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GestureMoRo: an algorithm 
for autonomous mobile robot 
teleoperation based on gesture 
recognition
Lei Chen 2, Chunxu Li 1,2*, Ashraf Fahmy 1 & Johann Sienz 1

Gestures are a common way people communicate. Gesture-based teleoperation control systems tend 
to be simple to operate and suitable for most people’s daily use. This paper employed a LeapMotion 
sensor to develop a mobile robot control system based on gesture recognition, which mainly 
established connections through a client/server structure. The principles of gesture recognition in the 
system were studied and the relevant self-investigated algorithms—GestureMoRo, for the association 
between gestures and mobile robots were designed. Moreover, in order to avoid the unstably 
fluctuated movement of the mobile robot caused by palm shaking, the Gaussian filter algorithm was 
used to smooth and denoise the collected gesture data, which effectively improved the robustness 
and stability of the mobile robot’s locomotion. Finally, the teleoperation control strategy of the 
gesture to the WATER2 mobile robot was realized, and the effectiveness and practicability of the 
designed system were verified through multiple experiments.
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With the development of science and technology, robots no longer only exist in factories, but are also more 
common in  life1. In line with the concept of people-oriented, in order to better control the robot, the way of 
human–computer interaction is also constantly enriched. Perhaps the most common human–computer inter-
action methods we use in life are semantic interaction and gesture interaction. Semantic interaction allows us 
to operate robots or other digital devices through voice  commands2. However, there are many languages in the 
world, and the same language has different dialects and accents. Therefore, the prerequisite for realizing semantic 
interaction that is applicable to everyone tends to require a huge database. In addition, the tone and context of 
the user’s speech is also supposed to be considered, which is relatively difficult and costly. On the contrary, all 
ethnic groups in the world have the same hands, so the applicability of gesture interaction is indistinguishable 
for each ethnic group, and gesture interaction is easy to  operate3.

Gestures are one of the most important ways of expression in daily communication. With the development 
of robots in the medical field, gesture interaction is increasingly helpful to disabled people. For example, it is 
entirely possible for people with disabilities to abandon the traditional way of controlling the movement of 
wheelchairs and use non-contact gestures to control wheelchairs. Therefore, gestures are a good choice as a way 
of human–computer interaction, and there is a few technical difficulties in terms of user experience. Predeces-
sors had also conducted plenty of research works on gesture recognition. In the  literature4, Kinect sensor was 
used for gesture recognition to control the movement of mobile robots. In this paper, the Kinect sensor could 
recognize the movement of the operator’s arm, and the range of recognition was also relatively large. However, it 
mainly used skeleton analysis and cannot identify the specific details of the operator’s hands. In the  paper5, Sun 
et al. proposed a new method to use the depth information of neighboring pixels to restore missing depth data. 
This method overcomes the shortcomings of traditional methods that easily produce artifacts or blurring at the 
edges of objects., and has good results if applied to a gesture recognition system to identify the shape of the finger. 
In the  paper6, the author considered that the Kinect sensor may cause gesture recognition errors because of the 
similarity of two interactive actions, and that the system may recognize people’s unconscious body movements 
as positive gestures, so this paper proposed to combine Kinect with visual and deep learning algorithms to effec-
tively improve the identification of conflict phenomena and determine unconscious actions. A RGB-based deep 
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learning gesture recognition method was studied in the research  work7, in which they shared a dataset of real 
and synthetic control gestures, and proposed a gesture recognition solution based on the I3D model. They dem-
onstrated that synthetic data are crucial in overcoming the challenges of collecting large amounts of annotated 
data on human subjects. Of course, some researchers also used radar for gesture recognition. In the  literature8, a 
new type of low-complexity lidar gesture recognition system was proposed. The system was divided into a pose 
estimation module and a gesture classifier, thereby reducing the dimensionality of the input while also easing 
the computational burden on mobile robots with relatively limited computing power.  Literature9 was another 
example of gesture recognition using radar. In this paper, the researchers proposed a robust gesture recognition 
method based on dual-Doppler radar, combined with improved dynamic time warping (DTW) algorithms to 
classify gestures between humans and radar, a collaborative robot control system was also developed.

In order to obtain a better experience and more precise operation in the process of controlling the robot 
with gestures, some researchers used multi-source data fusion for gesture recognition. In the research  work10, 
researchers unified the operation, visual/force feedback areas, and introduced voice interaction to improve 
the accuracy of teleoperation and the naturalness of interaction, thereby achieving an immersive and natural 
interaction environment. In order to enhance the user experience in gesture control of the robot with respect 
to the immersiveness, operation convenience, and control accuracy,  in11, researchers developed an application 
of augmented reality (AR) in robot control and adjustment. In their research, they used the Kalman filter (KF) 
algorithm to fuse the gesture coordinate data obtained by the LeapMotion sensor and the movement speed of the 
gesture in the three-dimensional space obtained by the Kinect V2 camera, thereby better realizing the teleopera-
tion of the Baxter robot with gestures. In addition, in the  literature12, researchers designed an adaptive teleopera-
tion system for the DLR-HIT II manipulator based on neural networks. In this system, they corresponded the 
joints of the operator’s hand with the joints of the robot’s hand based on the LeapMotion device, so as to realize 
the teleoperation control of the manipulator. Most of the above-mentioned gesture control robot systems added 
many auxiliary devices in order to improve the accuracy or function of the system, ignoring the convenience of 
user use. The teleoperation control system developed in our paper realized the convenience and safety of user 
operation while ensuring high-precision control of the robot.

