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A new automatic geo‑electric 
self‑potential imaging technique 
for diverse sustainable 
development scenarios
Mahmoud Elhussein * & Zein E. Diab *

This study introduces a rapid and efficient inversion algorithm designed for the interpretation of 
self‑potential responses originating from mineralized and ore sources and hydrothermal activity, 
specifically addressing spherical, vertical, and horizontal cylindrical structures. The algorithm 
leverages local wavenumber and correlation imaging techniques to enhance accuracy in modeling. 
The correlation factor (Cf value) is crucial in this approach, calculated as the correlation between 
the local wavenumber of the measured self‑potential field and that of the computed field. The 
algorithm identifies the maximum correlation Cf value  (CF‑max) as indicative of the optimal true model 
parameters. To validate the proposed algorithm, it was applied to three theoretical examples—one 
with contamination from regional background and another with multiple sources with and without 
different types of noises (random Gaussian and white Gaussian noises). Additionally, the approach was 
tested on three distinct real field cases related to mining, ore investigation and hydrothermal activity 
in India, Germany and USA. Through a comprehensive analysis of results from theoretical and real‑
world scenarios, including comparisons with different available data and literature information, the 
study concludes that the method is effective, applicable to multiple sources, accurate, and does not 
necessitate prior knowledge of the source shape. This algorithm presents a promising advancement in 
the field of self‑potential interpretation for mineral exploration and geothermal exploration.
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The self-potential (SP) or spontaneous polarization method stands out as an exceptionally passive approach 
within  geophysics1–3. It gauges the inherent potential difference (∆V) beneath the surface, resulting from 
electrochemical, thermoelectric, and electrokinetic fields present within the Earth’s  interior4–7. A myriad of 
geophysical challenges can be effectively addressed using the self-potential technique, encompassing tasks like 
delineating paleo-shear zones, mining, groundwater exploration, archaeology, geothermal investigation, and 
identifying underground  voids8–11.

Given the challenges arising from non-unique and ill-posed situations when interpreting self-potential 
anomalies linked to diverse mineralized sources, various inversion modeling methods have been devised to 
tackle these  issues5,12,13. These inversion techniques primarily entail approximating the various geoelectric sources 
through uncomplicated geometric configurations to deduce structural  parameters6,14–17. These methodologies 
encompass a range of strategies such as the linear and non-linear inversion  approach18–20, utilization of 
nomograms and the graphical  approach21–24, neural  networks25, and gradient  approach11,26. Many of these 
methods necessitate prior knowledge about the model’s parameters and a suitable parameter search range to find 
optimal solutions.  Pateela27 introduced SP  tomography28,29, a technique that entails scanning a segment within an 
SP survey profile utilizing a basic charge unit of uniform strength. This charge is administered across a systematic 
grid of spatial coordinates, and the probability function for charge occurrence is computed at each individual 
point. The resulting set of grid values enables the creation of contour lines, aiding in identifying areas with the 
highest probability of concentrated polarized, primary, and secondary electric charges. However, utilizing this 
approach to calculate the depth of a source necessitates access to the structural index of the causative source, a 
task that proves challenging in the case of an unfamiliar  region30.
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The more recent advancements include techniques like genetic  algorithms31,32, black hole  technique33; particle 
swarm optimization (PSO)6,34, grey wolf  optimization35, simulated and very fast simulated  annealing31,36. These 
methods provide a primary benefit by efficiently exploring extensive solution spaces without requiring prior 
familiarity with the underlying structure of the problem. However, some of these methods face challenges when 
dealing with multi-structure optimization. Additionally, others may face issues in achieving enhanced search 
output, necessitating tuning of parameters. An enhanced control strategy is required to adeptly transition between 
exploration and  exploitation37. While these techniques do not ensure the discovery of the optimal outcome, their 
objective is to identify optimal solutions within a reasonable  timeframe38.

This study has introduced an effective imaging algorithm that has been devised to comprehensively interpret 
self-potential data stemming from diverse subterranean structures like horizontal cylinders, spheres, and vertical 
cylinders. This method hinges on the computation of the correlation factor (Cf) between the local wavenumber 
of the observed self-potential anomaly and that of the calculated anomaly. The model associated with the highest 
Cf value  (CF-max) is deemed the most accurate model. This strategy has potential applications in diverse fields 
such as mineral and ore exploration, as it aids in determining various structural parameters including amplitude 
factor (K), depth (zo), body origin (xo), shape factor (q), and polarization angle ( θ) all without requiring any prior 
knowledge of the source shape. Furthermore, this technique can also be extended to estimating parameters from 
multiple sources. In order to validate the effectiveness and practicality of this proposed approach, the method 
was employed to analyze self-potential data from three theoretical scenarios with and without different types of 
noises, as well as three field examples from India, Germany and USA.

