
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports

Ensemble averaging deep neural
network for botnet detection
in heterogeneous Internet
of Things devices
Aulia Arif Wardana 1,3*, Grzegorz Kołaczek 1,3, Arkadiusz Warzyński 1 & Parman Sukarno 2

The botnet attack is one of the coordinated attack types that can infect Internet of Things (IoT)
devices and cause them to malfunction. Botnets can steal sensitive information from IoT devices
and control them to launch another attack, such as a Distributed Denial-of-Service (DDoS) attack or
email spam. This attack is commonly detected using a network-based Intrusion Detection System
(NIDS) that monitors the network device’s activity. However, IoT network is dynamic and IoT devices
have many types with different configurations and vendors in IoT environments. Therefore, this
research proposes an Intrusion Detection System (IDS) by ensemble-ing traffic from heterogeneous
IoT devices. This research proposes Deep Neural Network (DNN) to create a training model from each
heterogeneous IoT device. After that, each training model from each heterogeneous IoT device is used
to predict the traffic. The prediction results from each training model are averaged using the ensemble
averaging method to determine the final result. This research used the N-BaIoT dataset to validate
the proposed IDS model. Based on experimental results, ensemble averaging DNN can detect botnet
attacks in heterogeneous IoT devices with an average accuracy of 97.21, precision of 91.41, recall of
87.31, and F1-score 88.48.

Keywords Anomaly detection, Ensemble averaging, Internet of things, Intrusion detection, Neural network

Recently, the development of the IoT environment has become extensive and complex in structure. Along with
this advancement, the occurrence of cyber-attacks has also increased in complexity1. Among these attacks, bot-
net attacks have proven to be a valuable tool for taking control of IoT devices to launch another attack or steal
sensitive information from the device. Botnets use networks to spread quickly and increase the possibility of
infecting many IoT devices2. NIDS commonly monitors the whole network by combining traffic from each host
to analyze anomalies on the network3. However, the IoT environment has heterogeneous devices with different
configurations, vendors, and types4. Detecting anomalies in the different characteristics of the host in the net-
work is challenging as the traffic pattern differs in each heterogeneous IoT device5. To overcome that problem,
an ensemble-based NIDS to detect cyberattacks in an IoT environment is proposed. According to research6,
ensemble learning is creating subset training to produce a subset classifier for better result prediction by com-
bining diversity among the training models. Analyzing data among diverse behavior in ensemble learning can
help NIDS identify broader attack patterns in IoT networks with heterogeneous devices.

The NIDS commonly uses machine learning to analyze network traffic for anomaly detection. One of the
machine learning algorithms that is famous for anomaly detection is DNN. The algorithm helps learn complex
patterns and features from data7. On the other hand, ensemble averaging is a highly advantageous ensemble
learning method due to its ability to merge the strengths of many diversity classifiers. The ensemble averaging
technique can produce more precise and resilient results by averaging their predictions. This approach can
mitigate the imperfections of individual classifiers and attain better detection performance, such as increased
detection rates and decreased false positive rates8,9. The NIDS can best detect botnet attack patterns in hetero-
geneous IoT devices by leveraging a combination between DNN and ensemble averaging for anomaly detection.

This research used the N-BaIoT dataset from research10 to simulate botnet attacks and heterogeneous IoT
devices. This research conducts a more in-depth study on comparing the performance of prediction results
between a single training model and averaging training model in each heterogeneous IoT device.

OPEN

1Wrocław University of Science and Technology, Wrocław, Poland. 2Telkom University, Bandung, Indonesia. 3These
authors contributed equally: Aulia Arif Wardana and Grzegorz Kołaczek. *email: aulia.wardana@pwr.edu.pl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-54438-6&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

Research questions
This research begins by defining research questions, which include:

1. How is the performance of NIDS for botnet detection using a DNN in each IoT device?
2. How is the performance of NIDS for botnet detection using DNN when analyzing traffic from each other

IoT devices?
3. How is the performance of NIDS for botnet detection using ensemble averaging DNN when analyzing traffic

from each other IoT devices?

Overview of the paper
This research is organized as follows:

In “Introduction” section explains the background and state-of-the-art of this research. In “Related terms
and works” section explains related terms about NIDS in IoT, DNN, and ensemble averaging. The section also
explains the contribution and difference between this research with other research. In “Methodology” section
explains step-by-step methods to propose the model and evaluation scenario. In “Result and discussion” sec-
tion discusses the experiment result from the proposed model. In “Conclusion” section concludes this research.

Related terms and works
This part of the research reviews related terms in DNN, ensemble averaging, and NIDS in IoT. This section also
explains related works and contributions from this research.

DNN
DNN is a machine-learning algorithm inspired by the human brain. DNN can be represented as three parts con-
sisting of an input layer, an output layer, and a hidden layer7. The detail of DNN architecture can be seen in Fig. 1.

The hidden layer processes data input from the input layer into the output system or the output layer. DNN
uses more than two hidden layers to process data input. Perceptron is the unit process that processes data in
the input, hidden, and output layers. This unit process contains an input value as xi and a weight value as wi . All
input and weight will be processed using summation and adding bias b process like Formula 1 in a hidden layer.

(1)
m∑

i=1

(wi , xi)+ b

(2)R(s) = max(0, s)

Figure 1. DNN architecture

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

The result from the summation and adding bias process continues using activation before producing the output.
This research using Rectified Linear Unit (ReLU) activations in hidden layers and the softmax activation function
in the output layer. ReLU activations help the model learn complex features and relationships in the data, while
softmax in the output layer provides a probabilistic interpretation of the model’s predictions, making it suitable
for classification problems. This combination leverages the strengths of both activation functions to create a
robust and efficient neural network architecture. The ReLU activation process in the hidden layer can see on
Formula 2 and softmax activation process in the output layer can see on Formula 3.

This study employs a multi-class classification task to effectively categorize coordinated attacks. In this setup,
each sample is assigned to one of the C classes. The DNN is configured with C output neurons, forming a vector
s representing scores. The target vector t is designed as a one-hot vector, signifying a positive class and C − 1
negative classes. Treating the task as a unified classification problem for samples within the C classes, the chosen
loss function is the Categorical Cross-Entropy loss, given the nature of the multi-class classification. The formula
4 illustrates the Categorical Cross-Entropy loss process during training.

