
[
g0(θ) . . . gN−1(θ)

]
 . Subsequently, the response vector V(θ ,ϕ) has inde-

pendent structure in the angles θ and ϕ . We begin with three-stage estimating method to estimate p̂ = p(Q̂, θ̂ , ϕ̂) . 
We rewrite the system in (10) as:

By defining the vector b as b =
√
EsGh(ϕ) based on (25), the estimation of b as a function of θ can be represented 

by b̂(θ) =
((

U⊤G⊤(θ)
)⊤

U⊤G⊤(θ)
)−1(

U⊤G⊤(θ)
)⊤

r . Therefore, the estimation for the angle θ can be applied 
as:

Using the estimated value θ̂ , (23) can be rewritten as:

For each value of ϕ , we estimate G in a similar manner as in (21), but instead of using V(p) , we substitute it with 
G⊤(θ̂)h(ϕ) , resulting in the estimation Ĝ(ϕ)

Therefore, we solve for ϕ:

With the estimated angles θ̂ and ϕ̂ , we define p(Q) = Q
[

sin θ̂ cos ϕ̂ sin θ̂ sin ϕ̂ cos θ̂
]⊤ , which allows us to 

determine Ĝ(p(Q)) , as described in (19). Finally, we proceed to solve the optimization problem.

Now we can calculate the user estimate as:

Algorithm 1 summarizes the steps of estimating the user localization.

Computational complexity
To assess the computational complexity of Algorithm 1, consider discretizing the search intervals for distance, 
azimuth, and elevation into grids with a size of � each20. We make the assumption that both � and N are greater 
than T, which is a reasonable assumption considering the substantial size of the RIS and the need for a detailed 
search granularity to achieve high-quality estimates. Initially, assume that T < Tthr . It is evident that the com-
plexity of Algorithm 1 is primarily influenced by the 2D search process used to estimate azimuth and elevation 
angles. In the algorithm, it is satisfactory to focus on analyzing the computational complexity of the 2D search 
outlined in (22). Let us denote F(θ ,ϕ) = Ĝ(p)U⊤V(p) so, the complexity of F(θ ,ϕ) is O(TN) . The estimation 
problem in (22) is equivalent to the following problem:

 Consequently, following the computation of F(θ ,ϕ) , a search is required over both θ and ϕ . Therefore, the overall 
computational cost of Algorithm 1 when T ≤ Tthr is O

(
T�2N

)
 . When T ≥ Tthr , the complexity of Algorithm 1 

is primarily influenced by the estimation of θ . To estimate θ , the initial step involves computing F(θ) � G⊤(θ) 
where, G(θ) =

[
g0(θ) . . . gN−1(θ)

]
 . The computational cost of F(θ) is O(TN(2L + 1)) since T ≥ Tthr = 2L+ 1 

(23)[V(θ ,ϕ)]n ≈
L∑

m=−L

jmJm

(

−2π

�
ℓn sin(θ)

)

ejm(ϕ−�n),

(24)[V(θ ,ϕ)]n = g⊤n (θ)h(ϕ),

(25)r =
√
EsGU

⊤G⊤(θ)h(ϕ)+ Z .

(26)θ̂ = argmin
θ

∥
∥
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∥
∥
∥

2
.

(27)r =
√
EsGU
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(28)
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√
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∥
∥
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∥
∥
∥

2
.
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ϕ

∥
∥
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√
EsĜ(ϕ)U

⊤G⊤(θ̂)h(ϕ)
∥
∥
∥

2
.
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Q

∥
∥
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√
EsĜ(p(Q))U⊤V(p(Q))

∥
∥
∥

2
.

(31)p̂ = Q̂
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sin θ̂ cos ϕ̂ sin θ̂ sin ϕ̂ cos θ̂
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.
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Subsequently, a search for θ within the range [0,π/2] is required so, the complexity will be O(TN(2L+ 1)�) . 
The comprehensive complexity of Algorithm  1 is expressed as O

(
T�2N

)
 when T ≤ Tthr = 2L+ 1 and 

O(TN(2L + 1)�) when T ≥ Tthr . Consequently, it can be inferred that as T becomes sufficiently large, the 
adoption of the Jacobi-Anger expansion-based estimator in results in a reduction in computational complexity 
from O

(
�2

)
 to O(�) and hence converting the ac2D search problem to one-dimensional (1D) simple search 

line. Moreover, the decrease in complexity has not compromised accuracy, which is maintained at the decimeter 
level, as illustrated in Figs. 6 and 7. This observation strongly suggests the efficacy of the high-quality and optimal 
estimator employed in the algorithm.

