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Differences in gut microbiota 
between Dutch and South‑Asian 
Surinamese: potential implications 
for type 2 diabetes mellitus
Eric I. Nayman 1,2,5*, Brooke A. Schwartz 1,2,5, Michaela Polmann 1, Alayna C. Gumabong 1,2, 
Max Nieuwdorp 3, Trevor Cickovski 2* & Kalai Mathee 1,4*

Gut microbiota, or the collection of diverse microorganisms in a specific ecological niche, are known 
to significantly impact human health. Decreased gut microbiota production of short‑chain fatty 
acids (SCFAs) has been implicated in type 2 diabetes mellitus (T2DM) disease progression. Most 
microbiome studies focus on ethnic majorities. This study aims to understand how the microbiome 
differs between an ethnic majority (the Dutch) and minority (the South‑Asian Surinamese (SAS)) group 
with a lower and higher prevalence of T2DM, respectively. Microbiome data from the Healthy Life in 
an Urban Setting (HELIUS) cohort were used. Two age‑ and gender‑matched groups were compared: 
the Dutch (n = 41) and SAS (n = 43). Microbial community compositions were generated via DADA2. 
Metrics of microbial diversity and similarity between groups were computed. Biomarker analyses 
were performed to determine discriminating taxa. Bacterial co‑occurrence networks were constructed 
to examine ecological patterns. A tight microbiota cluster was observed in the Dutch women, which 
overlapped with some of the SAS microbiota. The Dutch gut contained a more interconnected 
microbial ecology, whereas the SAS network was dispersed, i.e., contained fewer inter‑taxonomic 
correlational relationships. Bacteroides caccae, Butyricicoccus, Alistipes putredinis, Coprococcus 
comes, Odoribacter splanchnicus, and Lachnospira were enriched in the Dutch gut. Haemophilus, 
Bifidobacterium, and Anaerostipes hadrus discriminated the SAS gut. All but Lachnospira and certain 
strains of Haemophilus are known to produce SCFAs. The Dutch gut microbiome was distinguished 
from the SAS by diverse, differentially abundant SCFA‑producing taxa with significant cooperation. 
The dynamic ecology observed in the Dutch was not detected in the SAS. Among several potential gut 
microbial biomarkers, Haemophilus parainfluenzae likely best characterizes the ethnic minority group, 
which is more predisposed to T2DM. The higher prevalence of T2DM in the SAS may be associated with 
the gut dysbiosis observed.

Abbreviations
ASV  Amplicon sequence variant
BP  Base-pair
DA  Differential abundance
DESeq  Differential expression analysis for sequence count data
FPG  Fasting plasma glucose
GLP-1  Glucagon-like peptide 1
HELIUS  Healthy life in an urban setting
PCoA  Principal coordinate analysis
RA  Relative abundance
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SAS  South-Asian Surinamese
SCFA  Short-chain fatty acid
T2DM  Type two diabetes mellitus

A microbiome is a community of phylogenetically diverse microorganisms and their multi-omic content 
that inhabit a specific ecological niche, such as the human  gut1. The microbiome and the host are embedded 
in a mutually dependent relationship that impacts host behavior and microbial community structure and 
 function2. As host-microbe interactions shape reciprocal fitness, phenotype, and metabolism, the host and the 
microbiome  coevolve2,3. Dysbiosis, or pathologic alteration of the baseline microbial milieu, may drive and/or 
result from disease  progression4,5. Our resident microbial flora has been widely recognized as a key but not yet 
fully understood mediator in the pathophysiology of many communicable and noncommunicable  diseases5–11, 
including type 2 diabetes mellitus (T2DM)12–16.

Diabetes is a chronic, metabolic disease in which hyperglycemia leads to multi-organ damage over  time17. 
Since the 1990s, the global prevalence of T2DM has increased, and the age-adjusted prevalence is expected to 
rise from 6.3% in 2019 to 7.8% in 2045 across  Europe18. Disproportionately high rates of diabetes and related 
complications affect migrant and ethnic minority groups living in Western  societies19. Diet, genetic predisposition, 
body weight, and sedentary lifestyle are key factors in the multifaceted pathophysiology of  T2DM20. Recently, 
the gut microbiome of diabetics has been shown to be distinctly different from that of normoglycemic, insulin-
sensitive  individuals14–16,21. Most agree that the abundances of Ruminococcus, Fusobacterium, and Blautia are 
positively correlated with T2DM while Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia, and 
Roseburia are negatively correlated with  T2DM13,22–24. However, a large knowledge gap still exists: how do the 
quantitative presences of the many other gut inhabitants vary with hyperglycemia and insulin resistance? For 
example, many disagree on the nature of the correlative relationship between T2DM and the abundance of 
Lactobacillus23.