Methodology
The self-potential signature (P) at an observation point  (xj, z) along the profile depicted in Fig. 1, can be expressed 
using the formula of Yüngül39.

where n represents the count of data points, q is the shape factor, a dimensionless quantity, varies according to 
the structure’s shape (it takes a value of 1.5 for a structure resembling a sphere, 1 for a horizontal cylindrical 
structure, and 0.5 for a semi-infinite vertical cylinder. The depth of the structure is denoted as ’zo’ in meters. The 
amplitude factor (K), with unit mVm2q−1 , the parameter ’xo’ indicates the position of the source body in meters, 
and ’ θ ’ corresponds to the polarization angle in degrees.

The measured local wavenumber can be formulated  by30,40:

where

(1)P
(

K , xj , xo, zo, θ , q
)

= K
(xl − xo)cosθ + zosinθ
[

(xl − xo)
2 + zo2

]q , j = 1, 2, 3, . . . , n

(2)LWmea =
∂∅

∂x
,

Figure 1.  Different geometric structures for various basic shapes include (a) sphere, (b) vertical cylinder, (c) 
horizontal cylinder.
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By substitution (Eq. 3 in Eq. 2), LWmea can be given by:

where AS is the analytical signal amplitude as  follow41:

By applying the horizontal and vertical derivatives 
(

∂P
∂x

)

 and 
(

∂P
∂z

)

 respectively to Eq. (1) and substituting in 
Eq. (4), the computed local wavenumber ( LWcom) is given by:

Using LWmea and LWcom , the correlation parameter can be represented  by30,40:

Using Eq. (7), the calculation of the correlation parameter ( CF ) between LWmea and LWcom is performed, and 
the highest value of CF corresponds to actual body  characteristics30,40. The process flow of the proposed algorithm 
is illustrated in Fig. 2. After identifying the most suitable parameters from the search space based on the highest 
CF value  (CF-max), it becomes possible to create a two-dimensional representation of CF for the preferred source 
(specifically, the shape factor q) in relation to subsurface depth (m). The solid black dot present in the imaging 
section symbolizes the accurate position for both depth and location.

Synthetic models
This segment demonstrates the application of the suggested method to three distinct synthetic models, both with 
and without noise, in order to assess the effectiveness and suitability of the proposed approach in the interpreta-
tion of self-potential anomalies.

Example 1
The self-potential profile resulting from a horizontal cylinder was computed with specific parameters: 
K = 3500 mV m, zo = 10 m, xo = 0 m, q = 1, and θ = -55°, over a profile length of 100 m (depicted in Fig. 3a). The 
interpretation process began by calculating both horizontal and vertical gradients of the observed anomaly (as 
shown in Fig. 3b). Subsequently, the value of LWmea was determined using Eq. (4) (illustrated in Fig. 3c). Moving 
forward, the calculation of Cf was carried out using Eq. (7) (as demonstrated in Fig. 3d), considering various q 
values as presented in Table 1. Notably, in Table 2, the highest value of Cf  (CF-max = 1) (black circle in Fig. 3d) 
is located at K = 3500 mV m, zo = 10 m, xo = 0 m, q = 1, and θ = -55°, which aligns with the information in Fig. 3d. 
This outcome signifies the exceptional efficiency of the proposed method. Utilizing the suggested approach 
facilitated the estimation of inverted parameters as detailed in Table 2, leading to a complete absence of errors 
for the diverse parameters.

To assess the robustness and effectiveness of the suggested method when applied to data with noise, the 
method was applied to the previous model after adding 15% random Gaussian noise (RGN) and 15% white 
Gaussian noise (WGN). Firstly, 15% RGN (Fig. 4a), the noisy data’s vertical and horizontal gradients were 
computed (Fig. 4b). Subsequently, utilizing Eq. (4), LWmea was determined (Fig. 4c). To derive Cf, Eq. (7) was 
employed (Fig. 4d). Within Fig. 4d, the highest Cf value of 0.8075 (depicted by the black circle in Fig. 4d) is 
observed at K = 3948 mV m, zo = 11.5 m, xo = − 1 m, q = 1, and θ = − 54°, as indicated in Table 3. The computed 
error of the estimated parameters, K, zo, q, θ are: 12.8%, 15%, 0% and 1.82% respectively.