Algorithm 1.   User location estimate p(Q̂, θ̂ , ϕ̂) in RIS-assisted near-field localization.

Achievable data rate in the near field regime
Typically, the designs that aim to minimize the PEB differ from those that prioritize communication-related 
metrics like capacity optimization. While both types of designs exhibit improved performance in high SNR 
conditions, the accuracy of localization is also influenced by factors such as geometric considerations and the 

Figure 6.   (a) PEB as a function of distance to the RIS lens, βmin ∈ {0.1, 0.3, 0.6, 1} . (b) PEB as a function of 
number of RIS elements. (c) PEB versus SNR (dB).

Figure 7.   (a) PEB as a function of distance to the RIS lens,σ = 1 , and βmin ∈ {0.1, 0.3, 0.6, 1} . (b) PEB as a 
function of Number of RIS elements σ = 1 , and βmin ∈ {0.1, 0.3, 0.6, 1} . (c) PEB versus SNR (dB) σ = 1 , and 
βmin ∈ {0.1, 0.3, 0.6, 1}.
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possibility of distinguishing signals from various paths rather than merely aligning them5. In this section of the 
paper, we study the performance loss on the achievable data rate in the near field channel when the realistic RIS 
phase profile is adopted. The achievable data rate can be represented as per31.

The maximum data rate  is  selected when the phase shif ts  are  tuned.  Recal l  that 
ut,n = vt,n[hant]n =

(
βt,n

(
�t,n

)
ej�t,n

)

[hant]n for each nth element at time instant t. As a result, at the random 
case, we adopt �t,n = exp

(
j�t,n

)
 where �t,n ∼ U(0, 2π) , while in both directional and positional scenarios, we 

respectively assign the phases �t,n = exp
(
+jE⊤

n k
(
θ(k),ϕ(k)

))
 and �t,n = exp

(
+j 2π

�

(∥
∥p(k) − En

∥
∥−Q(k)

))
 . 

The amplitude varies as βt,n =∈ (0, 1].

Simulation results
We used the simulation parameters provided in21 but with the realistic RIS phase shift model as in “System 
model”, so, � = [βmin,φ, γ ]

⊤ . We select the range of values for βmin ∈ [0, 1] and fixed the constants φ and γ to 0 
and 1.5 to study the performance loss not only on the localization but also in the communication. We examine 
a RIS composed of N = 2500 elements arranged in Nv × Nh grid, where Nv = Nh = 50 , at a frequency of 28 
GHz with �/2 and �2/4 element spacing and area, respectively. The receive antenna is positioned at coordinates 
[0, 0,−�]⊤ . The transmit power, the noise power spectral density, and the reception noise figure are set to 1 mW, 
−174 dBm/Hz and 8 dB, respectively. The total pilot transmissions T = 200 and the bandwidth is fixed to 1 MHz. 
In our analysis, we focus on a user who possesses a wavevector k oriented in the direction [1, 1, 1]⊤ . The channel 
gains to and from the RIS are set according to Eqs. (3) and (4). The prior knowledge about the user’s location is 
represented by the PDF as f (p) = N

(
p;µp, cp

)
 , where cp = σ 2I3 . It is solely employed for designing the direc-

tional beams of the RIS, and it is not utilized during the localization process or in the calculation of the PEB. 
The standard deviation in each dimension XYZ of the prior covariance of the user position is set to σ ∈ {0.1, 1} 
m to evaluate the localization performance in the random, directional, and optional phase profiles. In Eq. (21), 
the number of the terms in the expansion L = 5 is used for low complexity estimation.