Short-chain fatty acids (SCFAs), namely, acetate, butyrate, and propionate, and the microbes that produce 
them have been of particular interest in the diabetic gut because of the favorable effect that these molecules have 
on host  function25–27. Most of the beneficial effects of SCFAs on glucose metabolism and insulin signaling are 
mediated via the GPR41 and GPR43  receptors27–29. These molecules can activate intestinal  gluconeogenesis27,30, 
potentiate glucose-stimulated insulin secretion through glucagon like peptide-1 (GLP-1) dependent and 
independent  pathways28,29,31, and attenuate the chronic release of pro-inflammatory cytokines that worsens 
insulin  resistance32–34. SCFAs have many other important functions on host metabolism, which are well 
described by recent  reviews26,27. Ultimately, a decrease in SCFA-producing taxa is thought to be comorbid with 
T2DM and may cause or worsen the disease. Of note, cross-feeding between SCFA-producing taxa plays a 
major role in the gut microbial functional ecology. For example, Bacteroides thetaiotaomicron, Blautia obeum, 
Roseburia inulinivorans, Listeria sp., and Clostridium sphenoides can all create a major intermediate metabolite 
(1,2-propanediol) which can be used by Lactobacillus reuteri to make propionate. Roseburia can then take up 
acetate, the most widely produced SCFA, and make butyrate from  glucose35.

Ethnicity and place of habitation are thought to play an even larger role than metabolic health in shaping 
gut microbiome  composition36–38. Ethnicity is a particularly important factor as it connotes similar diet, shared 
genetics, and migration patterns, all of which have their own variable impact on gut microbial flora. The multi-
ethnic Healthy Life in an Urban Setting (HELIUS) prospective cohort study estimated that the impact of ethnicity 
on gut microbiome composition is ~ 6%37. The HELIUS cohort included participants from the six major ethnic 
groups living in Amsterdam, the Netherlands at the time of sample collection. Of these ethnicities, the Dutch, 
Ghanaian, and South-Asian Surinamese (SAS) were found to have the most discriminant gut  microbiomes37. 
In the Dutch population, the ethnic majority of Amsterdam, nine core gut bacterial species were identified: 
Subdoligranulum sp., Alistipes onderdonkii, Alistipes putredinis, Alistipes shahii, Bacteroides uniformis, Bacteroides 
vulgatus, Eubacterium rectale, Faecalibacterium prausnitzii and Oscillibacter sp. These were also consistently found 
across many other  populations38. Of these, several were shown to be significantly depleted, e.g., Faecalibacterium 
prausnitzii, and enriched, e.g., Bacteroides sp., in the SAS as compared to the  Dutch37.

The aim of our study is to compare the gut microbiome ecology between the Dutch and SAS groups, as these 
had the lowest and highest prevalence of T2DM among the HELIUS ethnicities, respectively. Our objective is 
to characterize and replicate, as microbiome studies are notoriously challenged by reproducibility, the bacterial 
biomarkers and inter-taxa relationships between these two groups. Network analysis was performed to compare 
the gut microbiomes of the two ethnicities because it can elucidate co-occurrence patterns, which can identify 
relationships between different bacterial groups. We demonstrate differences in the SCFA-producing taxa and 
correlate these with primarily ethnicity and secondarily metabolic health.

Methods
Genomic data source
Our dataset is from a multi-ethnic prospective cohort study, the HELIUS study. This cohort is composed of five 
major ethnic groups (Surinamese, Dutch, Ghanaian, Moroccan, and Turkish) aged 18–70 years old. Participants 
were randomly invited, and then stratified by ethnicity. All were living in Amsterdam, the Netherlands at the time 
of sample collection (2011–2015). A total of 2170 stool samples, each from a different individual, were collected, 
and the metagenomes were sent for sequencing of the 16S rRNA V4 hypervariable region. This was done on a 
2 × 250 base-pair (bp) MiSeq system with use of the 515F and 806R primers. The 2170 sequenced fecal samples 
yielded a total raw read count of 177,089,775. Further detail about cohort composition, data collection, and gene 
sequencing protocols have been previously  described37,39. The HELIUS study was approved by the medical ethics 
committee of the Amsterdam University Medical Center, and all participants provided informed consent prior to 
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enrollment in the study. Experiments were performed in accordance with all relevant regulations and guidelines, 
as approved by the Amsterdam University Medical Center and Declaration of Helsinki (6th, 7th revisions).

Ethnicity
A person was defined as of non-Dutch ethnic origin if he/she fulfilled one of two criteria: (1) he/she was born 
outside of the Netherlands and had at least one parent born outside the Netherlands (first generation) or (2) he/
she was born in the Netherlands but both parents were born outside of the Netherlands (second generation). For 
the Dutch samples, people who were born in the Netherlands and whose parents were born in the Netherlands 
were invited. The country of birth indicator for ethnicity was limited in that people who were born in the same 
country might be of different ethnic background, which in the Dutch context was applicable to the Surinamese 
population. Therefore, after data collection, participants of Surinamese ethnic origin were further classified by 
self-reported ethnic origin (obtained by questionnaire) as ‘African’, ‘South-Asian’, ‘Javanese’, or ‘other’.