Secondly, 15% WGN (Fig. 5a), the noisy data’s vertical and horizontal gradients were computed (Fig. 5b). 
Subsequently, applying Eq. (4), LWmea was determined (Fig. 5c). To derive Cf, Eq. (7) was employed (Fig. 5d). 
Within Fig. 5d, the highest Cf value of 0.6784 (depicted by the black circle in Fig. 5d) is observed at K = 4015 
mV m, zo = 12 m, xo = -− 1 m, q = 1, and θ = − 54.5°, as indicated in Table 3. The computed error of the estimated 
parameters, K, zo, q, θ are: 14.7%, 20%, 0% and 0.91% respectively. The results obtained above shows that the 
effect of the WGN is greater than RGN on the proposed method but the estimated parameters in case of the 
different two types of noise demonstrating that the proposed method can effectively be employed to handle noisy 
data with exceptional performance.
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Example 2
In order to evaluate the suitability and effectiveness of the employed approach when dealing with multisource 
examples, the technique was implemented on a 100 m composite profile that was constructed of sphere body 
(applying these parameters: K = 30,500 mV  m2, zo = 5 m, xo = − 30 m, q = 1.5, and θ = − 25°) and horizontal-
cylinder (HC) body (applying these specific parameters: K = 2500 mV m, zo = 3 m, xo = 30 m, q = 1, and θ = − 35°) 
(Fig. 6a). The process of interpretation began with the computation of both the vertical and horizontal gradients 
of the composite profile (depicted in Fig. 6b). The value LWmea was determined applying Eq. (4) (illustrated 

Figure 2.  Flowchart depicting the procedural sequence of the algorithm under consideration.
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Figure 3.  (a) Profile of the self-potential anomaly induced by a horizontal cylinder, (b) computed horizontal 
and vertical derivatives for the profile depicted in (a), (c) local wavenumber of the data depicted in (b), (d) 
visualizing the correlation factor (Cf) and determining the  CF-max through the newly established method.

Table 1.  The correlation factor (CF) calculated at the different shape factors for the first theoretical example 
(self-potential anomaly induced by a horizontal cylinder). The optimum values are in [bold].

Geometric shape factor Maximum correlation factor

(q) (CF-max)

0.5 0.9242

1 1.0000

1.5 0.9995
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Table 2.  The authentic and retrieved model parameters pertaining to the first theoretical example (self-
potential anomaly generated by a horizontally cylinder).

Model parameters True Recovered

K (mV m) 3500 3500

zo (m) 10 10

xo (m) 0 0

q 1.0 1.0

θ (°) − 55 − 55

CF-max 1.0000

Figure 4.  (a) Profile of the self-potential anomaly depicted in Fig. 3a after contaminating with 15% RGN, 
(b) computed horizontal and vertical derivatives for the profile depicted in (a), (c) local wavenumber of the 
data depicted in (b), (d) visualizing the correlation factor (Cf) and determining the  CF-max through the newly 
established method.
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Table 3.  The authentic and retrieved model parameters pertaining to the first theoretical example (self-
potential anomaly generated by a horizontally cylinder) contaminated with 15% RGN and 15% WGN.

Model parameters True

Recovered

15% RGN 15% WGN

K (mV m) 3500 3948 4015

zo (m) 10 11.5 12

xo (m) 0 − 1 − 1

q 1.0 1.0 1.0

θ (º) −  55 −  54 − 54.5

CF-max 0.8075 0.6784

Figure 5.  (a) Profile of the self-potential anomaly depicted in Fig. 3a after contaminating with 15% WGN, 
(b) computed horizontal and vertical derivatives for the profile depicted in (a), (c) local wavenumber of the 
data depicted in (b), (d) visualizing the correlation factor (Cf) and determining the  CF-max through the newly 
established method.
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in Fig. 6c), while the value of Cf was calculated using Eq. (7) (as shown in Fig. 6d). It is demonstrated that the 
highest Cf value  (CF-max1) for the sphere body is 0.74 (indicated by the initial black circle in Fig. 6d), situated 
at K = 27,718 mV  m2, zo = 4.9 m, xo = − 30 m, q = 1.5, and θ = − 24.71° (Table 4). Similarly, the maximum Cf value 
 (CF-max2) for the HC body is 0.70 (depicted by the second black circle in Fig. 6d), located at K = 2636 mV m, 
zo = 3.4 m, xo = 30 m, q = 1, and θ = − 38.79°, as summarized in Table 4. The computed error of the estimated 
parameters, K, zo, xo, q, and θ are: 9.12%, 2%, 0%, 0% and 1.16% respectively for the sphere body, while for the 
HC source, the computed error of the estimated parameters, K, zo, xo, q, and θ are: 5.44%, 13.33%, 0%, 0% and 
10.83%, respectively.