The positioning of the paper is to provide the prototype of a new smart wheelchair control method for people 
with disabilities, and in this method, the control of any movement mode of the smart wheelchair can be achieved 
with simple gestures. The main goal is to reduce the burden of controlling smart wheelchairs for people with 
disabilities. Solly et al.13 proposed a gesture control system based on a glove controller to control a mobile robot. 
They required the operator to wear a professional glove controller to control the mobile robot. Although control 
accuracy was guaranteed, they also clearly pointed out that this control method required higher movement and 
control abilities of the user, so it was not suitable for everyone, especially the elderly. Yamashita et al.14 proposed 
a mobile robot control method based on fingertip gesture recognition, and this method could be integrated with 
the face recognition system to improve the interactivity of the mobile robot controlled by fingertip gestures. 
However, the fingertip gesture recognition was performed through a glasses-type wearable camera. Therefore, 
the gesture was often misrecognized due to the noise generated by the shaking of the user’s head during use. The 
average accuracy of the gesture recognition was 84%, which was still relatively low. In addition, fingertip gesture 
recognition required the operator’s fingers to be flexible and constantly changing finger postures. However, our 
research can easily control the mobile robot through simple gestures of the palm. Wang et al.15 designed an intel-
ligent mobile robot control system based on myoelectric signals to achieve remote control of the car through 
the control of myoelectric signals. However, in the system they designed, it was difficult to identify the hand 
muscles when the operator opens his hand, which requires the operator to always keep his hand tight, which 
brings difficulties to the operator. Chamorro et al.8 proposed a novel low-complexity lidar gesture recognition 
system for robust control of gesture changes in mobile robots. Its gesture classification was completed using a 
long short-term memory network and used a series of estimated body postures as input to predict gestures, 
so its control accuracy was high. However, in their system, 18 kinds of gestures were used to achieve remote 
control of the mobile robot. The gestures were relatively complex, and the set gestures included the entire arm. 
Therefore, the operator had a large range of movement during the remote control process, and the changes in 
control instructions were relatively slow.

Therefore, this paper possesses the following novelties compared with the studies mentioned above: first, 
the teleoperation system designed in this paper does not require the operator to wear any equipment, which 
reduces the operator’s burden. Secondly, the gesture recognition system developed by this research only requires 
the operator to naturally relax and open his hand over the LeapMotion sensor, and the operator only needs to 
control the forward and backward tilt angle and left and right roll angle of the palm to realize the speed control 
and direction control of the mobile robot. Thirdly, the three-dimensional coordinate values obtained from the 
LeapMotion in this paper were not directly mapped to the world coordinate system, but mapped separately, 
which effectively reduced the cumulative error of direct mapping between two three-dimensional coordinates. 
Therefore, it is suitable for most people and requires no professional knowledge to get started. This research is 
suitable for smart wheelchairs and provides a contactless and labor-saving strategy for disabled people to control 
smart wheelchairs.

In addition, achieving continuous, stable, and high-precision control of mobile robots is crucial for the wide-
spread application of mobile  robots16. For example, in multi-objective control, due to the existence of dynamic 
instability, the discontinuous solution of the optimization algorithm may cause chatter, which will greatly affect 
the stability of the  robot17,18. Also in cruise control, switching control inputs may cause user discomfort and safety 
 issues19. Therefore, a large amount of research had been devoted to solving how to improve the continuity, stability 
and control accuracy of mobile robots. In recent years, with the development of reinforcement learning, many 
researchers had used reinforcement learning to develop computer models of robot control decisions, enabling 
robots to autonomously acquire skills to perform complex tasks, such as robot manipulation, locomotion, and 
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 navigation20–24, thereby achieving autonomous and continuous control of the robot. However, this method was 
not efficient. It needed dense rewards to keep the actions under supervision at all times, so as to improve the 
learning efficiency. There were also researchers who used dynamic control to achieve precise dynamic adjustment 
of the mobile robot chassis and improve tracking  performance25–27. In addition, there are often unanticipated 
factors such as actuator failure and input saturation in mobile robot systems, so it is difficult to achieve high-
precision control of mobile robots using traditional control methods of robot models. In recent years, based on 
sliding  mode28–32, robust  adaptive33–37, fuzzy  logic38–40 and other technologies, various advanced control strategies 
had been developed to solve various problems in practical systems. Among them, in terms of actuator failure, in 
the  literatures41,42, an iterative learning controller and a distributed local controller were constructed respectively 
to ensure trajectory tracking and satisfactory transient performance of two driving wheel mobile robots in the 
case of deviation actuator failure. In these studies, robust asymptotic tracking and transient response were highly 
considered in actuator faults and system uncertainties. The stability, continuity and high-precision control of the 
mobile robot in our paper were not only realized by the characteristics of the WATER2 mobile robot having two 
driving wheels and four universal wheels, but also mainly relied on the mapping algorithm from the gesture to the 
mobile robot designed by ourselves, the high precision of LeapMotion itself and the Gaussian filtering algorithm.