Additionally, this research adopts the Adam (Adaptive Moment Estimation) optimizer for the training pro-
cess within the DNN. Adam stands out as an optimization algorithm suitable for gradient descent, especially
in large-scale problems involving extensive data or parameters. Its efficiency is notable, requiring less memory.
Conceptually, Adam combines aspects of both the gradient descent with momentum algorithm and the Root
Mean Square Propagation (RMSP) algorithm, as outlined in references11,12.

Ensemble averaging
The ensemble averaging approach can help tackle the diversity of classifiers by combining the predictions of
multiple individual models. The detail of ensemble averaging architecture can be seen in Fig. 2.

Each model is trained on data from a specific source, capturing the unique characteristics of data8. By aggre-
gating the predictions of these models through averaging, the ensemble model can capture the diversity of data
patterns across different sources. This approach allows the ensemble model to make decisions based on differ-
ent perspectives, effectively handling the variations in data distributions and patterns across different sources.

Ensemble averaging is simply the average of the prediction result yi of multiple training models i, with
i ∈ {1, 2, ..., n} . The averaging equation of prediction result can be seen in Formula 513,14.

NIDS in IoT
NIDS is an important part of securing IoT environments. NIDS helps to prevent various threats by monitoring
network activity in IoT environments. The devices in IoT networks have limited security features, making them
easy targets for attackers. NIDS can help safeguard these devices by proactively detecting and preventing threats
before they can damage the device15.

NIDS has two main components: a sensor unit to capture and monitor all traffic or activity in a network, and
a detector unit to detect anomalies in the network. In IoT environments, each host or IoT device in the network
has its own unique network properties, applications, and user behaviors, resulting in variations in activity and
traffic patterns. This makes it challenging for the sensor unit to capture heterogeneous traffic from each device.
The detector unit also needs the ability to analyze heterogeneous traffic from each device16.

(3)f (s)i =
esi

∑C
j esj

(4)CE = −

C∑

i

ti log(f (s)i)

(5)yAVG =
1

n

n∑

i=1

yi

Figure 2. Ensemble Averaging architecture.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

Related works
This research reviews the related literature on the topic of “NIDS for botnet detection in IoT using ensemble
learning”. Research17 implements ensemble algorithms to detect botnets in IoT networks. The research uses
Random Forest and Gradient Boosted Decision Tree (GBDT) with Apache Spark tools to analyze the network
traffic. Research18 integrates an optimized LightGBM classifier and Naive Bayes classifier in an IDS to detect
botnet attacks in an IoT environment. Research19 uses various machine learning algorithms, such as artificial
neural networks (ANN), decision trees (DT), Gaussian mixture models (GMM), and hierarchical clustering
(HC), and then ensembles each pair of them. Research20 proposes botnet attack detection using three ensemble
techniques: AdaBoosted, RUSBoosted, and bagged, with DT as the base machine learning algorithm.

In IoT networks, the number of connected devices is often dynamic and heterogeneous. The dynamics refer
to the fluctuating nature of device connections, as new devices can join the network, and existing ones may
disconnect. Heterogeneity pertains to the diverse types and functionalities of IoT devices, which can vary sig-
nificantly in terms of capabilities, communication protocols, and purposes21. This dynamic and heterogeneous
nature poses challenges for managing and maintaining IoT networks, as they need to be adaptable to changes in
device connectivity and diverse device characteristics22.

The challenges become particularly apparent when considering an IDS that relies on a collective learning
process involving all devices. In such cases, the IDS system might need to consider how the new data from the
joining device influences the existing model and whether retraining is necessary. If the characteristics of the
new device significantly differ from those of the existing devices in the dataset, it might be beneficial to restruc-
ture the dataset and retrain the model. This ensures that the IDS is well-equipped to handle the diverse nature
of devices in the network23. We need approaches that can efficiently update the model with new data without
discarding the existing knowledge and restructuring the dataset. This allows the IDS to adapt to changes in the
network without the need for extensive restructuring and retraining. Given that problem, research17–19, cannot
be applied to the issue at hand because they employ combined traffic from each device in the N-baIoT dataset
to validate the proposed IDS model.

One of the studies attempts to propose two innovative approaches for feature extraction and classification,
namely Logistic Regression (LR) and Artificial Neural Network (ANN). The evaluation process involves six
devices from the N-BaIoT dataset. Notably, this research adopts an approach where each device’s traffic is ana-
lyzed individually, rather than combining all traffic into a single dataset. Consequently, machine learning models
are generated separately for each device, utilizing specific datasets derived from the traffic generated by individual
 devices24. This research inspires us to help answer the problem of managing dynamic and heterogeneous devices
of IoT that join the network.

In addressing the challenges posed by the dynamic and heterogeneous nature of IoT networks, this research
advocates for approaches that facilitate the efficient updating of intrusion detection models with new data,
ensuring adaptability without extensive restructuring. The research distinguishes itself by adopting a unique
strategy-utilizing individual DNN training models for each IoT device. This allows for a detailed analysis of the
characteristics of each device’s traffic without amalgamating all traffic data. Such an approach aligns with the
need for adaptability in the face of changing network dynamics, enabling the IDS to comprehend and adjust to
the distinct features of each device while preserving existing knowledge and model structures.

The concept is inspired by the incremental learning paradigm. Incremental learning encompasses the itera-
tive process of acquiring fresh information or mastering additional skills while retaining previously acquired
knowledge. This continuous learning approach involves the gradual enhancement and expansion of an existing
model or system over time, diverging from the conventional practice of commencing anew with each new task or
dataset. The essence of incremental learning lies in its adaptability and the ability to build upon existing knowl-
edge, making it a valuable paradigm for scenarios where systems need to evolve and incorporate new insights
without discarding the wisdom gained from prior experiences25.

The contributions and differences of this study compared to other research are as follows:

• This research proposes an ensemble NIDS anomaly detection model for botnet attack detection in IoT envi-
ronments with heterogeneous IoT devices.

• The ensemble anomaly detection in this research uses a combination of ensemble averaging and DNN.
• The proposed model was tested using the N-BaIoT dataset, which contains botnet attacks in heterogeneous

IoT devices.
• This research does not only analyze the accuracy, but we also consider other parameters such as precision,

recall, F1-score, training time, and size of the training model.
• This research approach creates a DNN training model from individual devices and then averages the results

from each of these individual devices. This strategy is employed to address the dynamic nature of the number
of IoT devices connected to the IoT network. The model update process involves incorporating new data
without discarding existing knowledge or restructuring the dataset.