Microbial community composition
Paired-end reads were input into a DADA2 (v1.16)40 workflow to generate microbial compositions. All 
parameters were kept at default values except those described here. First, primers were removed from sequence 
reads. Then, reads were quality filtered and truncated. Two bp errors were allowed per 250 bp read, and read-ends 
were trimmed down to a quality score threshold of  3041. Then, reads were dereplicated and merged. A minimum 
overlap of 30 bp was required for merging to occur. After merging, chimeric sequences were removed from the 
amplicon sequence variants (ASVs). Lastly, taxonomy was assigned via queries to the SILVA 16S rRNA gene 
reference database (v138.1)42. Species-level phylogenetic classification was attained for 44.8% of the ASVs, genus-
level for 47.8%, and family-level or higher (or unassigned) for the remaining 7.4%. A Mann–Whitney U test, or 
Wilcoxon rank-sum test, was calculated between the relative abundances (RAs) of each taxon to determine if 
significant differences in a particular taxon existed between the two ethnic groups.

Principal coordinate analysis
To estimate the degree of differentiation between the common core  microbiota43 of the Dutch and SAS samples, 
Principal Coordinate Analysis (PCoA)44 was applied using Bray–Curtis  distance45 based on the RAs of the taxa. 
First, a prevalence threshold of 50% was applied within each group. Then, the first two principal components 
were plotted in a two-dimensional space. The PCoA was supported by a PERMANOVA  analysis46.

Microbiota diversity
To measure the microbial diversity within each sample, the following alpha diversity indices were computed: 
Chao  richness47,  Shannon48,  Fisher49, and inverse  Simpson50. Weighted UniFrac  distances51,52 were computed to 
estimate beta diversity, or how different the samples within each ethnic group were from one another in terms 
of phylogeny and abundance.

Biomarker analyses
To identify potential biomarkers that could distinguish the Dutch and SAS gut microbiota, a linear discriminant 
analysis of effect size, or LEfSe  analysis53, was performed (p < 0.05 and LDA effect size > 1). LEfSe proposes 
microbial biomarkers based on RA, effect size, and biological consistency. It can also rank the significance of 
the biomarkers, i.e., taxa, because it calculates the effect size of each. This rank of significance is provided via 
the LDA score. LEfSe is especially useful for determining significant differences in taxa with low RAs, which is 
difficult to do using pure abundance data alone.

Additionally, a differential expression analysis for sequence count data, or  DESeq254,55, algorithm was used 
to calculate if significant differences existed between the bacterial abundances of the two ethnic groups. Lastly, 
to determine likely species- and strain-level taxonomic identities of the proposed biomarkers, the nucleotide 
sequences of the corresponding ASVs were input into a  BLAST56 search for similar sequences contained only 
in rRNA/ITS databases.

Network analysis
To estimate two-way ecological relationships in the Dutch and SAS  microbiota57, we built microbial co-occurrence 
(social)  networks58 using RA data at the lowest possible taxonomic classification level. We computed  SparCC59 
correlations between each pair of taxa (p < 0.01). Results were displayed as a network, with nodes representing 
taxa (size proportional to RA), and edges representing correlation (green = positive, estimating cooperation; 
red = negative, estimating competition). Networks were visualized using the Fruchterman-Reingold  algorithm60 
to clarify community structure.

Ethics approval and consent to participate
The HELIUS study was approved by the medical ethics committee of the Amsterdam University Medical Centre, 
and all participants provided informed consent prior to enrollment in the study.

Results
Cohort analysis
This study analyzed a strictly age- (53 to 55 years-old) and gender-matched subset of the HELIUS gut microbiome 
cohort to account for any potential confounding effects of these variables on gut  microbiota61,62. Only the Dutch 
and SAS ethnicities were analyzed because these were reported to have the lowest (five %) and highest (21.5%) 
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prevalence of T2DM, respectively, among the ethnic groups of the HELIUS  study63. After matching, 41 Dutch 
and 43 SAS subjects were analyzed. 34.9% of the SAS and 4.9% of the Dutch individuals included in our study 
were afflicted by T2DM (Table 1).

Diversity analyses
To estimate the degree of differentiation between the common core microbiota of each ethnicity,  PCoA44 was 
applied based on the RAs of the top 25 most abundant taxa (Fig. 1a). The Dutch had a more similar core gut 
microbiota to each other as far as abundance goes. Contrarily, the SAS varied much more from person to person. 
Qualitatively, the SAS abundances formed two distinct clusters while the Dutch formed a single, tight cluster. 
Within the Dutch cluster, the Dutch females formed an even tighter cluster. There was some overlap between 
both ethnicities and genders. These qualitative observations were well-supported by a PERMANOVA  analysis46 
(Table 2).