To evaluate how well the proposed method performs in the presence of noise and its overall effectiveness, 
the method was applied to the previous model after adding 10% RGN and 10% WGN. The first case, 10% 
RGN (Fig. 7a), the noisy composite data’s vertical and horizontal gradients were computed (Fig. 7b), The value 
LWmea was determined (illustrated in Fig. 7c), while the value of Cf was calculated (as shown in Fig. 7d). It is 
demonstrated that the highest Cf value  (CF-max1) for the sphere body is 0.55 (indicated by the initial black circle 
in Fig. 7d), situated at K = 23,287 mV  m2, zo = 4.6 m, xo = − 30 m, q = 1.5, and θ = − 26.01° (Table 5). Similarly, the 
maximum Cf value  (CF-max2) for the HC body is 0.56 (depicted by the second black circle in Fig. 7d), located at 
K = 2293 mV m, zo = 3.2 m, xo = 30 m, q = 1, and θ = − 42.67°, as summarized in Table 5. The computed error of 

Figure 6.  (a) Profile of the self-potential anomaly induced by multisource models of sphere and horizontal 
cylinder, (b) computed horizontal and vertical derivatives for the profile depicted in (a), (c) local wavenumber 
of the data depicted in (b), (c) visualizing the correlation factor (Cf) and determining the  CF-max through the 
newly established method.
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Table 4.  The authentic and retrieved model parameters pertaining to the second theoretical example (induced 
by multisource models of sphere and horizontal cylinder).

Model parameters

True Recovered

HC model Sphere model HC model Sphere model

K (mV  m2q−1) 2500 mV m 30,500 mV  m2 2636 mV m 27,718 mV  m2

zo (m) 3 5 3.4 4.9

xo (m) 30 − 30 30 − 30

q 1.0 1.5 1.0 1.5

θ (º) − 35 − 25 − 38.79 − 24.71

CF-max 0.72 0.70

Figure 7.  (a) Profile of the self-potential anomaly depicted in Fig. 6a after contaminating with 10% RGN, 
(b) computed horizontal and vertical derivatives for the profile depicted in (a), (c) local wavenumber of the 
data depicted in (b), (d) visualizing the correlation factor (Cf) and determining the  CF-max through the newly 
established method.
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the estimated parameters, K, zo, xo, q, and θ are: 23.65%, 8%, 0%, 0% and 4.04% respectively for the sphere body, 
while for the HC source, the computed error of the estimated parameters, K, zo, xo, q, and θ are: 8.28%, 6.67%, 
0%, 0% and 21.91%, respectively.

The second case, 10% WGN (Fig. 8a), the noisy composite data’s vertical and horizontal gradients were 
computed (Fig. 8b), The value LWmea was determined (illustrated in Fig. 8c), while the value of Cf was calculated 
(as shown in Fig. 8d). It is demonstrated that the highest Cf value  (CF-max1) for the sphere body is 0.50 (indicated 
by the initial black circle in Fig. 8d), situated at K = 36,322 mV  m2, zo = 5.9 m, xo = − 30 m, q = 1.5, and θ = − 27.55° 
(Table 5). Similarly, the maximum Cf value  (CF-max2) for the HC body is 0.48 (depicted by the second black circle 
in Fig. 8d), located at K = 2833 mV m, zo = 4.3 m, xo = 30 m, q = 1, and θ = − 47.50°, as summarized in Table 5. The 
computed error of the estimated parameters, K, zo, xo, q, and θ are: 19.09%, 18%, 0%, 0% and 10.2% respectively 
for the sphere body, while for the HC source, the computed error of the estimated parameters, K, zo, xo, q, and θ 
are: 13.32%, 43.33%, 0%, 0% and 35.71%, respectively.

Hence, it can be inferred that the suggested approach is well-suited for scenarios involving multiple sources.