The paper mainly realized the teleoperation control of WATER2 mobile robot through the method of dynamic 
gesture recognition based on LeapMotion device. The content of the paper was distributed as follows: The first 
section introduced the research background and significance of this paper. The second section introduced the 
preparation work of this paper, including the hardware, software and workstation used in the experiment. The 
third section mainly introduced the methodology of this paper, including the kinematic modeling of mobile 
robots, the design of LeapMotion control flow, the design of the association algorithm between gestures and 
mobile robots, and the principle of Gaussian filtering algorithm. The fourth section was the experimental part 
of this paper, including the construction of the experimental platform, the design of the experimental plan, and 
the analysis of the experimental results. The fifth section was the conclusion and prospect of this paper. Com-
pared with traditional teleoperation  methods43,44, the innovations and unique contributions of this paper can 
be succinctly summarized as follows:

1. The model coupling between the mobile robot and LeapMotion was realized. We integrated the palm posi-
tion and the speed of the mobile robot to ensure high-precision control of the mobile robot.

2. Based on the LeapMotion sensor, we designed a correlation algorithm between gestures and mobile robots, 
and named it the GestureMoRo algorithm.

3. The Gaussian filter algorithm was integrated into the control system we designed, and the data collected by 
LeapMotion were processed by Gaussian filter, thereby avoiding the unstable motion of the mobile robot 
caused by the shaking of the palm during gesture control.

4. Compared with other studies using LeapMotion sensors, the three-dimensional coordinate values obtained 
from the LeapMotion coordinate system in this paper were not directly mapped to the world coordinate 
system, but the three-dimensional coordinates were mapped separately, thus effectively reducing the cumula-
tive error of direct mapping between two three-dimensional coordinates.

Preliminaries
The hardware used to implement the human–computer interaction system in this paper included LeapMotion, 
laptop computers and mobile robots. The structure of the control system was shown in Fig. 1.

LeapMotion
The size of the LeapMotion sensor is 80 mm long × 30 mm wide × 11.3 mm high, as shown in Fig. 2. It employs a 
right-handed Cartesian coordinate system, with the origin positioned at the center atop the LeapMotion  sensor45. 
Specifically, the x-axis and z-axis lie within the horizontal plane, with the x-axis aligned parallel to the device’s 
longer side, and the z-axis parallel to the shorter side. Meanwhile, the y-axis extends vertically upward, with posi-
tive values increasing upward, and the z-axis has positive values increasing toward the user. Its trackable range 
was shown in Fig. 3. The horizontal field of view is about 140°, the vertical field of view is about 120°, and the 
recognition range perpendicular to the LeapMotion surface is 25–600  mm46. The officially provided LeapMotion 

Figure 1.  Control system structure.
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accuracy is 0.01 mm, but the actual accuracy may be 0.7 mm. The accuracy is still high, and 200 frames of hand 
data can be collected per second.

LeapMotion is equipped with two 120 frame rate gray-scale infrared cameras and three infrared LEDs. The 
infrared LEDs emit light that penetrates the filter layer and illuminates the target object for tracking. The camera 
receives the reflected infrared light. Then, the hand’s three-dimensional position is determined using binocular 
stereo vision imaging principles, enabling the creation of a precise three-dimensional hand model. At the same 
time, visible light cannot pass through the filter layer, shielding the complex background, thereby reducing the 
complexity of post-processing.

WATER2 mobile robot
As shown in Fig. 4, the WATER2 mobile robot produced by Beijing Yunji Technology Co. Ltd. has a built-in 
wireless router, which can communicate with the PC through WIFI.

Workstation
The PC used in this paper was a ThinkPad E580 laptop equipped with Windows 10 operating system. The devel-
opment language used was python2.7. The compiler used was pycharm imported from anaconda, and python 
SDK V3 was installed.

Methodology
Kinematic modeling of mobile robots
The WATER2 mobile robot used in this paper has 6 wheels, including four symmetrically distributed universal 
wheels. Their main function is to increase the stability of the mobile robot during operation, but they do not 
have a driving effect; There are two symmetrically distributed driving wheels, whose main function is to drive 
the mobile robot to move through differential driving. Its motion coordinate system and simplified model were 
shown in Fig. 5.