Four different metrics of alpha diversity were computed (Table 3) to achieve consensus on the overall trend 
in microbial diversity across the samples, as each measurement of alpha diversity can be biased because this 
index encompasses both species richness and evenness. Chao1 estimates species richness. The Shannon and 
Simpson indices measure both richness and evenness, with Shannon focusing more on richness and Simpson 
more on evenness. Though Shannon has been shown to underestimate alpha  diversity64. All metrics indicated 
that the Dutch gut harbored a significantly more diverse microbial milieu (p < 0.001). Weighted UniFrac 
 distances51,52 between samples were computed to approximate beta diversity (Fig. 1b). A lower UniFrac distance 
indicates a greater degree of similarity between two sets of taxa in terms of phylogeny and abundance. The 
Dutch had significantly more similar gut bacterial communities to each other than did individuals of SAS origin 
(p = 8.88 ×  10–208).

Microbial abundances
DADA240 was used to infer gut microbiome compositions. The common core gut microbiota of the Dutch and 
SAS were represented by the top 25 most abundant genera (Fig. 2), or otherwise lowest possible phylogenetic 
rank, because of the limitations of identifying finer phylogenetic resolutions with short-read, targeted 16S 
 sequencing43,65. Several tests of differential abundance (DA) between the two ethnicities were performed because 
methods for approximating DA largely vary in output. So, it is best to perform several to attain consensus on the 
differentially abundant taxa, or potential  biomarkers66.

First, a Mann–Whitney U test between each of the shared common core taxa was calculated (p < 0.05 with 
Benjamini–Hochberg correction). The following taxa had significantly higher average RAs in the Dutch guts: 
Subdoligranulum, Ruminococcus, a group of unclassified Lachnospiraceae genera, Christensenellaceae R7 group, 
Alistipes, Closridium sensu stricto 1, Odoribacter, Butyricicoccus, and Akkermansia. The following taxa had 
significantly higher average RAs in the SAS guts: Streptococcus, Romboutsia, Haemophilus, and Bifidobacterium.

The second test of DA performed was a DESeq2  analysis54,55. In the Dutch samples, Clostridium sensu stricto 
1 was found to be in significantly higher abundance while Bifidobacterium, Haemophilus, and Anaerostipes were 
found to be in significantly higher abundances in the SAS samples (p-values < 0.05).

Lastly, a  LEfSe53 biomarker analysis was computed (Fig. 3). The LDA scores assigned by the LEfSe estimate 
the individual contribution of each bacterium to the overall uniqueness of the community. Per the LEfSe, the 
discriminating bacterial biomarkers of the Dutch gut included Odoribacter splanchnicus, Lachnospira, Bacteroides 
caccae, Alistipes putredinis, Coprococcus comes, and Butyricicoccus. Haemophilus and its ascending phylogenetic 
ranks characterized the SAS gut.

The full phylogenetic lineage of each differentiating taxon proposed by the DESeq2 and LEfSe analyses is 
provided (Fig. 4). We also inferred the most likely species- and strain-level identities of the differentially abundant 
taxa by performing a  BLAST56 search of the nucleotide sequence of each corresponding ASV uncovered in our 
sequencing (Table 4). There was notably more species and strain diversity in Clostridium sensu stricto 1 and 
Bifidobacterium as compared to all the other discriminating taxa. Size factors for DESeq2 ranged from 0.23 to 
3.08 for genus level and 0.25–3.47 for species level.

The per sample distributions of the RAs of the differentially abundant taxa, as determined by either 
a Mann–Whitney U test, DESeq2 analysis, and/or LEfSe biomarker analysis were then plotted (Fig. 5). 
Clostridium sensu stricto 1 was entirely absent from the SAS guts while Streptococcus, Akkermansia, and 
Romboustia were totally missing from the Dutch guts. Some bacteria significantly varied in RA between 

Table 1.  Glycemic status by ethnicity. Subjects were classified as diabetic if their fasting plasma glucose 
(FPG) was ≥ 126 mg/dL or HbA1c ≥ 6.5%, prediabetic if FPG ≥ 100 mg/dL and < 126 mg/dL or HbA1c ≥ 5.7% 
and < 6.5%, and normoglycemic if FPG < 100 mg/dL and HbA1c < 5.7%.