Example 3
To assess the effectiveness of our approach when dealing with a regional context, we introduced a self-potential 
anomaly profile originating from a vertical cylinder (characterized by: K = 250 mV, zo = 4 m, xo = − 25 m, 
q = 0.5, and θ = −  75o and profile length 100 m) into a deep-seated first order regional anomaly (Fig. 9a). The 
interpretation process commenced by computing both the horizontal and vertical gradients of the observed 
anomaly, as depicted in Fig. 9b. Subsequently, Eq. (4), was employed to ascertain the value of LWmea (Fig. 9c). 
Moving forward, Eq. (7) was utilized, to calculate Cf (Fig. 9d). It’s worth noting that in Table 6, the highest value 
of Cf  (CF-max = 0.93), denoted by a black circle in Fig. 9d, corresponds to K = 296.58 mV, zo = 4.5 m, xo = − 25 
m, q = 0.5, and θ = − 75°. The computed error of the estimated parameters, K, zo, xo, q, and θ are: 18.63%, 12.5%, 
0%, 0% and 0%, respectively.

To evaluate the robustness and efficacy of the proposed method when applied to noisy data, we introduced 
two types of noise, specifically, 15% RGN and 15% WGN, to the previous model.

In the case of 15% RGN (depicted in Fig. 10a), we initially computed the vertical and horizontal gradients of 
the noisy data (Fig. 10b). Subsequently, using Eq. (4), we calculated LWmea (Fig. 10c). The determination of Cf 
was carried out using Eq. (7) (Fig. 10d). Within Fig. 10d, the highest Cf value  (CF-max = 0.55) indicated by the 
black circle in Fig. 10d) was observed at specific parameter values: K = 306.56 mV, zo = 4.8 m, xo = − 25 m, q = 0.5, 
and θ = − 71.65°, as presented in Table 7. The computed errors for the estimated parameters K, zo, xo, q, and θ 
were found to be 22.62%, 20%, 0%, 0%, and 4.47%, respectively.

Moving on to the scenario with 15% WGN (illustrated in Fig. 11a), we again computed the vertical and 
horizontal gradients of the noisy data (Fig. 11b). Subsequently, employing Eq. (4), we determined LWmea 
(Fig. 11c). To derive Cf, Eq. (7) was utilized (Fig. 11d). Within Fig. 11d, the highest Cf value  (CF-max = 0.588), 
depicted by the black circle in Fig. 11d was observed at specific parameter values: K = 293.31 mV, zo = 5.1 m, 
xo = − 25 m, q = 0.5, and θ = − 71.13°, as indicated in Table 7. The computed errors for the estimated parameters 
K, zo, xo, q, and θ were found to be 17.32%, 27.5%, 0%, 0%, and 5.16%, respectively.

Field models
In order to evaluate the effectiveness of the suggested method, it was employed in three distinct real-life field 
data, including one from India, one from Germany and the third from USA.

India field example (Neem‑Ka‑Thana Copper Belt)
The Neem-Ka-Thana Copper Belt in India is distinguished by the prevalence of copper mineralization in the 
 region4,42. Notably, the copper deposits are primarily located along fault lines and shear planes, indicating a geo-
logical association with these structural features. The concentration of copper in the mines within the Neem-Ka-
Thana Copper Belt shows variability, ranging from 0.6 to 1.2%4,43. This diversity in copper content underscores 
the geological complexity of the region, suggesting that mineralization processes have been influenced by a 
combination of tectonic forces and geological phenomena. Therefore, the Neem-Ka-Thana Copper Belt stands 
out as a significant geological site where the interplay of geological structures and mineralization processes 
contributes to the formation of valuable copper deposits.

Table 5.  The authentic and retrieved model parameters pertaining to the second theoretical example (induced 
by multisource models of sphere and horizontal cylinder) contaminated with 10% RGN and 10% WGN.