In Fig. 5, we illustrated the kinematic model of a differential drive mobile robot within the two-dimensional 
world coordinate system, denoted as OXY  . The mobile robot’s body coordinates, represented as OrXrYr , have 
their origin, Or , precisely positioned at the midpoint of the two wheel axles—also serving as the robot’s center 
point. The forward direction of the robot is established as the positive x-axis ( Xr ), while the positive y-axis ( Yr ) 

Figure 2.  LeapMotion coordinate system.

Figure 3.  LeapMotion tracking range.
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is determined following the right-hand rule. Consequently, the robot’s pose with respect to the world coordinate 
system, denoted as OXY  , is precisely recorded as:

where, 
(

x, y
)

 represents the position coordinates of the mobile robot in relation to the world coordinate system 
OXY  . Additionally, θ ∈ (−π ,π] signifies the angle between the mobile robot’s orientation and the positive X-axis 
of the world coordinate system, with counterclockwise direction regarded as positive.

Differential drive mobile robots complete steering by independently controlling the wheels on both sides of 
the robot. Assume that the instantaneous rotation center of the mobile robot is point O′ , its left wheel speed is 
vL , and its right wheel speed is vR . Then the instantaneous radius R of the mobile robot’s instantaneous speed 
center O′ is calculated as Eq. (2):

where v represents the linear velocity (m/s) of the mobile robot’s center, ω denots the angular velocity (rad/s) of 
the mobile robot, vL is as the speed of the left wheel of the mobile robot, vR indicates the speed of the right wheel, 
d signifies the distance between the two drive wheels of the mobile robot, with units measured in meters (m).

(1)q =
[

x y θ
]T

(2)R =
v

ω
=

(vL + vR)/2

(vL − vR)/d

Figure 4.  WATER2 mobile robot.

Figure 5.  Differential drive mobile robot kinematics model.
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The motion of the mobile robot at any moment can be decomposed into the linear velocity ( v ) of the center of 
the mobile robot and the angular velocity ( ω ) rotating around the instantaneous center O′ . Its kinematic positive 
solution equation is shown in formula (3):

where v representes the linear velocity (m/s) of the mobile robot’s center, ω denotes the angular velocity (rad/s) 
of the mobile robot, ωL and ωR are angular velocities (rad/s) of the left and right driving wheels of the mobile 
robot, r is the radius of the driving wheel on the mobile robot. d is the distance between the two driving wheels 
of the mobile robot.

The inverse kinematic solution of the mobile robot was obtained from Eq. (3), as shown in Eq. (4):

Finally, the ( v,ω ) values received from the host computer were employed to execute the inverse kinematics 
calculation using Eq. (4), yielding the projected angular velocities for the left and right drive motors. This process 
underpined the effective motion control of the robot.

Control flow
As the LeapMotion controller tracks hands and fingers in its field of view, it provides updates in the form of data 
sets, or frames. Each frame object represents all tracked hands and details their properties at the current moment. 
The frame object is essentially the root of the LeapMotion data model.

First, we found the three files Leap.py, LeapPython.pyd and Leap.dll in the lib folder of the Python library in 
the Leap SDK, and save the three files to the same directory of the python source code program we developed. 
Just import leap in program.

Secondly, we realized the connection between the computer and the mobile robot through wifi wireless 
communication, and then realized the connection between the comput and the mobile robot on the program 
through the socket module. We used controller = Leap.Controller() to add the Controller object to the program. 
When creating the Controller object, It automatically connected to the LeapMotion service, and once a connection 
was established, tracking data would could be obtained from it using the Controller.frame() method. Then use 
controller.add_listener(listener) to let the sample listener receive events from the controller, so that it can receive 
data from the controller in real time, that is, information for each Frame.

In addition, since the duration of a single command of the WATER2 mobile robot used is 0.5 s, the input 
frequency can be greater than 2 Hz. Therefore, in order to make the movement of the mobile robot coherent 
during gesture control, this paper set 20 ms as a cycle to send commands.

Algorithm design
This paper proposed an association algorithm between gestures and mobile robots based on LeapMotion, named 
GestureMoRo algorithm. Within this algorithm, we’ve translated gesture movements into two distinct com-
ponents for controlling the mobile robot. The initial component involves the vertical displacement of the left 
hand’s palm concerning the LeapMotion sensor, coupled with the palm’s pitch angle, which correlates with the 
robot’s linear velocity. The second part is the roll angle of the left hand corresponding to the angular velocity of 
the mobile robot.