Glycemic status

Dutch
South-Asian 
Surinamese

n % n %

Diabetes 2 4.9 15 34.9

Prediabetes 15 36.6 15 34.9

Normoglycemic 24 58.5 13 34.9

Total 41 100 43 100
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(a)

(b)

Figure 1.  Microbial diversity between samples: (a) To estimate the degree of differentiation between each 
ethnicity’s common core microbiota, which was approximated by the top 25 most abundant taxa,  PCoA44 was 
applied based on the relative abundances. First, a prevalence threshold of 50%111 was applied. Then, the first two 
principal components were plotted in a two-dimensional space. The PCoA showed that the Dutch had more 
similar gut microbiomes regarding the quantitative presence of the common core taxa. Contrarily, the SAS 
varied much more from person to person. Qualitatively, the SAS formed two clusters (A and B), and the Dutch 
formed a single cluster (C). Microbiota from the Dutch women formed the tightest cluster (D). There is some 
overlap between all the groups. (b) To estimate beta diversity, or how different the samples within each ethnic 
group were from one another for phylogeny and abundance, weighted UniFrac  distances51,52 were computed. 
On average, the Dutch had a significantly more consistent gut microbiota between samples than did the SAS 
(p = 8.88 ×  10–208).
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Table 2.  PERMANOVA analysis. The PERMANOVA statistical analysis illustrates the degree of separation 
between individual groups. The Dutch females experienced the greatest separation from the SAS females in 
terms of F-score and p-value. This analysis also supports the higher level of compositional variability in the 
SAS compared to the Dutch.

Group 1 Group 2 F-score p-value

SAS, female SAS, male 0.86 0.43

SAS, female Dutch, male 1.43 0.26

SAS, female Dutch, female 2.83 0.07

SAS, male Dutch, male 0.54 0.58

SAS, male Dutch, female 0.23 0.79

Dutch, male Dutch, female 1.48 0.22

All male All female 2.37 0.11

All SAS All Dutch 1.8 0.17

Table 3.  Alpha diversity. Alpha diversity is a measurement of species diversity within a sample. A two-tailed, 
unpaired t-test was performed between each alpha diversity metric of both ethnicities. All p-values < 0.005.

Alpha diversity metric South-Asian Surinamese Dutch p-value

Chao1 151.51 267.8 1 ×  10–14

Shannon 3.7 4.43 2.27 ×  10–13

Fisher 19.39 36.29 2.57 ×  10–14

Inverse Simpson 23.15 44 1.55 ×  10–10

Figure 2.  Relative abundances of common core gut microbiota: the common core gut microbiota of the Dutch 
and South-Asian Surinamese ethnic groups were represented by each ethnicity’s 25 most abundant genera, or 
otherwise lowest possible phylogenetic rank. Relative abundances were computed by DADA2 (v1.16)40. The 
blue triangles denote the taxa detected as significantly differentially abundant by a DESeq2  analysis54,55, the 
orange circles denote those identified as potential biomarkers by LEfSe, and the pink stars represent taxa found 
to be in significantly different abundance by a Mann–Whitney U test. Taxa highlighted by more than one test of 
differential abundance are more likely to truly differentiate the two groups.
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individuals of one ethnicity. Bacteroides, one of the most abundant taxa, showed the most person-to-person 
variation in both ethnic groups, but this was more pronounced in the SAS. Subdoligranulum was widely 
distributed across the SAS. The RAs of Streptococcus in the SAS gut had the most outliers. The middle quartiles 
of the RAs for a group of unclassified Lachnospiraceae genera were almost completely non-overlapping between 
the two ethnic groups.

Co‑occurrence network analyses
To depict the ecological framework of each ethnic group’s gut microbiome, bacterial co-occurrence networks 
were constructed (Fig. 6), as previously  described58. The thickness of the lines, or edges, is indicative of correlative 
strength. Green lines represent positive and red lines represent negative correlations. The number next to some 

Figure 3.  LEfSe biomarker analysis: to identify potential microbial biomarkers that could distinguish the Dutch 
and SAS gut microbiomes, a LEfSe  analysis53 was performed (p < 0.05 and LDA effect size > 1). The LEfSe was 
set to propose discriminating taxa at the lowest possible phylogenetic level. The LDA score for each potential 
biomarker is displayed as a histogram, with all scores falling between |2.5—3|. The proposed biomarkers of 
the Dutch gut microbiome included Odoribacter splanchnicus, Coprococcus comes, Bacteroides caccae, Alistipes 
putredinis, Lachnospira, and Butyricicoccus. Haemophilus and its ascending phylogenetic ranks discriminated the 
SAS gut.

Figure 4.  Phylogenetic tree of the proposed gut microbial biomarkers: the phylogenetic lineages of the taxa 
that were found to distinguish the gut microbiomes of the Dutch and SAS ethnic groups, as per the  LEfSe53 
or  DESeq254,55 analyses, are shown. The blue circles represent microbes that are potential biomarkers of the 
metabolically healthier Dutch, and the pink circles represent those of the more T2DM-afflicted SAS.
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of the organisms is a centrality  score67, which indicates how important that taxon is to the overall community 
structure. At a macroscopic view, the community is tightly knit with many positive correlational relationships 
between taxa in the Dutch. This interconnectedness was undetectable in the SAS.