Model parameters

True Recovered [RGN 10%] Recovered [WGN 10%]

HC model Sphere model HC model Sphere model HC model Sphere model

K (mV  m2q−1) 2500 mV m 30,500 mV  m2 2293 mV m 23,287 mV  m2 2833 mV m 36,322 mV  m2

zo (m) 3 5 3.2 4.6 4.3 5.9

xo (m) 30 − 30 30 − 30 30 − 30

Q 1.0 1.5 1.0 1.5 1.0 1.5

θ (º) − 35 − 25 − 42.67 − 26.01 − 47.50 − 27.55

CF-max 0.56 0.55 0.48 0.50



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6185  | https://doi.org/10.1038/s41598-024-54689-3

www.nature.com/scientificreports/

A profile of self-potential was acquired over the Neem-Ka-Thana Copper Belt in  India4,31,43 (Fig. 12a). The 
profile length was 285 m long. The interpretation procedure initiated with the computation of both the horizontal 
and vertical gradients of the observed anomaly, illustrated in Fig. 12b. Following this, Eq. (4) was applied to 
determine the value of LWmea , as shown in Fig. 12c. Progressing further, Eq. (7) was employed to compute Cf, 
depicted in Fig. 12d, considering various q values as presented in Table 8. It is noteworthy that Table 8 presents 
the maximum value of Cf  (CF-max = 0.96), represented by a black circle in Fig. 12d, corresponding to K = − 47.92 
mV, zo = 18 m, xo = 177.5 m, q = 0.4, and θ = 88° (Table 9). The comparison between the results obtained by our 
suggested method and those obtained by  Balkaya44 is depicted in Fig. 12a. Table 9 displays a comparison of 
the inverted parameters between the proposed method and those of different methods found in the literature.

Germany field example (Lias‑epsilon black shales)
The Lias-epsilon black shales in Germany are situated atop a coal maturity high on the Bramsche Massif in 
Northwest Germany, as described  by45. The thermal evolution of this region is attributed to the inversion of the 
Lower Saxony Basin, occurring during the Early Late Cretaceous period, likely in conjunction with mafic intru-
sions from the Bramsche, Vlotho, and Uchte Massifs at depths of approximately 5–10  km46–48.

Figure 8.  (a) Profile of the self-potential anomaly depicted in Fig. 6a after contaminating with 10% WGN, 
(b) computed horizontal and vertical derivatives for the profile depicted in (a), (c) local wavenumber of the 
data depicted in (b), (d) visualizing the correlation factor (Cf) and determining the  CF-max through the newly 
established method.
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Figure 9.  (a) Profile of the self-potential composite anomaly induced by vertical cylinder and first order 
regional source, (b) computed horizontal and vertical derivatives for the profile depicted in (a), (c) local 
wavenumber of the data depicted in (b), (d) visualizing the correlation factor (Cf) and determining the  CF-max 
through the newly established method.

Table 6.  The authentic and retrieved model parameters pertaining to the second theoretical example (self-
potential composite anomaly induced by vertical cylinder and first order regional source).

Model parameters True Recovered

K (mV) 250 296.58

zo (m) 4 4.5

xo (m) − 25 − 25

q 0.5 0.5

θ (º) − 75 − 75

CF-max 0.9266
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Figure 10.  (a) Profile of the self-potential anomaly depicted in Fig. 9a after contaminating with 15% RGN, 
(b) computed horizontal and vertical derivatives for the profile depicted in (a), (c) local wavenumber of the 
data depicted in (b), (d) visualizing the correlation factor (Cf) and determining the  CF-max through the newly 
established method.

Table 7.  The authentic and retrieved model parameters pertaining to the second theoretical example (self-
potential composite anomaly induced by vertical cylinder and first order regional source) contaminated with 
15% RGN and 15% WGN.

Model parameters True

Recovered

15% RGN 15% WGN

K (mV) 250 306.56 293.3108

zo (m) 4 4.8 5.1

xo (m) − 25 − 25 − 25

q 0.5 0.5 0.5

θ (º) − 75 − 71.65 − 71.13

CF-max 0.5462 0.5876



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6185  | https://doi.org/10.1038/s41598-024-54689-3

www.nature.com/scientificreports/

The heightened thermal maturity of organic materials in the Lias-epsilon black shales is commonly associated 
with the intrusion of the Bramsche Massif into the Earth’s crust. Notably, strong gravity and magnetic anomalies, 
along with increased coal maturity in the Westphal D coals found in areas such as Ibbenbüren’s mining region, 
are linked to the presence of the Bramsche  Massif49–52. The thermal heating of the stratigraphic series likely 
commenced before the Alp era and extends beyond Mesozoic black shales (2–5% C-org) of the Lower Toarcium 
and Lias-epsilon, as indicated by  Mann53. The contemporary morphology of the region has been significantly 
influenced by Pliocene tectonism and Quaternary sedimentation, as highlighted by studies such as those 
conducted  by54,55.