Figures 6,7 and 8 illustrate the PEB as a function of distance in meters, number of RIS elements and SNR (dB). 
The figures display the PEB for the three selected designs of the RIS phase profiles, i.e., random, directional and 
positional, considering various values of standard deviation σ ∈ {0.1, 1} and amplitude variation βt,n =∈ (0, 1] . 
In Fig. 6a, it is noticed that by using a basic random phase configuration, we can achieve relatively low PEB, spe-
cifically below 1 meter, for user positions within a 10-meter distance from the RIS lens and at different values of 
βmin . Figure 6b demonstrates the impact of varying RIS sizes on the PEB limit at different values of βmin when the 
UE distance is 5 meters. It is evident that for all the curves under consideration for different βmin , the reduction 
in PEB is directly proportional to N. This relationship arises from the boost in SNR in the reflected path from the 
RIS to the receive antenna, which is directly proportional to the RIS’s different dimensional sizes N. Consequently, 
Fig. 6c shows the PEB performance in the low and high SNR regimes. Additionally, the absence of significant 
beamforming gain is attributed to the randomness of phase shifts. Figure 7 demonstrates that by employing 
directional or positional phase profiles ( σ = 1 and βt,n =∈ (0, 1] ), it is possible to significantly decrease the PEB. 
The positional phase profile exhibits slightly superior performance compared to the directional phase profile, 
although the disparity between the two is negligible. Similarly, in Fig. 7a, we observe that employing directional 
or positional phase profile allows us to achieve relatively enhanced PEB, specifically below 1 meter, for user 
positioned within a 10-meter range from the RIS lens, regardless of the value of βmin . Figure 7b illustrates how 
the PEB limit is affected by varying RIS sizes at different βmin values when the distance between the user and 

(33)

RRIS = max
�t,n ,βt,n

log2(1+ SNR)

= log2

(

1+ 1

T

T∑

t=1

EsŴ
2

N0

∣
∣
∣u⊤t V(p)

∣
∣
∣

2
)

.

Figure 8.   (a) PEB as a function of distance to the RIS lens,σ = 0.1 , and βmin ∈ {0.1, 0.3, 0.6, 1} . (b) PEB as a 
function of Number of RIS elements σ = 0.1 , and βmin ∈ {0.1, 0.3, 0.6, 1} . (c) PEB versus SNR (dB) σ = 0.1 , and 
βmin ∈ {0.1, 0.3, 0.6, 1}.
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the RIS is 5 meters. It is clear that for all the plotted curves corresponding to different βmin values, the reduction 
in PEB is directly proportional to N. This correlation stems from the boost in SNR in the reflected path, which 
is directly proportional to N, as depicted in Fig. 7c. Moreover, the substantial beamforming gain is ascribed to 
the directional and positional phase shifts directed towards the user’s location. Furthermore, the positional and 
directional phase profiles in Fig. 7 exhibit superior PEB performance compared to the random phase profile in 
Fig. 6 because of the tuned RIS coefficients that help the direct and the reflecting channel to be superimposed 
more constructively at the receive antenna. Similar to Figs. 7, 8 studies the PEB against distance from RIS, RIS 
different sizes and finally the SNR regimes but for a smaller value of standard deviation σ . Consequently, it is 
evident that having more precise a priori information (i.e., a smaller value for σ = 0.1 ) results in improved PEB. 
For example, the PEB in Fig. 8a for the positional case, σ = 0.1 and βmin = 1 at distance 6 m is 0.017 m how-
ever, the corresponding value in Fig. 7a at the same distance is 0.03 m. Furthermore, the PEB in Fig. 8b for the 
positional case, σ = 0.1 and βmin = 1 at RIS number of elements 1600 is 0.007 m while its corresponding value 
in Fig. 7b is 0.018 m. the same study can be compared between Fig. 8c and Fig. 7c for the SNR scenario. The 
PEB is 0.101 at 10 dB when the standard deviation σ = 1 , while it is 0.06 when σ = 0.1 as illustrated in Figs. 7c 
and Fig. 8c respectively.

Figure 9 illustrates the RMSE of three-stage localization algorithm, plotted against the distance from the RIS 
in meters. We notice how the RMSE performance is affected by adopting the true RIS phase shift model consid-
ering βmin = 0.5 . Due to the adoption of a definite limit of the angle and delay resolutions (360 bins for ϕ , 90 for 
θ , and 1000 for Q ), coupled with the limitation that the far-field presumed in the initial stages of the algorithm 
is not applicable for small distances, it becomes impractical to achieve the desired RMSE in the far-field regime. 
However, considering these factors, the performance of the positional RMSE remains far from the positional PEB, 
resulting in a performance that is significantly worse than what was forecasted by the bounds. This phenomenon 
can be justified by the following: The positional phase profiles concentrate energy towards the user’s direction, 
resulting in the majority of locations, apart from the true location, having a value of 

∥
∥U⊤V(p)

∥
∥2 ≈ 0 . Conse-

quently, the objective function (22) remains nearly consistent across various positions, displaying very slender 
peaks around the actual position. Due to the limited precision of the estimators, there is a high probability of 
missing this narrow peak, which can result in a deteriorated positional RMSE.