Blautia appears to be the most integral group for the gut of both ethnicities, since this genus was ranked as 
the most central taxon in both  networks68. Subsequent Affinity  Propagation69 analysis revealed the sixth ranked 
node in the Dutch network, Blautia massiliensis, as the centroid of this large cluster.

Coprococcus comes was ranked as the second most central node in SAS and was unranked in the 
Dutch network. In the SAS, C. comes negatively correlated with two other taxa (Anaerostipes hadrus and 
Clostridium sensu stricto 1). In the Dutch, this bacterium positively correlated with eight other taxa (Agathobacter, 
Bacteroides, Blautia massiliensis, Blautia, Anaerostipes hadrus, Dorea formicigenerans, Lachnospira, and UCG-002) 

Table 4.  Species- and strain-level identities of the differentiating taxa. *Some species matched with equal 
likelihood to multiple strains as per a BLAST search of the nucleotide sequence from the respective amplicon 
sequence variant.

Method Genus Species Strain(s)*

LEfSe taxa

Odoribacter O. splanchnicus DSM 201712, JCM 15291

Bacteroides B. cacccae ATCC 43185, JCM 9498

Alistipes A. putredinis JCM 16772

Lachnospira L. eligens ATCC 27750

Coprococcus C. comes FDAARGOS

Butyricicoccus B. faecihominis KS-2

Haemophilus H. parainfluenzae ATCC 33392

DESeq2 taxa

Clostridium sensu stricto 1 (Clostridium)
C. jeddahitimonense CL-2

C. sardiniense DSM 2632, JCC

Bifidobacterium
B. bidum NBRC 100015

B. colobi 80T4

Haemophilus H. parainfluenzae ATCC 33392

Anaerostipes A. hadrus DSM 3319

Figure 5.  Per sample distribution of relative abundances of differentiating taxa: the per sample distributions 
of the RAs of the differentially abundant genera (p-values < 0.05), as determined by either a Mann–Whitney 
U test, DESeq2 analysis, and/or LEfSe biomarker analysis were plotted as a box and whisker plot. The 
Mann–Whitney U test highlighted Subdoligranulum, Ruminococcus, a group of unclassified Lachnospiraceae 
genera, Christensenellaceae R7 group, Alistipes, Clostridium sensu stricto 1, Odoribacter, Butyricicoccus, and 
Akkermansia as being significantly enriched RAs in the Dutch while Streptococcus, Romboutsia, Haemophilus, 
and Bifidobacterium as being significantly enriched in the SAS guts. DESeq2 identified Clostridium sensu stricto 
1 as significantly differentially abundant in the Dutch and Bifidobacterium, Haemophilus, and Anaerostipes 
as significantly differentially abundant in the SAS. Per the LEfSe, the biomarkers of the Dutch gut included 
Odoribacter splanchnicus, Lachnospira, Bacteroides caccae, Alistipes putredinis, Coprococcus comes, and 
Butyricicoccus while Haemophilus characterized the SAS gut.
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and negatively correlated with one other taxon (Erysipelotrichaceae UCG-003). Oscillibacter was another group 
that changed its direction of correlation with other bacteria between the two ethnicities, as it held a positive 
correlation with Blautia massiliensis in the Dutch and a negative correlation with the Christensenellaceae R7 
group in the SAS.

Haemophilus and Bifidobacterium shared several positive edges with multiple other highly ranked nodes in the 
SAS network, and, in the Dutch, these genera were completely disconnected from the other nodes. In the SAS, 
Haemophilus shared positive edges with Streptococcus (ranked third) and Anaerostipes hadrus (ranked eleventh) 
while Bifidobacterium shared positive edges with Blautia (ranked first), Blautia massiliensis (ranked fourth), and 
Agathobacter (ranked 15th). A similar phenomenon occurred with Bacteroides and Erysipelotrichaceae UCG-003.

In the Dutch network, Erysipelotrichaceae UCG-003 (ranked fourth) was negatively correlated with eight 
other taxa (Agathobacter, Bacteroides, Oscillibacter, Blautia, Dorea formicigenerans, Lachnospira, and UCG-002), 
and positively correlated with one other taxon (Marvinbryantia). Also in the Dutch, Bacteroides (ranked third) 
held eight positive edges (Agathobacter, Coprococcus comes, UCG-002, Anaerostipes hadrus, Lachnospira, Dorea 
formicigenerans, Blautia, and Blautia massiliensis) and two negative edges (Marvinbryantia and Erysipelotrichaceae 
UCG-003). In the SAS, Bacteroides and Erysipelotrichaceae UCG-003 were not correlated with any other nodes.