The vertical distance from the palm of the left hand to the LeapMotion sensor is the coordinate value of the 
palm of the hand on the Y-axis. This value was obtained by using the hand.palm_position attribute to obtain the 
position of the palm through the stereoscopic vision principle of the binocular camera. When the operator’s 
hand appeared in its working area, the binocular camera detects the target at the same time and calculated the 
target’s depth information based on the target’s parallax. The final palm information was the palm information 
processed by the parallax principle. The imaging principle of the binocular camera is shown in Fig. 6:

Among them, P is the target point for detection, b is the aperture center separation distance between the 
two cameras, UL is the distance from the left aperture center to the left imaging point, UR is the distance from 
the right aperture center to the right imaging point. y is the distance between the target point and the aperture 
center, f  is the focal length, and the parallax is d = UL + UR . The Z-axis is orthogonal to both the X and Y axes. 
The Z-coordinate for the left camera is denoted as ZL , while for the right camera, it’s represented as ZR.

Then calculated the x, y, and z values of point P . According to the similar triangle criterion, formula (5) could 
be obtained. Then formula (6) was derived from formula (5). Thus, the depth value y and the values of x and z 
were obtained. In this way, the binocular camera could be used to obtain the depth coordinate data of the object 
being photographed.

(3)
[

v
ω

]

=
[

r
2

r
2

− r
d

r
d

](

ωL

ωR

)

= J ∗
[
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ωR

]
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where b is the distance between the aperture centers of the two cameras, UL is the distance between the left aper-
ture center and the left imaging point, UR is the distance between the right aperture center and the right imaging 
point, y is the distance between the target point and the aperture center, f  is the focal length. ZL is the coordinate 
of the left camera on the Z axis, and ZR is the coordinate of the right camera on the Z axis.

In order to avoid the mobile robot moving due to unintentional shaking of the palm, it was necessary to con-
sider the range of the palm position to trigger the movement command of the mobile robot during the program 
development process. Combined with the recognition range of the LeapMotion sensor in the vertical direction, 
which is 25–600 mm, after many experimental tests, we set the linear speed mapped to the mobile robot to be 0 
when the vertical distance y between the palm and the sensor was less than 200 mm. When the distance y was 
greater than 400 mm and less than 600 mm, the linear speed mapped to the mobile robot was 0.5 m/s. When the 
vertical distance y was within the range of 200 mm-400 mm, it was mapped to the linear speed v of the mobile 
robot through formula (7).

where v is the linear speed of the mobile robot, and y is the vertical distance from the palm to the LeapMotion.
The schematic diagram of the gesture deflection angle of the LeapMotion sensor is shown in Fig. 7.
The pitch angle and roll angle of the left palm were obtained through the two properties of hand.direction.pitch 

and hand.palm_normal.roll respectively. The direction in the hand.direction.pitch attribute refers to the direc-
tion from the palm position to the finger. We can use the palm direction vector to calculate the pitch angle and 
yaw angle of the palm relative to the horizontal plane. The palm_normal in the hand.palm_normal.roll attribute 
refers to the direction of the palm normal vector, which can be used to calculate the rolling angle of the palm 
relative to the horizontal plane.

As we can see from the Fig. 7, the pitch angle of the left hand refers to the angle of rotation of the palm around 
the X-axis. The pitch is a negative value when the palm is buckled inward, and the pitch is a positive value when 
the palm is tilted upward. For safety reasons and to prevent the operator from accidentally triggering the mobile 
robot’s retreat command during teleoperation, after many tests, the program in this paper set that when the left 
hand buckles inward with a pitch less than − 5°, the robot’s linear speed passed through the formula (8) cor-
respondingly change to a negative value, so as to realize the backward action.

The corresponding relationship between the linear speed of the mobile robot and gestures in this algorithm 
is shown in Eq. (9):

(6)







y = fb/(UL + UR) = fb/d
x = yUL/f =

�

b− yxR
�

/f
z = yzL/f = yzR/f

(7)v =
(

y − 200
)

/400

(8)
v = −v

Figure 6.  Binocular camera imaging principle, modified  from47.
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where v(m/s) is the linear speed of the mobile robot, and y(mm) is the vertical distance from the palm to the 
LeapMotion, and pitch is the angle of rotation of the palm around the X-axis.

The roll angle of the left hand refers to the angle of rotation of the palm around the Z-axis. When the palm 
is flipped to the left, the roll angle is a positive value, and when the palm is flipped to the right, the roll angle is 
a negative value. For safety reasons and to prevent the operator from accidentally triggering the mobile robot’s 
turn command during teleoperation, after many tests, the program in this paper was set to trigger the mobile 
robot’s left turn command when the roll angle was greater than 20°. When flipping to the right, the command to 
turn the mobile robot to the right was triggered when the roll angle was less than − 20°.

The corresponding relationship between the specific palm roll angle of the algorithm we developed and the 
angular velocity of the mobile robot is as shown in Eq. (10):

where ω is the angular velocity of the mobile robot, and roll is the flip angle of the left hand.