Methodology
The process diagram from this research can be seen in Fig. 3. The presented diagram encapsulates a systematic
and structured approach to the development and testing of a machine learning model, specifically a DNN,
employing data derived from distinct IoT devices. The stepwise process commences with the collection of datasets
from nine specific IoT devices, setting the foundation for subsequent model development. This collected data is
then intelligently divided, with 70% allocated for training the DNN model and the remaining 30% reserved for
rigorous testing. The training phase involves the generation of nine unique DNN models, each attuned to the
nuances of the data from the specified IoT devices.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

Following the model generation, the testing phase ensues, where the reserved dataset is employed to evaluate
the performance of each DNN model. This evaluation involves comparing model predictions against true values
to gauge accuracy. Moreover, the validation step employs a separate dataset from the IoT devices to ensure the
reliability and accuracy of each individual model. A notable aspect of this approach is the incorporation of an
ensemble method, where the outputs from the nine DNN models are averaged for each test data point. This
ensemble averaging contributes to determining the overall classification result, categorized as normal, Mirai,
or Gafgyt indicating the system’s potential in anomaly detection or categorization of botnets in IoT devices.

The concluding phases involve a comprehensive evaluation of the system’s performance using diverse met-
rics, including accuracy, precision, recall, F1 score, processing time, and the size of the model. This meticulous
evaluation ensures a thorough assessment of the effectiveness of the machine learning system in the context of
IoT devices. Overall, the diagram provides a clear and visual representation of the entire process, emphasizing
both the structural aspects of the model development and the critical performance metrics used for evaluation.

Dataset preprocessing
The experiment started with preprocessing the N-baIoT dataset, which was obtained from research10. The dataset
used in this research was a labeled version of the N-baIoT dataset and was prepared for the machine learning
process. The dataset contains Mirai and BASHLITE botnet malware and attacks 9 different types of IoT devices,
as shown in Table 1.

The dataset contains various labels from the botnet activity, such as Table 2 for Mirai botnet and Table 3 for
BASHLITE botnet. In this research, we simplify the labels into “mirai” for Mirai botnet attack and “gafgyt” for
BASHLITE botnet attack. Normal traffic is labeled with “BENIGN” label. Each dataset from each device is split
into two data: 70% of the data is used for the training data and 30% for the testing data.

Figure 3. Classification process in our simulation approach.

Table 1. Detail information of N-baIoT dataset.

ID Device model Device type Number of benign Mirai BASHLITE

D1 Danmini Doorbell 49548 Yes Yes

D2 Ennio Doorbell 39100 No Yes

D3 Ecobee Thermostat 13113 Yes Yes

D4 Philips B120N/10 Baby monitor 175240 Yes Yes

D5 Provision PT-737E Security camera 62154 Yes Yes

D6 Provision PT-838 Security camera 98514 Yes Yes

D7 SimpleHome XCS7-1002-WHT Security camera 46585 Yes Yes

D8 SimpleHome XCS7-1003-WHT Security camera 19528 Yes Yes

D9 Samsung SNH 1011 N Webcam 52150 No Yes

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

The dataset includes distinctive headers representing various stream aggregation attributes, each providing
valuable insights into the characteristics of packet streams within the N-baIoT dataset. These attributes encom-
pass H, which stands for “Source IP” in the N-BaIoT dataset, offering statistics summarizing recent traffic origi-
nating from the packet’s host based on IP. MI, denoting “Source MAC-IP” in the N-BaIoT dataset, provides stats
summarizing recent traffic based on both IP and MAC addresses. HH, associated with “Channel” in the N-BaIoT
dataset, involves statistics summarizing recent traffic from the packet’s host (IP) to the destination host. HH_jit,
corresponding to “Channel jitter” in the N-BaIoT dataset, captures stats characterizing the jitter of traffic from
the packet’s host (IP) to the destination host. Lastly, HpHp, signifying “Socket” in the N-BaIoT dataset, involves
statistics summarizing recent traffic from the packet’s host and port (IP) to the destination host and port, exem-
plified by connections like 192.168.4.2:1242 -> 192.168.4.12:80. These stream aggregation attributes collectively
contribute to a nuanced understanding of the packet stream dynamics and patterns within the N-baIoT dataset.

This research utilized all features from the dataset and did not employ a feature selection process. Instead,
deep learning models were utilized, designed to effectively handle high-dimensional data and autonomously
learn relevant features during the training process26. Feature selection algorithms can be computationally expen-
sive, particularly when dealing with large datasets and a substantial number of features. In situations where
computational resources are limited, the expenses associated with feature selection may surpass the potential
 benefits27. Given that this research focuses on IoT, a limitation arises regarding computational resources. In
such scenarios, the simplicity and interpretability of the model may take precedence over achieving the highest
predictive performance. Consequently, opting to use all available features might be considered more favorable.

NIDS model
Our proposed Network Intrusion Detection System (NIDS) architecture for the Internet of Things (IoT) envi-
ronment, as illustrated in Fig. 4, envisions a model tailored to the intricacies of a diverse range of IoT devices. In
our NIDS model, traffic emanating from each IoT device becomes instrumental in generating a device-specific
training model through the utilization of a Deep Neural Network (DNN). This training model, unique to each
device, is subsequently employed to predict network traffic and identify potential anomalies. The predictions
from individual models are then aggregated using the ensemble averaging method, culminating in a final result
that leverages the collaborative insights from multiple devices.

This collaborative Intrusion Detection System (IDS) model is designed for implementation within a central-
ized framework, such as a collaborative IDS hosted on a central server or a fog device in real-world deployment
scenarios. Notably, in our simulation environment for this research, we emulate the centralized implementation,
envisioning the real-world execution where all processes are consolidated in a central server or fog device. This
simulation environment allows for a comprehensive evaluation of the proposed NIDS architecture’s efficacy,
offering insights into its performance under controlled conditions. The envisioned deployment in a centralized
collaborative IDS aligns with the increasing trend in IoT security solutions, providing a centralized and efficient
approach to detect and mitigate potential threats across a diverse array of IoT devices.

Ensemble averaging DNN
This research proposes an ensemble averaging DNN by ensembling each DNN training model from every het-
erogeneous IoT device. Each device in IoT has its own characteristics, so generating individual training models
from each device is expected to capture the characteristics of each heterogeneous device in the IoT environ-
ment. This research creates 9 DNN training models using 70% of the traffic from each device in the N-BaIoT
dataset (Table 1). After that, the prediction results from each training model are averaged using the ensemble

Table 2. Mirai botnet attack activity in N-baIoT dataset.

Activity Details

SCAN Scanning process to find the vulnerability in the network

JUNK Process to sending data for spamming

UDP Flooding the UDP port

TCP Flooding the TCP port

COMBO Process to sending data for spamming with connect to specific IP address and port

Table 3. BASHLITE botnet attack activity in N-baIoT dataset.