Discussion
The T2DM gut microbiome has been shown to be distinctly different from that of normoglycemic, insulin-
sensitive  individuals14–16,21. However, consensus on which taxa are enriched versus depleted as compared to 
healthy controls has yet to be  reached23. Higher microbial production of SCFAs in the gut lumen is protective 
against  T2DM26,27. The dynamics of SCFA-producing taxa have not been well-documented in minority 
populations because many microbiome studies are largely based on cohorts consisting of ethnic majority groups. 
It is important to understand how these taxa change with insulin resistance across all populations to develop 
effective and equitable microbiome-based therapeutics. In this study, the differential bacteria and ecological 
framework of the gut microbiota from two ethnic groups, the Dutch and South-Asian Surinamese (SAS), living 
in the same city (Amsterdam, the Netherlands) were analyzed. These two groups, both from the HELIUS  cohort37, 
were compared as the SAS had a much greater prevalence of T2DM. Microbiota compositions were generated via 
DADA2 (v1.16)40. Abundances were clustered using  PCoA44. Metrics of alpha- and beta-diversity were computed. 
A Mann–Whitney U test and two algorithms,  DESeq254,55 and  LEfSe53, were used to estimate differentially 
abundant taxa, or potential biomarkers. Lastly, bacterial co-occurrence networks, which can extract simple 
patterns from complex microbial community  data58, were constructed to compare gut microbial ecology.

Distinct SCFA‑producing gut microbial milieus between ethnicities
The DESeq2 identified several taxa that are capable of SCFA production to be significantly enriched in the 
SAS gut. These included Bifidobacterium, Anaerostipes, and certain strains of Haemophilus70–75. Clostridium 
sensu stricto 1 was detected as significantly enriched in the Dutch. It is unclear if this is a SCFA-producing 
 taxon76–78. Contrarily, the LEfSe (Fig. 3) discriminated the Dutch gut from that of the SAS by multiple SCFA-
producers: Butyricicoccus, Coprococcus comes, Lachnospira, and Odoribacter splanchnicus79–84. Alistipes putredinis 
was also proposed as a biomarker of the Dutch gut, but this species produces SCFAs in small  quantities85. Other 
than Haemophilus, of which only certain strains produce  SCFAs75, no SCFA-producing taxa were proposed as 
biomarkers of the SAS gut by the LEfSe.

It is unclear from these different results if the overall abundances (Fig. 5) of SCFA-producing taxa truly 
vary between the two ethnicities. Though, of the potential biomarkers identified, Haemophilus parainfluenzae 
ATCC 33392 (Table 4) would likely serve as the best discriminating bacterium between these two ethnicities. A 
consensus approach using various DA methods has been proposed as the best way to identify truly differential 
taxa. Compared to other DA tests, LEfSe has been shown to have a higher false discovery rate and predisposition 
to identify more abundant taxa as  differential66,86. It has also been demonstrated that the Mann–Whitney U test 
has a comparatively higher false positive  rate66. Contrarily, DESeq2 has a lower type I error rate while maintaining 
moderate  sensitivity87,88.

Given these biases, Haemophilus is likely the most robust biomarker because of the concordance among our 
DA tests on its significance and it being of relatively low RA in both groups. Odoribacter is also likely a robust 
biomarker given its low RA across both ethnicities. Bacteroides may be a false call by LEfSe because it was one 
of the most abundant taxa in both ethnicities. Finally, Akkermansia, enriched in the Dutch, and Streptococcus, 
enriched in the SAS, might be notable biomarkers even though they were only called by the Mann–Whitney U 
test. This is because of their complete absence across most of the subjects of each respective ethnicity, as LEfSe 
and DESeq2 are unable to model  zeros88. In future work, it would be beneficial to add more specific methods, 
such as  ALDEx289 or ANCOM-BC90, to identify differential taxa with greater certainty. While SCFA-producers 
may not be present in significantly different quantities between the Dutch and SAS, the Dutch gut contained a 
more phylogenetically diverse SCFA-producing microbial milieu.

Haemophilus parainfluenzae, a known respiratory pathobiont, is also a gut pathobiont, as it plays a pro-
inflammatory role in Crohn’s  Disease91,92. A higher abundance of Haemophilus parainfluenzae has been positively 
correlated with obesity and cardiometabolic disease by  some93, but negatively associated with similar entities 
by  others94,95. To the best of our knowledge, Haemophilus parainfluenzae has not been clearly shown to produce 
SCFAs in a significant quantity. Our work indicates that this bacterium could be significantly associated, or even 
a pathobiont, in the guts of those with risk factors for metabolic disease, especially in ethnic minorities. Overall, 
our results indirectly indicate that normo- and hyperglycemic patients are unable to be distinguished based on 
microbial SCFA production.
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A more complex gut microbiome ecological framework in the ethnic majority
Our PCoA (Fig. 1a) displayed that RAs and phylogeny were more similar across the Dutch samples as compared 
to the SAS. Sex was not observed to significantly impact gut microbiota because each PCoA cluster contained 
a roughly equal proportion of both sexes. This is consistent with previous work that has failed to demonstrate 
a clear relationship between sex and the gut  microbiome62. Additionally, the overlap between the Dutch and 
SAS abundances may be explained by how long ago the SAS individuals had immigrated to the Netherlands, 
as over time they likely increasingly incorporated Dutch foods and were exposed to the Dutch environmental 
microbiome.