Filtering
In the process of controlling a mobile robot, the palm of the hand would inevitably shake unintentionally or shake 
violently, causing the mobile robot to stop and move suddenly during the movement, which greatly reduced 
the stability and robustness of the mobile robot. At the same time, there were also security risks. Therefore, in 
order to solve the problem of gesture jitter during control, it is necessary to perform anti-shake filtering on the 
collected palm data, and then send the processed data to the mobile robot.

In order to obtain better filtering effects, this paper used two filtering algorithms, exponential weighted mov-
ing average filtering and Gaussian filtering, to compare the filtering and denoising effects, thereby achieving effec-
tive smoothing and denoising effects on the data. Both of these filters performed anti-shake filtering on the speed 
v calculated from the distance between the center of the palm and the LeapMotion sensor in the y-axis direction.

Exponentially weighted moving average filter
Exponentially weighted moving average filtering mainly used the weighted average method to achieve smooth 
denoising effect on one-dimensional data. This weighting method had a certain smoothing effect on the impact 
of noise on the data. When the speed array to be processed was (v1, v2, v3, . . . vk) , its mathematical expression 
was as shown in Eq. (11):

(9)v =



















0, y
�

200 or y
�

600

(y − 200)/400, 200 ≤ y
�

400 and pitch
�

− 5◦

−(y − 200)/400, 200 ≤ y < 400 and pitch ≤ −5◦

0.5, 400 ≤ y
�

600 and pitch
�

− 5◦

−0.5, 400 ≤ y ≤ 600 and pitch ≤ −5◦

(10)ω =



















−1, roll < −60◦

(roll + 20)/40, −60◦ < roll < −20◦

0, −20◦ < roll < 20◦

(roll − 20)/40, 20◦ < roll < 60◦

1, roll > 60◦

(11)Sk =
{

v1, k = 1

α ∗ vk + (1− α) ∗ vk−1, k > 1

Figure 7.  Schematic diagram of gesture deflection.
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where, vk was the kth speed value in the speed array to be processed; α was the weight parameter, usually also 
called the attenuation factor; Sk was the kth speed value after exponential weighted moving average filtering.

The main purpose of using exponentially weighted moving average filtering in this paper was to smooth and 
denoise the velocity. The impact of the previous value on the latter value in the velocity array should be taken 
into account. After many tests, the α value of this paper was 0.08.

Gaussian filter
Gaussian filtering was a method of weighted average of the values of the data sequence. Each data point was 
filtered by calculating a weighted average with other values within the field. This process is based on a Gauss-
ian function expressed in Eq. (12), where μ represents the mean value of the Gaussian function, indicating the 
position of the center point. Since each calculation was based on the position of the current calculation point as 
the origin, the value of μ was 0.

where v is the data that needs to be processed by Gaussian filtering, that is, the initial speed calculated by the 
distance between the center of the palm and the LeapMotion sensor in the y-axis direction; µ is the mean value 
of the Gaussian function, which was taken as 0; σ is the standard deviation of the Gaussian function; g is the 
filtered data of data v.

Gaussian filter is characterized by its shape as a bell curve. Within this curve, σ denotes the standard deviation 
of the Gaussian function, symbolizing the smoothing and denoising impact of Gaussian filtering on the data. 
When σ is larger, the peak of the curve is smaller, the graph is gentler, and the weight of the data on both sides is 
greater, that is, the smoothing effect is better; When σ is smaller, the peak of the curve is larger, the change of the 
graph is larger, and the weight of the data on both sides is smaller, that is, the smoothing effect is worse. Since a 
palm data was collected every 20 ms in this system, which belonged to high-frequency data, σ needed to take a 
larger value in this study to increase the weight of domain data. In addition, since the interval time of each data 
was only 20 ms, taking a larger value of the Gaussian window length would not cause smooth transition and 
lose the meaning of the original data. After many experiments and tests, this study finally found that the filtering 
effect was the best when σ was set to 15 and the Gaussian filter window was set to 91.

Statement:

1. We confirm that all experimental protocols were approved by College of Mechanical and Electrical Engineer-
ing, Hohai University.

2. We confirm that informed consent to participate was obtained from all subjects and/or their legal guardian(s).
3. We have obtained informed consent from all subjects and/or their legal guardians to publish identifying 

information/images in online open access publications.
4. We confirm that 0061ll methods were carried out in accordance with relevant guidelines and regulations.

Experiment and result analysis
Experiment setup
We had conducted some experiments to verify the effectiveness of our developed control system, the experi-
mental platforms included: a laptop with windows 10 operating system, pycharm compiler and LeapMotion 
python SDK V3, LeapMotion sensor and WATER2 mobile robot. Since the recognition accuracy of the Leap-
Motion sensor is higher in a well-lit environment, the experimental environment of this study was an indoor 
environment with sufficient lighting. The operator sat in front of the computer to which the LeapMotion sensor 
and the mobile robot had been connected, and placed his left hand directly above the LeapMotion sensor. After 
completing the above steps, the experimental platform was shown in Fig. 8, and we would run the control system 
we developed for experiments.