Activity Details

SCAN Scanning process to find the vulnerability in the network

ACK Flooding using ACK packet

SYN Flooding using SYN packet

UDP Flooding the UDP port

UDPPLAIN Process flooding UDP using some options with packets per second in higher optimization

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

averaging method. This research uses 30% of the traffic from each device in the N-BaIoT dataset (Table 1) to
test the proposed mechanism.

Algorithm 1. Ensemble Averaging DNN
The detailed ensemble averaging DNN mechanism for botnet attack detection in heterogeneous devices can

be seen in Algorithm 1. The algorithm described here, named “Ensemble Averaging DNN,” is designed to harness
the collective capabilities of multiple devices to enhance the predictive performance of a Deep Neural Network
(DNN) model. The input to the algorithm includes training data (X_traini ,Y_traini) from n devices, a tensor
X_data representing data to be analyzed, and the number of devices (NumDevices). The process begins by initial-
izing an empty list called models to store the trained DNN models. Subsequently, the algorithm iterates over
each device, trains an individual DNN model, and appends it to the models list. After training, the algorithm
proceeds to generate predictions. It initializes an empty list called predictions to store predictions made by
each individual model. The algorithm then iterates over each model in the models list, predicting the output
for the input data X_data and appending each prediction to the predictions list.

Following the generation of predictions, the algorithm enters a phase of averaging predictions. It initial-
izes an empty list called avg_predictions to store averaged predictions. The algorithm iterates over each

Figure 4. Our view in NIDS architecture for IoT network with heterogeneous IoT device.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

element in the input data X_data and, for each element, iterates over each prediction in the predictions
list. It sums up the predictions and calculates the average prediction for the current element by dividing the sum
by the total number of models. The averaged prediction is then appended to the avg_predictions list.
Finally, the algorithm assigns the avg_predictions list to the variable FinPred, representing the final
ensemble-averaged prediction. In essence, this algorithm aims to collaboratively train multiple DNN models on
diverse data sources, generate individual predictions, and then aggregate these predictions through averaging to
produce a robust and generalized final prediction.

The detailed information of the hyperparameters from the DNN used in this research can be seen in Table 4.
In Table 4, the input dimension is specified as 115 features, with a neural network structure comprising 4 hid-
den layers and an output layer designed for multi-class classification with 3 classes. The output layer employs
the Softmax activation function, and the optimization algorithm chosen for training is Adam. The batch size
for training is set to 1000, with 10 epochs used to iterate through the entire training dataset. The loss function
employed is Categorical Crossentropy, and evaluation metrics include Accuracy, Recall, Precision, and F1-Score.

Table 5 provides insights into the specifics of each hidden layer within the neural network architecture. The
hidden layers are indexed from 1 to 4, and the number of nodes in each layer decreases progressively from 13
to 7. The activation function applied to the nodes in each hidden layer is Rectified Linear Unit (ReLU), a com-
mon choice for introducing non-linearity in neural networks. Collectively, these tables furnish a comprehensive
overview of the DNN’s configuration, facilitating a clear understanding of the model’s structure and training
settings for the specified machine-learning task. The detailed visualization of DNN architecture from Tables 4
and 5 can be seen in Fig. 5.

Performance parameter
In this research, some parameters were used to evaluate the benchmarking study. The accuracy, F1-score, preci-
sion, and recall of the algorithms were measured based on the benchmarking scenarios. These are all important
evaluation metrics for classification tasks because they provide different perspectives on the performance of a
classification model. Each metric offers insights into different aspects of the model’s predictive capabilities and
can help assess its effectiveness in solving the classification problem.

Additionally, the size of the training model produced by each algorithm and the time taken for the training
and testing processes were also measured in this research. These metrics play important roles in the practical
deployment and performance of classification models. They influence resource utilization, cost, latency, scal-
ability, and user experience. Balancing model size, training time, and prediction time is crucial to ensure efficient,
effective, and practical solutions for classification tasks in real-world scenarios.

1. Accuracy (%). The accuracy of an IDS is critical to ensure that it can effectively identify and respond to mali-
cious activity while minimizing the number of false positives. High accuracy means the system correctly
identifies true positives and true negatives. The accuracy is calculated using Eq. (6).

(6)
TP + TN

TP + FP + TN + FN
= Accuracy

Table 4. DNN hyperparameter.

Hyperparameter Details

Input dimension 115

Hidden layer 4

Output dimension 3 (multi-class)

Output layer activation function Softmax

Optimisation algorithm Adam

Batch size 1000

Epochs 10

Loss function Categorical crossentropy

Metrics Accuracy, recall, precision, F1-score

Table 5. Hidden layer details.

Hidden layer Number of node Activation function

1 13 ReLU

2 11 ReLU

3 9 ReLU

4 7 ReLU

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

 Where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. Precision (%):
The precision in IDS is the ratio of true positive predictions to the total number of positive predictions
made by the model. It measures the accuracy of positive predictions. Specifically, the proportion of correctly
predicted positive instances out of all instances predicted as positive. The precision parameter is calculated
using Eq. (7).

2. Recall (%): The recall metric, also known as sensitivity or true positive rate, is the ratio of true positive
predictions to the total number of actual positive instances in the dataset. It measures the model’s ability
to correctly identify positive instances, regardless of whether some instances are incorrectly predicted as
negative. The recall parameter is calculated using Eq. (8).

3. F1-Score (%): The F1 score is a widely used evaluation metric in machine learning, particularly for classifica-
tion tasks. It is a measure of the model’s accuracy that combines both precision and recall into a single value.
The F1 score provides a balanced assessment of the model’s performance, especially in situations where false
positives and false negatives carry similar importance. The F1 score is calculated using Eq. (9).

4. Processing Time (seconds (s)): Processing time consists of training time and prediction time in machine
learning. Training time refers to the time it takes for a model to learn from a given dataset and adjust its
parameters to optimize its performance. Prediction time refers to the time it takes for the trained model to
make predictions on new unseen data. The processing time has been defined by Eq. (10).

 Where TT is Training Time, PdT is Prediction Time, and PcT is Processing Time.
5. Size of Training Model (kilobyte (Kb)). Each machine learning or ensemble learning training process will

produce a training model. All training models can be saved into storage and used again for the prediction
process in anomaly detection. The larger the training model, the more storage capacity is needed to store it.
Therefore, measuring the size of the training model as a benchmarking parameter is essential for analyzing
performance.