The survey area’s location is depicted in Fig. 1345,49. A self-potential profile was carried out across a 500 m 
span over the conductivity anomaly, specifically the Lias-epsilon black  shales45,56 (Fig. 14a). The interpretation 
process began by calculating both the horizontal and vertical gradients of the observed anomaly, as illustrated in 
Fig. 14b. Subsequently, Eq. (4) was utilized to determine the value of LWmea , as depicted in Fig. 14c. Advancing 
further, Eq. (7) was applied to calculate Cf, shown in Fig. 14d, with consideration for various q values outlined 
in Table 10. It is important to note that Table 10 highlights the maximum value of Cf  (CF-max = 0.71), denoted 
by a black circle in Fig. 14d. This corresponds to K = 11,052.05 mV m, zo = 19 m, xo = 250 m, q = 1, and θ = − 100° 
(refer to Table 11). The comparison between the results obtained by our suggested approach and those obtained 

Figure 11.  (a) Profile of the self-potential anomaly depicted in Fig. 9a after contaminating with 15% WGN, 
(b) computed horizontal and vertical derivatives for the profile depicted in (a), (c) local wavenumber of the 
data depicted in (b), (d) visualizing the correlation factor (Cf) and determining the  CF-max through the newly 
established method.



15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6185  | https://doi.org/10.1038/s41598-024-54689-3

www.nature.com/scientificreports/

Figure 12.  (a) Profile of the self-potential anomaly over Neem-Ka-Thana Copper Belt in India, along with 
the calculated responses from the present study and those obtained by  Balkaya44. (b) Computed horizontal 
and vertical derivatives for the profile depicted in (a), (c) local wavenumber of the data depicted in (b), (d) 
visualizing the correlation factor (Cf) and determining the  CF-max through the newly established method.

Table 8.  The correlation factor (Cf) calculated at the different shape factors for the Neem-Ka-Thana Copper 
Belt field example in India. The optimum values are in [bold].

Geometric shape factor Maximum correlation factor

(q) (CF-max)

0.5 0.9630

1 0.9628

1.5 0.9579
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by Mehanee et al.57 is depicted in Fig. 14a. Table 11 provides a comparison of the inverted parameters between 
the proposed method and those from different methods documented in the literature. Also, Figs. 15 and 16 show 
the depth estimation from the 2D electrical resistivity tomography and the estimated source model using the 
suggested technique, respectively (taking into consideration the topography of the area). The results from the 
2D electrical resistivity tomography and our method match well.

USA field example (Hi’iaka eruption)
On May 5, 1973, a dike penetrated the upper crust of Kilauea volcano within the geologic context of the east 
rift  zone58. This intrusion coincided with the eruption of Hi’Iaka and Pauahi craters, as documented by Klein 
et al.59 and Tilling et al.60. The dike induced the formation of a surface fissure, stretching 100 m, which erupted 
magma west-southwest (WSW) of Hi’iaka crater. Geophysical measurements indicated that the dike extended 
underground in the WSW direction for an additional 1.5  km58.

The SP profile’s location is depicted in Fig. 1758. The selected profile was carried out in  199758, spanning a 
length of 650 m (see Fig. 18a). The process of interpretation commenced by computing both the horizontal 
and vertical gradients of the observed anomaly, as depicted in Fig. 18b. Subsequently, Eq. (4) was applied to 
ascertain the value of LWmea , as illustrated in Fig. 18c. Progressing further, Eq. (7) was employed to compute 
Cf, as shown in Fig. 18d, considering various q values outlined in Table 12. It is noteworthy that Table 12 
highlights the maximum value of Cf  (CF-max = 0.89), represented by a black circle in Fig. 17d. This corresponds 
to K = − 4688.45 mV  m2q-1, zo = 110 m, xo = 320 m, q = 0.7, and θ = − 110° (refer to Table 13). The comparison 
between the results obtained by our suggested method and those obtained by Mehane et al.57 is depicted in 

Table 9.  Retrieved model parameters for the Neem-Ka-Thana Copper Belt field example in India, and the 
comparison of the inverted results between the proposed method and those of different methods found in the 
literature.