Control system verification and analysis
In order to verify the effectiveness of the designed control system, we designed the following experiments: First, 
after we placed our hand on the LeapMotion device that had been connected to the computer, we sequentially 
moved the palm up and down, moved the palm inwards up and down, flipped palm to the right and flipped palm 
to the left. The corresponding actions of the mobile robot were forward by changing speed, backward by chang-
ing speed, turning right and turning left. Figure 9 showed the experimental results. The faded area outlined by 
the white dotted circle in the figure was the initial position of the mobile robot, and the area that was not faded 
was the end position of the mobile robot. Based on the final experimental results, we concluded that the mobile 
robot can quickly respond to gestures and make corresponding actions, which showed that the control system 
we developed was efficient and practical.

Time delay and error analysis
In order to study the accuracy and time delay of the designed gesture recognition system, 50 experiments 
on gesture-controlled the mobile robot were conducted. The number of recognition errors during 50 gestures 
controlling the mobile robot and the real-time time sent by the computer to the mobile robot were recorded. In 
addition, the real-time time returned to the computer by the mobile robot were also recorded. The data of 50 
experiments were shown in Table 1.

(12)g =
1

σ
√
2π

e
− (v−µ)2

2σ2
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It could be concluded from Table 1. that a total of four recognition error occurred in 50 experiments, and 
the error rate was around 0.08. The response delay of mobile robots was between 140 and 200 ms. The aver-
age response delay of 50 experiments was 168.06 ms. This delay was short. Therefore, it could be seen that the 
designed gesture control system had good real-time performance, the program could quickly recognize gesture 
information, and the mobile robot could quickly make corresponding actions.

To delve deeper into the time delay, precision, and stability of the designed gesture recognition system, we 
conducted an extensive series of research experiments. The experimental data of six typical control forms were 
plotted, four of which were experimental data of linear velocity, and two were on angular velocity, as shown in 
Figs. 10 and 11.

In Fig. 10, the horizontal axis was time, and the vertical axis was linear velocity. The four movement modes 
of the mobile robot were: (1) first change speed to move backward and then change speed to move forward; (2) 

Figure 8.  Experiment platform.

Figure 9.  Experimental results.

Table 1.  Experimental data of time delay and error.

Time delay/ms for 50 experiments

168 160 182 166 179 180 172 170 158 166

169 171 153 169 159 162 167 155 163 188

177 183 161 170 155 190 169 170 143 149

165 179 188 172 147 152 159 185 177 171

192 164 169 159 173 150 187 168 162 160

Number of recognition errors 4

Average time delay/ms 168.06

Error rate 0.08
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first change speed to move forward and then change speed to move backward; (3) change speed forward; (4) 
change speed backward. The red solid line was the linear velocity sent by the computer to the mobile robot, and 
the blue dotted line was the actual linear velocity returned by the mobile robot. It could be seen from Fig. 10. 
that the stability of the mobile robot during the control process was relatively good, and there were no excessive 
mutations and gesture recognition errors in terms of speed; In addition, in terms of accuracy, the actual linear 
speed of the mobile robot was the same as the linear speed sent by the computer to the mobile robot, and the 
speed accuracy was high. However, it was not difficult to find from the figure that the dotted line was shifted a 

Figure 10.  The comparison between the linear speed sent by the computer and the actual linear speed of the 
robot.

Figure 11.  Comparison of the angular velocity sent by the computer and the actual angular velocity of the 
robot.
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little to the right compared to the solid line. This was the time delay tested above. The time delays are all between 
140 and 200 ms, which was consistent with the results of the above test. It could be seen that the time accuracy 
was also quite high.

In Fig. 11, the horizontal axis was time, and the vertical axis was angular velocity. The two movement modes 
of the mobile robot were: (1) turn right with variable speed; (2) turn left with variable speed; The red solid 
line was the angular velocity sent by the computer to the mobile robot, and the blue dashed line was the actual 
angular velocity returned by the mobile robot. It could be seen from the figure that the response accuracy and 
response time delay of the angular velocity of the mobile robot were almost the same as the response accuracy 
and response time delay of the linear velocity above. They all had high accuracy and short time delay. Moreover, 
there was no unreasonable mutation in the figure, which proved that the stability of the mobile robot during the 
control process was also good.

Denoising optimization experiment
During the test, we found that our palms inevitably shook unintentionally. In order to further enhance the 
robustness and stability of the designed control system, we performed a smooth denoising effect on the velocity 
array by using exponentially weighted moving average filtering and Gaussian filtering.

Effect analysis of exponentially weighted moving average filtering
We conducted two experiments using exponentially weighted moving average filtering to smooth and denoise 
the initial velocity. The linear speed before denoising, the linear speed after denoising and the real-time linear 
speed returned by the mobile robot were compared. The comparison results were shown in Fig. 12.