Figure 10 shows the data rate against the distance to the RIS. Generally, the data rate is inversely proportional 
with the distance, and this is due the decrease in SNR in the reflected path, which is inversely proportional to 
the distance from the RIS. The realistic RIS phase shift model is adopted, and the data rate performance gap 
is evident when βmin is changed from the ideal case which is βmin = 1 to the actual case which is βmin = 0.2 . 
We notice that the achievable data rate in the positional phase profile exhibits slightly better performance than 
the directional phase profile, although the difference between the two is negligible. Nevertheless, both of them 
outperform the random phase case and this is expected since the random phase has only an aperture gain with 
no passive beamforming gain enhancement.

Figure 11 illustrates the achievable data rates for various phase configurations in relation to the number of 
RIS elements at SNR of 25 dB and a distance of 12 meters from the RIS. Our investigation focuses on assessing 
the impact of the amplitude-phase shift model for different βmin values, specifically βmin ∈ {0.2, 1} , on the achiev-
able data rate. In general, we observe a decline in the achievable rate when βmin < 1 . Firstly, it is evident that the 
performance of the random phase shift approach at the RIS remains unaffected by the number of elements. This 
result aligns with expectations, given that random phase shifts only contribute to aperture gain without any pas-
sive beamforming gain. Secondly, it is notable that both positional and directional phase configurations exhibit 
superior performance compared to the scheme employing random phase shifts. As the number of elements 

Figure 9.   RMSE as a function of distance to the RIS lens, σ = 0.1 and βmin ∈ {0.5, 1}.
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increases, we observe a consistent rise in achievable rates. This trend is logical, as the passive beamforming 
performance steadily improves with the increasing number of elements.

Conclusion
We addressed the task of localizing the user in a 3D space using a RIS-based lens with a practical phase-shift 
model. By leveraging the curved nature of the wavefront, it is possible to estimate the location of the user by 
utilizing multiple phase configurations of the RIS. Fisher information analysis offers valuable insights into the 
design of these phase configurations taking into consideration the actual RIS phase shift model. Additionally, 
we have introduced a low-complexity 3D localization algorithm that simplifies the problem by decoupling the 
main 3D problem into 3 1D problems using the angular expansion approach. The advantage of this work shows 
the realistic results when using the practical phase-dependent amplitude model. The literature is saturated with 
RIS-related communication and localization works with overoptimistic results and far-field assumptions so, we 
tried in our work to prove that considering the lossless (ideal phase shift model) is not accurate in measuring 
the performance of localization (such as PEB and RMSE) and communication (such as achievable data rate). 
There are various potential research directions that can be explored further. One such direction involves mutual 
coupling and electromagnetic interference. When the RIS sections on the substrate material are in close proxim-
ity, effectively maintaining separation poses a challenge. This proximity gives rise to mutual coupling, wherein 
the impedance of one element becomes interconnected with the impedances of its neighboring elements. Con-
sequently, the frequency response will vary depending on the configuration of the adjacent elements. Several 
researchers overlook the electromagnetic interference inevitably present in any environment, choosing instead 
to concentrate solely on the signals produced by the system. Electromagnetic interference can stem from various 
sources, including natural occurrences, intentional activities, or unintentional factors like man-made devices and 

Figure 10.   Data Rate versus RIS distance, βmin ∈ {0.2, 1}.

Figure 11.   Data rate versus number of RIS elements, βmin ∈ {0.2, 1}.
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background radiation. Generally, every unregulated wireless transmission produces electromagnetic interfer-
ence. The energy of electromagnetic interference waves impacting the RIS in the space in front of it is directly 
proportional to its surface area. When the RIS emits the absorbed electromagnetic interference energy again, 
it can reach the intended receiver, leading to a degradation in the SNR of wireless networks that are unaware 
of such interference effects. The decline in SNR is attributed to the fact that these wireless networks or systems 
are primarily designed to counteract only the thermal noise generated by the receiver, neglecting the impact 
of external electromagnetic interference. Considering mutual coupling and electromagnetic interference could 
provide additional accurate information and insights for proper positioning and communication. These areas 
offer promising opportunities for advancing localization and communication techniques and enhancing their 
performance in practical scenarios.

Data availability
The data generated or analysed during this study are available from the corresponding author on reasonable 
request.
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