(7)
TP

TP + FP
= Precision

(8)
TP

TP + FN
= Recall

(9)
2 ∗ (Precision ∗ Recall)

Precision+ Recall
= F1− Score

(10)TT + PdT = PcT

Figure 5. DNN Architecture for each devices.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

Benchmarking scenario
This research has two categories of benchmarking scenarios: preliminary analysis and proposed model result. The
preliminary analysis section consists of Scenario 1 and Scenario 2. The preliminary analysis section was used to
answer research questions 1 and 2. The proposed model result section consists of scenario 3. The proposed model
result is used to answer research question 3. There are some term lists to make it easier to explain benchmarking
scenario results in the result and discussion section. Table 6 shows the term list from the benchmarking scenario.
The detail of each scenario is below:

1. Scenario 1: The first scenario involves benchmarking the performance of each DNN training model from
every device (M1–M9) and testing using testing data from their device traffic (TS1–TS9). So, M1 will test
using TS1, M2 will test using TS2, and so on. This scenario aims to assess the performance of the training
model from each device using their data test from each device traffic. It is designed to answer research ques-
tion 1.

2. Scenario 2: The second scenario aims to evaluate the performance of each DNN training model from every
device (M1–M9) and cross-test using testing data from each other device (TS1–TS9). So, M1 will test using
M2–M9 traffic, M2 will test using M1 and M3–M9 traffic, and so on. This scenario aims to see the perfor-
mance of the training model in each device when analyzing the traffic from another device. This scenario is
designed to answer research question 2.

3. Scenario 3: The third scenario benchmarks the performance of the proposed ensemble averaging DNN (ENS)
and tests using each device’s traffic (TS1–TS9). This scenario is designed to answer research question 3.

Result and discussion
In this section, the results of the simulation modeling and benchmarking study are presented and discussed.
The findings of this research are discussed in the context of their impact on ensemble averaging for NIDS in
heterogeneous IoT devices. Additionally, potential areas for future research in this field are highlighted.

Experiment environment
This research used a server with the following specifications: Processor 2.3 GHz 16-Core Intel(R) Xeon(R) CPU
E5-2650 v3 and 128 GB memory. The operating system used was Ubuntu 22.04.2 LTS. Python version 3.10.6 and
Keras version 2.12 were employed as the machine learning library for conducting the DNN experiments. Jupyter
notebook version 6.5.3 was used for presenting the experiment and simulation results.

Preliminaries analysis
In this section, the explanation of results from both Scenario 1 and Scenario 2 is provided. The main objective
of Scenario 1 was to assess the performance of individual DNN models constructed using device-specific traffic
for the purpose of detecting botnet attacks occurring within the traffic of each respective device.

The results of Scenario 1 are presented in Table 7. The findings indicate that the DNN models within each
device exhibited robust performance when analyzing the traffic generated by that specific device. Notably, accu-
racy for each device reached 100%, signifying accurate identification of both true positive and true negative
instances of botnet attacks within the corresponding device’s traffic. Precision and recall metrics also dem-
onstrated performance exceeding 99%, implying the models’ ability to minimize misclassifications of normal
traffic while accurately recognizing positive instances. Moreover, the DNN models achieved a high F1-score in
detecting botnet attacks, highlighting their proficiency in both precision and recall aspects. Both training and
prediction times for each model were influenced by dataset volume, with larger datasets leading to longer train-
ing and prediction durations. Remarkably, the model size remained consistent at around 70 Kb for each DNN
model, indicating a stable size unaffected by variations in training data volume.

Scenario 2 aimed to evaluate the performance of individual DNN models constructed using device-specific
traffic to detect botnet attacks within traffic from other devices. In this scenario, each DNN model developed
from one device’s traffic was applied to analyze testing data from different devices. Results from Scenario 2

Table 6. Benchmarking scenario term list.

ID Details ID Details ID Details

TR1 Training data from device ID D1 M1 Training model from TR1 TS1 Testing data from device ID D1

TR2 Training data from device ID D2 M2 Training model from TR2 TS1 Testing data from device ID D1

TR3 Training data from device ID D3 M3 Training model from TR3 TS3 Testing data from device ID D3

TR4 Training data from device ID D4 M4 Training model from TR4 TS4 Testing data from device ID D4

TR5 Training data from device ID D5 M5 Training model from TR5 TS5 Testing data from device ID D5

TR6 Training data from device ID D6 M6 Training model from TR6 TS6 Testing data from device ID D6

TR7 Training data from device ID D7 M7 Training model from TR7 TS7 Testing data from device ID D7

TR8 Training data from device ID D8 M8 Training model from TR8 TS8 Testing data from device ID D8

TR9 Training data from device ID D9 M9 Training model from TR9 TS9 Testing data from device ID D9

ENS Ensemble training model from M1 - M9

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

are documented in Table 8. The outcomes revealed that performance metrics (accuracy, precision, recall, and
F1-score) of DNN models when analyzing testing data from different devices were notably lower compared to
their performance when analyzing data from their own device’s traffic. This suggests that training models from
each device were optimized for analyzing traffic originating from their respective devices and demonstrated
reduced effectiveness when applied to traffic analysis from different devices.

In summary. the evaluation of DNN model performance highlighted their effectiveness in analyzing traffic
from their respective devices. However, it also revealed reduced performance when confronted with traffic from
diverse devices. This emphasizes the importance of training models on data that accurately represents the specific
environment, ensuring optimal results.

Proposed model result
The preliminary analysis results indicate that the DNN model from each device is unable to analyze testing data
from other devices. This implies that the traffic characteristics in each device differ, reflecting the heterogeneity
of devices within the IoT environment. An IDS with a comprehensive perspective is needed to analyze botnet
attacks across these diverse devices in the IoT environment. To address this, the research proposes an ensemble
averaging approach using DNN to establish a unified view for analyzing botnet attacks across heterogeneous
devices within the IoT environment.

The objective of the third scenario is to assess the performance of the ensemble averaging DNN model in
detecting botnet attacks within the traffic of each heterogeneous device. The results of Scenario 3 are presented
in Table 9. The proposed model demonstrates a performance level exceeding 89% accuracy in detecting botnet
attacks within IoT environments characterized by heterogeneous devices. Additionally, the model achieves pre-
cision, recall, and F1-score metrics surpassing 98% when analyzing botnet attacks across most heterogeneous
devices. However, exceptions occur for testing data from devices 2 and 9 due to device vulnerabilities specific to
the BASHLITE botnet, resulting in the absence of Mirai botnet attacks. Consequently, this imbalance in traffic
contributes to precision, recall, and F1-score falling below 98%.