Model parameters Balkaya44

Göktürkler and  Balkaya31 Biswas4 Sungkono43

Present studyGA PSO SA (2017) MDE µJADE

K (mV) − 48.50 − 53.99 − 49.53 − 44.62 32.2 − 48.38 − 49.93 − 47.92

zo (m) 17.3 18.6 17.6 16.34 10.8 18.81 17.91 18.00

xo (m) 176.8 176.84 176.77 176.92 177.8 178.32 176.66 177.5

q 0.4 0.42 0.4 0.38 0.5 0.41 0.41 0.40

θ (º) 88.05 87.83 88 88.25 89.6 88.95 88.06 88.00

Figure 13.  Location map of the of the survey area for the Osnabrück in Germany (after Stadler and 
 Teichmuller49 and Gurk et al.45). NL Netherlands, B Belgium.
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Figure 14.  (a) Profile of the self-potential anomaly over Lias-epsilon black shales in Germany, along with the 
calculated responses from the present study and those obtained by Mehanee et al.57. (b) Computed horizontal 
and vertical derivatives for the profile depicted in (a), (c) local wavenumber of the data depicted in (b), (d) 
visualizing the correlation factor (Cf) and determining the  CF-max through the newly established method.

Table 10.  The correlation factor (Cf) calculated at the different shape factors for the Lias-epsilon black shales 
field example in Germany. The Optimum values are in [bold].

Geometric shape factor Maximum correlation factor

(q) (CF-max)

0.5 0.6033

1 0.7089

1.5 0.7084
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Fig. 18a. Table 13 presents a comparison of the inverted parameters between the proposed method and those 
documented in the literature from different methods.

Conclusions
In this study, we implemented an effective inversion imaging algorithm to characterize self-potential data origi-
nating from diverse sources such as spheres, vertical cylinders, and horizontal cylinders. The demonstrated algo-
rithm holds promise for applications in mineral, ore exploration, and geothermal investigation offering precise 
predictions of various structural parameters—namely, amplitude factor (K), depth (zo), body origin (xo), shape 
factor (q), and polarization angle ( θ)—with high accuracy and without the need for a priori information. The sug-
gested algorithm employs the correlation factor (Cf) between the local wavenumber of the observed self-potential 
field and that of the computed field. The findings indicate that the maximum Cf  (CF-max) corresponds to the most 
reliable estimated model. Moreover, our proposed approach presents an imaging algorithm that provides rapid 
(within seconds) and robust imaging for subsurface depth and the location of concealed anomalous sources. To 
validate the efficiency, accuracy, and stability of the proposed algorithm, we subjected it to testing using three 
synthetic cases, including a pure data, a noisy data contaminated with different types of noise (RGN and WGN), 
an example for multi-source model and data with regional background effects. The applicability of the algorithm 
was further assessed through three real cases for mineral/ore exploration and geothermal investigation in India, 
Germany and USA. The resulting models from these real cases exhibited strong correlations with drilling data 
and findings reported in the literature. Finally, our study supports the suitability of the proposed algorithm for 
mineral/ore deposits exploration and geothermal investigation as well.

Table 11.  Retrieved model parameters for Lias-epsilon black shales field example in Germany, and the 
comparison of the inverted results between the proposed method and those of different methods found in the 
literature.

Model parameters Gurk et al.45 Mehanee61 Mehanee et al.57 Present study

K (mV  m2q-1) − 48.50 (mV) 11,783.60 (mV m) 46,527 (mV  m1.4) 11,052.05 (mV m)

zo (m) 10—23 19.9 23 19.00

xo (m) 251.73 – 250 250.00

q Thin sheet 1.0 1.2 1.0

θ (º) 95 −  99.2 − 97 − 100.00

Figure 15.  Results of the 2D electrical resistivity tomography inversion cross-section for the Osnabrück 
anomaly in Germany. (modified from Gurk et al.45).
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Figure 16.  Estimated subsurface model using our suggested technique for the Osnabrück anomaly in Germany, 
taking into consideration the surface topography (b). The plus sign indicates the center location of source 
anomaly (a).

Figure 17.  Location map of the of the SP profile for the Hi’iaka eruption in USA (after  Davis58).
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Figure 18.  (a) Profile of the self-potential anomaly over Hi’iaka eruption in USA, along with the calculated 
responses from the present study and those obtained by Mehanee et al.57. (b) Computed horizontal and vertical 
derivatives for the profile depicted in (a), (c) local wavenumber of the data depicted in (b), (d) visualizing the 
correlation factor (Cf) and determining the  CF-max through the newly established method.

Table 12.  The correlation factor (Cf) calculated at the different shape factors for the Hi’iaka eruption field 
example in USA. The Optimum values are in [bold].

Geometric shape factor Maximum correlation factor

(q) (CF-max)

0.5 0.8902

1 0.8876

1.5 0.8858
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