Result discussion The black solid line in Fig. 12 was the original linear velocity, the red dotted line was the 
linear velocity after exponential weighted moving average filtering, and the blue dotted line was the linear veloc-
ity returned in real time during the movement of the mobile robot. From Fig. 12, we find that the red dotted 
line moved back a certain distance relative to the black solid line, which was the time delay of the exponentially 
weighted moving average filter itself. Therefore, although the exponentially weighted moving average filter had a 
smooth denoising effect on the speed of the mobile robot, it itself had a time delay. And judging from the experi-
mental data results, in these two experiments, its own experimental delays were 373 ms and 386 ms respectively, 
while the system’s own time delays before filtering were only 179 ms and 197 ms respectively. Therefore, the 
exponentially weighted moving average filter brought a large delay to the control system we design, and was not 
suitable for the control system we design.

Gaussian filter
Then we conducted multiple experiments in which palms trembled, and conducted drawing comparison analysis 
on four of the experiments. In these four experiments, we used Gaussian filtering to smooth and denoise the 
linear velocity obtained during the experiment, and then sent the denoised linear velocity to the mobile robot. 
Then, the linear speed before denoising, the linear speed after denoising and the real-time linear speed returned 
by the mobile robot were compared. The comparison results are shown in Fig. 13.

Result discussion In Fig. 13, the black solid line was the original linear velocity, the red dotted line was the 
linear velocity after Gaussian filtering, and the blue dotted line was the linear velocity returned in real time during 
the movement of the mobile robot. From the comparison between the original speed and the speed after filtering, 
it could be concluded that in the four experiments, the linear velocity changed became gentle after smoothing by 
Gaussian filtering where the palm shaking were circled in Fig. 13. Moreover, the real-time speed change of the 
mobile robot after receiving the instruction was also stable and gentle, and it could move smoothly and safely 
during the movement. Therefore, the application of Gaussian filtering effectively avoided the unstable motion of 
the mobile robot caused by the shaking of the palm during the control process, and greatly improved the stability 
and robustness of the system developed in this paper.

Figure 12.  Linear velocity comparison chart before and after exponentially weighted moving average filtering.
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Finally, six people were selected to experience the control system, and their experience of using it was 
recorded. The results showed that all six experiencers said it was easy to get started with the control system, 
with almost no difficulty in operation and high control accuracy.

Volunteer evaluation
In order to ensure that the control system developed in this research is easy to use and suitable for most people, 
we invited 20 volunteers to experience our control system. We required 20 volunteers to control the mobile robot 
to move from a fixed location to a fixed end-point through our control system. The two locations are 10 m apart. 
The total time spent by each volunteer, as shown in Table 2, and the evaluation of the difficulty of the control 
process, as shown in Fig. 14, were recorded.

It could be seen from Table 2 that the average time spent by 20 volunteers was 23.15 s. The difference between 
the longest time spent and the shortest time was only 5 s. This shown that the control system developed in this 
research had very little difference in adaptability to different people.

In Fig. 14, 12 out of 20 volunteers thought that the control system developed in our study was very easy to 
operate, 7 thought it was easy, 1 thought it was moderate, and no one thought it was difficult. Therefore, the 
gesture-controlled mobile robot system developed in our study is very easy to operate and puts no burden on 
the operator (Supplementary information).

Figure 13.  Data comparison of linear velocity before and after filtering.

Table 2.  Time spent by each volunteer.

Time spent by each volunteer/s
21 23 25 21 23 26 25 22 21 24

24 23 25 21 22 23 24 22 25 23

Average time/s 23.15

Range 5
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Conclusion and future works
In this paper, a gesture-based mobile robot control system was developed using a LeapMotion sensor. The 
principles of gesture recognition and relevant self-investigated algorithms—GestureMoRo for the association 
between gestures and mobile robots were studied, which successfully realized the function of gestures to control 
mobile robot’s locomotion. Moreover, Gaussian filter algorithm was integrated into the designed control system 
to achieve smooth denoising of the linear velocity of the mobile robot and avoid unstable motion of the mobile 
robot caused by hand shaking. After many experiments and verifications, the system had been proved that it had 
the advantages of high precision, good stability and flexible operation. However, it also had the disadvantage of 
140–200 ms delay. Moreover, after the linear velocity was smoothed by Gaussian filtering, the robustness and 
stability of the mobile robot’s locomotion were significantly improved. The original intention of developing this 
system is to make it easy for people to use in daily life, so the gestures designed are relatively simple and natural. 
The system can be used for wheelchair control for disabled people, industrial transportation, etc. In future work, 
shortening the system’s latency and improving the system’s gesture recognition accuracy will be solved. It may 
also be combined with a robotic arm to apply the operator’s right hand to the system to achieve more control 
possibilities. Furthermore, the method of detecting the user’s intention will be tried to be applied in this control 
algorithm, so that the mobile robot can move according to the operator’s intention.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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