To compare the performance of the ensemble averaging DNN with single DNN models from each device, the
research averages the results from accuracy, precision, recall, and F1-score in Tables 8 and 9, as shown in Fig. 6.
The findings reveal that the ensemble averaging DNN outperforms single DNN models from individual devices
in terms of accuracy, precision, recall, and F1-score when detecting botnet attacks across the entire spectrum of
IoT heterogeneous devices. This underscores the model’s ability to comprehensively consider all IoT heterogene-
ous devices, accurately identifying true positives and negatives, minimizing incorrect classifications of normal
traffic, and correctly recognizing positive instances.

The training time for the ensemble averaging DNN is longer than that of individual models from each device
due to its utilization of all individual training models from heterogeneous devices. Thus, training time is contin-
gent on the number of devices and the training time required for generating individual models. In this research,
the training time encompasses the total time spent training the DNN model constructed from traffic data of
nine distinct IoT devices. Prediction time for the ensemble averaging DNN is similarly dependent on the total
number of training models. Each testing data point is predicted using every training model, and the prediction
outcomes are averaged through an ensemble averaging process. In this research, prediction time accounts for
the total prediction instances using the nine DNN training models. The model size of the ensemble averaging
DNN comprises the cumulative size of all nine training models.

Computational complexity analysis
The computational complexity of the “Ensemble Averaging DNN” algorithm (Algorithm 1) is a critical aspect
to assess, considering its application in detecting botnet attacks across multiple heterogeneous IoT devices.
The algorithm encompasses several phases, each contributing to the overall complexity. In the model training
phase (Lines 3–5), the algorithm iterates over each of the NumDevices IoT devices, involving the training of
individual DNN models. The training complexity for one DNN model is denoted as O(TDNN) , encapsulating
processes such as forward and backward passes, weight updates, and iterative epochs. Consequently, the total
training complexity for all devices becomes O(NumDevices× TDNN) , emphasizing the computational burden
associated with training diverse models for each IoT device.

Table 7. Scenario 1 result.

Model Testing data Accuracy Precision Recall F1-score Training time (s) Prediction time (s)
Processing time
(s)

Size of
model (Kb)

M1 TS1 100 99.9 100 100 31 16 47 70.3

M2 TS2 100 99.9 100 99.9 11 5 16 70.3

M3 TS3 100 99.9 99.9 99.9 21 12 33 70.4

M4 TS4 100 100 100 100 31 16 47 70.4

M5 TS5 100 99.9 99.9 99.9 21 14 35 70.4

M6 TS6 100 99.9 99.9 99.9 21 13 34 70.4

M7 TS7 100 99.9 99.9 99.9 21 12 33 70.4

M8 TS8 99.9 99.6 99.8 99.7 22 12 34 70.4

M9 TS9 100 100 100 100 11 5 16 70.4

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

Following model training, the prediction phase (Lines 7–8) involves generating predictions for the input
data using each of the trained DNN models. The prediction complexity for one model is denoted as O(PDNN) ,
accounting for the intricacies of model prediction. The total prediction complexity for all models becomes
O(len(models)× PDNN) , underscoring the computational demands associated with predicting outcomes across
multiple models. Subsequently, the algorithm proceeds to average predictions (Lines 9–15), introducing two
nested loops that iterate over the input data and predictions. The complexity of this averaging step is O(N ×M) ,
where N is the length of predictions and M is the number of models. This phase adds an additional layer of
complexity, reflecting the computational cost of aggregating predictions from diverse models.

In this section, we aim to simulate the computational complexity using the average trends of data obtained
from the experimental section. The computational complexity of the algorithm involves three primary compo-
nents: training, prediction, and averaging. The training complexity (O(NumDevices× TDNN)) depends on the
number of IoT devices (NumDevices) and the training time for one DNN model (TDNN). It explores how the
computational complexity varies with the number of IoT devices involved, examining both scenarios with and
without retaining knowledge. In the context of the N-baIoT dataset with nine devices and the associated training
times, the overall training complexity would be influenced by the cumulative training time for all devices. Simi-
larly, the prediction complexity (O(len(models)× PDNN)) is influenced by the number of models (len(models))
and the prediction time for one model (PDNN). Given the diverse characteristics of the IoT devices and their
associated prediction times, optimizing the prediction phase becomes crucial for efficiency. The averaging phase
complexity (O(N ×M)) involves the length of predictions (N) and the number of models (M). In the given
scenario, the length of predictions corresponds to the size of the testing dataset, and the number of models is
nine (as there are nine IoT devices). This phase’s computational cost is influenced by the quantity of predictions
and the number of models involved. Based on Table 9, the average training time for the ensemble averaging
DNN model (in seconds) is 190, and the average prediction time for the ensemble averaging DNN model (in
seconds) is 100.44.

The result of computational complexity can be seen in Fig. 7. The trend of the data in the graph shows that
as the number of IoT devices increases, the computational complexity also increases. The training complexity
exhibits a linear increase, indicating that the time required for training the system grows steadily with the number
of devices. On the other hand, the prediction complexity increases at a much slower rate, suggesting that the
time required for making predictions is less affected by the number of devices. The averaging complexity remains
relatively constant, indicating that this aspect of computational complexity is not significantly impacted by the
number of IoT devices. The total complexity, represented by the sum of the other complexities, grows nonlinearly,
with the training complexity having the most significant influence on the overall computational complexity. This
trend suggests that as the number of IoT devices increases, the training process becomes the dominant factor
contributing to the total computational complexity.