Bacterial co-occurrence, or social, networks of the Dutch and SAS gut microbiota were computed (Fig. 6). 
Network analyses can help determine the ecological core microbiota, i.e., which taxa are key for community 
structure and, possibly,  function96. Compared to the SAS, the intra-taxonomic relationships in the Dutch gut were 
more interconnected, with many more positive correlational relationships. The Dutch network also contained a 
large cluster of SCFA-producing taxa (Coprococcus comes, Lachnospira, Blautia, and Haemophilus). This positively 
interconnected ecological framework correlates with the significantly higher average alpha diversity (Table 3), 
lower beta diversity, and more stable community composition and phylogenetic distribution across the Dutch 
samples (Fig. 1). Previous studies have associated the SAS and diabetics with a less diverse gut  microbiota23,97.

Our networks support the notion that the role played (cooperation versus competition) by a taxon may change 
with ethnicity and is possibly a function of host glycemic phenotype. In the Dutch network, Erysipelotrichaceae 
UCG-003 was estimated to be the fourth most important taxon for the community structure and had several 
negative relationships with other taxa. However, in the SAS network, this taxon was unranked and lacked any 
correlations with other community members. Erysieplotrichaceae UCG-003 has previously been positively 
associated with insulin resistance and  obesity98,99. Erysieplotrichaceae UCG-003 has also been proposed as a 
marker of healthy  aging100. This taxon may be negatively correlated with others in the Dutch network because 
there is competition for a mutual resource. In the Dutch, the other likely beneficial taxa that Erysieplotrichaceae 
UCG-003 is correlated with may be better able to acquire that resource and use it to produce a metabolite that 
is beneficial for the host, such as a SCFA. This competition was not observed in the SAS.

The Dutch, less afflicted by T2DM, may have a more interconnected gut microbial ecology because of greater 
bacterial cross-feeding interactions. Cross-feeding is dependent on microbiota spatial organization and is critical 
for SCFA  production26,27. Several taxa that were either SCFA producers or negatively associated with T2DM were 
members of the large, interconnected Dutch network. Bacteroides, which has a strong negative association with 
 T2DM22,24,101, was disconnected and unranked in the SAS network, but was ranked as the third most integral 
taxon in the Dutch network. So, the metabolically beneficial role of this bacterium is likely a reproducible and 
accurate finding. Oscillibacter, ranked sixth in the Dutch and ninth in the SAS network, has been shown to 
be positively associated with  T2DM102,103. Bifidobacterium, which has been reported to be protective against 
 T2DM13,22, had more positive relationships with other bacteria in the SAS group, but was unranked in both 
networks. So, the role of a particular taxon in relation to metabolic fitness may depend on host ethnicity.

The main limitation of our study was that we were unable to stratify per-sample the two ethnicities by diabetic 
status. Although subjects were strictly age- and gender-matched, other factors, such as ethnically variable genetic 
 predispositions104,105,  epigenetics106,107,  diet61,108,109, and socioeconomic  status110 likely confounded our findings. 
The ethnic minorities of the HELIUS cohort were of lower socioeconomic status, which significantly impacts 
health  equity39. Differences in dietary and exercise patterns between the ethnicities were also observed in the 
HELIUS  study39. Additionally, most of the SAS were first-generation immigrants, so they had a shorter length 
of residence in the  Netherlands37. More work is needed to understand gut microbiota in the context of each 
ethnicity to drive forward personalized medicine for metabolic diseases.

Data availability
The HELIUS data are owned by the Amsterdam University Medical Centers, location AMC, in Amsterdam, 
the Netherlands. Any researcher can request the data by submitting a proposal to the HELIUS Executive 
Board, as outlined at http:// www. heliu sstudy. nl/ en/ resea rchers/ colla borat ion, by email to heliuscoordinator@
amsterdamumc.nl. The HELIUS Executive Board will check proposals for compatibility with the general 
objectives, ethical approvals, and informed consent forms of the HELIUS study. There are no other restrictions to 
obtaining the data and all data requests will be processed in the same manner. The microbial genomic sequences 
from the HELIUS cohort, which were used for this study, are stored under protected access on the European 
Genome-Phenome Archive (https:// ega- archi ve. org/ datas ets/ EGAD0 00010 04106).

Code availability
Our entire downstream analysis through the open-source  PluMA11 initiative is available at http:// biorg. cs. fiu. 
edu/ pluma/ pipel ines. html.
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