The observed data trend in the graph illustrates a direct relationship between the number of IoT devices and
computational complexity, indicating that as the count of devices rises, so does the overall computational load.
However, it’s crucial to interpret this trend within the context of the incremental learning paradigm. The initial
increase in complexity aligns with the conventional understanding that more devices lead to higher compu-
tational demands, especially during the initial phases of learning. Notably, as the learning process progresses

Figure 6. Average accuracy, recall, precision, and F1-score from ensemble averaging DNN when compared
with single device DNN in analyzing traffic on each device.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

Model Testing data Accuracy Precision Recall F1-score Training time (s) Prediction time (s) Processing time (s) Size of model (Kb)

M1

TS1 100 99.9 100 100 31 16 47 70.3

TS2 8.4 60 9.4 15.9 31 5 36 70.3

TS3 95.4 97 87.2 91.3 31 12 43 70.3

TS4 99.2 99.2 98.4 98.7 31 18 49 70.3

TS5 97.8 98.3 92.7 95.1 31 10 41 70.3

TS6 96.5 97.2 91.7 94 31 10 41 70.3

TS7 92.7 94.2 80.1 84.9 31 13 44 70.3

TS8 94.2 95.8 75.6 81.1 31 10 41 70.3

TS9 72.2 65.6 28.9 32.1 31 5 36 70.3

M2

TS1 16.2 11.3 45.4 17.6 11 14 25 70.3

TS2 100 99.9 100 99.9 11 5 16 70.3

TS3 38.4 22.5 66 33.4 11 14 25 70.3

TS4 44 44 66 49.6 11 14 25 70.3

TS5 47 35.2 65.5 45.5 11 12 23 70.3

TS6 48.4 40 66.1 48.9 11 12 23 70.3

TS7 40.1 32.9 65.3 43.2 11 11 22 70.3

TS8 39.2 22.8 65.6 33.7 11 12 23 70.3

TS9 99.8 99.8 99.4 99.6 11 6 17 70.3

M3

TS1 97.8 98 93.7 95.7 21 16 37 70.4

TS2 59.7 64.6 27.8 36.1 21 5 26 70.4

TS3 100 99.9 99.9 99.9 21 12 33 70.4

TS4 96.5 96.4 93.8 94.7 21 14 35 70.4

TS5 97.6 98 93 95.2 21 13 34 70.4

TS6 96.6 97.2 91.9 94 21 13 34 70.4

TS7 98.2 98.4 90.1 93.4 21 12 33 70.4

TS8 99.8 99.4 97.4 98.4 21 12 33 70.4

TS9 83.1 65.9 36.3 40.6 21 5 26 70.4

M4

TS1 99.4 99 99.4 99.2 31 16 47 70.4

TS2 79.4 61.8 56.8 58.8 31 13 44 70.4

TS3 95.9 95.5 96.5 95.9 31 5 36 70.4

TS4 100 100 100 100 31 16 47 70.4

TS5 99.4 99.3 99.2 99.3 31 19 50 70.4

TS6 98.9 99.1 98.3 98.7 31 14 45 70.4

TS7 94.5 94.5 83.5 87.5 31 6 37 70.4

TS8 95 88.8 78.5 82.1 31 13 44 70.4

TS9 86.1 66.4 48.1 54.8 31 14 45 70.4

M5

TS1 95.7 94.4 97.5 95.8 21 16 37 70.4

TS2 85.5 62.6 37 41.2 21 6 27 70.4

TS3 88.8 82.8 89.2 85.6 21 13 34 70.4

TS4 99.4 99.4 98.8 99.9 21 18 39 70.4

TS5 100 99.9 99.9 99.9 21 14 35 70.4

TS6 99.9 99.9 99.8 99.9 21 13 34 70.4

TS7 89.5 89.4 91 90.2 21 13 34 70.4

TS8 89.3 85.9 90.7 88.1 21 14 35 70.4

TS9 85.8 66.2 39 44 21 6 27 70.4

M6

TS1 68.8 56.1 72.2 54.4 21 13 34 70.4

TS2 89.3 64.8 44.5 50.4 21 5 26 70,4

TS3 92.6 80.6 94 85.5 21 12 33 70.4

TS4 98.5 98.3 98.6 98.5 21 16 37 70.4

TS5 99.8 99.8 99.8 99.8 21 11 32 70.4

TS6 100 99.9 99.9 99.9 21 13 34 70.4

TS7 92.6 89.4 93.7 91.3 21 11 32 70.4

TS8 92.4 83.8 94.3 88 21 15 36 70.4

TS9 83.1 65.9 38.3 43.8 21 4 25 70.4

Continued

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

and the model adapts to the existing devices, the graph suggests a potential stabilization or slower growth in
complexity.

One distinctive advantage of incremental learning becomes apparent in this context. With the incorporation
of a new device, the system doesn’t necessitate a complete reiteration of the training process. Instead, it intelli-
gently builds upon the existing knowledge, leveraging prior learning experiences. This means that after the initial
training phase, the impact of adding new devices on the overall computational complexity might not follow a
linear trajectory. The system optimizes its efficiency by selectively updating its knowledge base, demonstrating
the adaptability inherent in incremental learning. This nuanced perspective provides a more insightful under-
standing of the relationship between device count and computational complexity, showcasing the efficiency gains
afforded by incremental learning in dynamically evolving IoT environments.

Discussion
The research demonstrates the effectiveness of ensemble learning, specifically the ensemble averaging DNN
approach, in addressing the challenges of detecting botnet attacks in diverse IoT devices. The study reveals that

Table 8. Scenario 2 result.

Model Testing data Accuracy Precision Recall F1-score Training time (s) Prediction time (s) Processing time (s) Size of model (Kb)

M7

TS1 99 98.8 99 98.9 21 14 35 70.4

TS2 26.9 53.6 19.9 28.4 21 6 27 70.4

TS3 99.8 99.3 97.1 98.1 21 13 34 70.4

TS4 95.7 95.6 93.7 94.3 21 13 34 70.4

TS5 95.1 96.2 84.8 88.7 21 12 33 70.4

TS6 92.4 94.1 83.2 86.5 21 13 34 70.4

TS7 100 99.9 99.9 99.9 21 12 33 70.4

TS8 99.9 99.5 99.6 99.5 21 11 32 70.4

TS9 83.7 48.3 34.4 36.6 21 4 25 70.4

M8

TS1 98.4 98.3 91.8 94.5 22 16 38 70.4

TS2 61.6 44.3 32.4 37.2 22 5 27 70.4

TS3 99.9 99.2 99.8 99.5 22 9 31 70.4

TS4 98.7 98.5 98.3 98.4 22 16 38 70,4

TS5 99.1 98.2 98.1 98.2 22 10 32 70.4

TS6 99.3 98.9 98.6 98.8 22 12 34 70.4

TS7 99.4 99.1 97.2 98.1 22 13 35 70.4

TS8 99.9 99.6 99.8 99.7 22 12 34 70.4

TS9 79 64.1 36.5 42.7 22 4 26 70.4

M9

TS1 35.8 20.8 66.2 31.3 11 16 27 70.4

TS2 97 89.7 97.7 93.2 11 4 15 70.4

TS3 38.7 18 66.4 25.9 11 11 22 70.4

TS4 39.5 29.9 56.5 37.8 11 13 24 70.4

TS5 45.7 25.5 59.3 35.2 11 12 23 70.4

TS6 47.2 29.6 62.6 40.1 11 10 21 70.4

TS7 40.1 22.6 64.4 32.8 11 12 23 70.4

TS8 39.4 19.3 66.2 27.7 11 13 24 70.4

TS9 100 100 100 100 11 5 16 70.4

Table 9. Scenario 3 result.

Model Testing data Accuracy Precision Recall F1-score Training time (s) Prediction time (s)
Processing time
(s)

Size of
model (Kb)

ENS

TS1 99.5 99.3 99.6 99.5 190 132 322 633.4

TS2 89 61.6 45.8 51.3 190 41 231 633.4

TS3 99.2 99.1 99.5 99.3 190 108 298 633.4

TS4 99.1 99 99.2 99.1 190 129 319 633.4

TS5 99.9 99.8 99.8 99.8 190 111 301 633.4

TS6 99.9 99.9 99.8 99.9 190 110 300 633.4

TS7 99 98.7 98.6 98.7 190 114 304 633.4

TS8 98.8 98.7 99.2 98.9 190 111 301 633.4

TS9 90.5 66.6 44.3 49.9 190 48 238 633.4

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

by employing ensemble learning, the algorithm creates subsets of training data, leveraging diverse behaviors
among training models. This strategic utilization of diverse models contributes to enhanced prediction accu-
racy, as showcased by the average accuracy of 97.21, precision of 91.41, recall of 87.31, and an F1-score of 88.48.
The research confirms that the collaborative nature of ensemble learning observed through the combination of
individual DNN models, results in a robust intrusion detection strategy capable of handling the intricacies of
IoT environments with heterogeneous devices. In essence, the study provides evidence that ensemble learning,
as applied in the research, contributes to better predictions by utilizing the distinctions among training models,
addressing the specific challenges of botnet attack detection in IoT networks.

The computational complexity analysis of the “Ensemble Averaging DNN” algorithm is crucial for its applica-
tion in detecting botnet attacks across multiple heterogeneous IoT devices. The algorithm comprises phases like
model training, prediction, and averaging, each contributing to overall complexity. The training phase involves
iterating over NumDevices IoT devices, resulting in O(NumDevices× TDNN) complexity. Prediction complex-
ity (O(len(models)× PDNN)) accounts for the intricacies of model prediction. The averaging phase complexity
(O(N ×M)) reflects the computational cost of aggregating predictions. Simulated computational complexity,
influenced by training, prediction, and averaging, demonstrates an increase with the number of IoT devices. The
training complexity exhibits linear growth, whereas prediction complexity increases at a slower rate. Averag-
ing complexity remains constant, and the total complexity grows nonlinearly, emphasizing the training phase’s
dominance. The observed trend aligns with expectations, but incremental learning mitigates the impact of adding
new devices, optimizing efficiency and showcasing adaptability in evolving IoT environments.

Our single DNN approach in every device achieves 100% of accuracy, so the average of our DNN approach
is to achieve 100% accuracy. If we compare with17–19 our single DNN approach can compete with the result from
this research. When we talk about ensemble averaging results in our approach, the accuracy is not quite good.
However, if we talk about the security of dynamic IoT devices and simple scenarios to update the model with
new data without discarding the existing knowledge and restructuring the dataset, our approach is more feasible
to implement than other research. Our approach can not be a direct head-to-head comparison because there is
a difference in validating methods to overcome the formulated problem.

Future works
This study concentrates on an ensemble approach employing DNN models, where prediction results are equally
averaged to identify botnet attacks within IoT environments characterized by heterogeneous devices. However,
a limitation of the proposed model arises from its inability to manage imbalanced data within individual devices.
Certain devices may lack certain types of botnet attacks due to their inherent resistance, leading to imbalanced
traffic data. Therefore, for future research, the incorporation of a balancing averaging method becomes essential.

Figure 7. Computational complexity simulation.

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

Furthermore, there exists potential for extending this research towards the creation of a decentralized ensem-
ble averaging framework. This could involve decentralizing the DNN training process across IoT devices. Subse-
quently, the resultant training model outcomes could be shared among devices to facilitate the ensemble predic-
tion procedure. Technologies like peer-to-peer connections could be employed within each device to achieve this
goal. Additionally, devices would need the capability to undertake DNN model training and prediction processes
using multiple DNN models. It’s worth noting that this investigation employed a homogeneous IoT network
with heterogeneous devices. Future research could explore the implementation of ensemble averaging within
a heterogeneous network. This approach could lead to the development of collaborative Intrusion Detection
Systems (IDS) aimed at detecting significant attacks across the entire network.

In reflecting on the outcomes of our study, it is essential to address potential limitations that may impact the
generalizability and applicability of our proposed ensemble averaging DNN for detecting botnet attacks across
heterogeneous IoT devices. Firstly, while our approach exhibits commendable performance in capturing the
diverse traffic patterns across the IoT devices considered in our study, it is crucial to acknowledge that the pre-
sented results may be influenced by the specific characteristics of the devices in our dataset. The generalizability
of our ensemble model to a broader array of IoT environments, each with its unique set of devices and traffic
profiles, remains an area of consideration. Future research should aim to explore the model’s adaptability to
various IoT ecosystems, encompassing a wider spectrum of devices, network architectures, and usage scenarios.
Additionally, the discussion around device vulnerabilities warrants further elaboration. While our study briefly
touches upon the notion of device vulnerabilities influencing the observed performance, a more in-depth analysis
of specific vulnerabilities and their potential impact on the model’s effectiveness is imperative. Understanding
the limitations imposed by device-specific vulnerabilities is essential for refining and tailoring our approach to
address real-world security challenges more effectively.

Another aspect that merits attention is the scalability of our ensemble model. As IoT ecosystems continue to
expand, accommodating an increasing number of devices, the scalability of intrusion detection systems becomes
paramount. We acknowledge that the computational demands of our proposed approach may pose challenges
in large-scale deployments. Future work should explore optimization strategies to enhance the scalability of the
ensemble averaging DNN, ensuring its practical viability in extensive and dynamic IoT environments. Further-
more, the nature of our simulated environment, though valuable for controlled experimentation, introduces a
degree of abstraction from real-world complexities. Factors such as dynamic network conditions, varying device
behaviors over time, and the introduction of new IoT devices may present challenges not fully captured in our
simulation. Future research could incorporate more dynamic and realistic settings to validate the robustness
and adaptability of our model in real-world IoT scenarios. In conclusion, while our study contributes valuable
insights into the effectiveness of ensemble averaging DNNs for botnet attack detection across heterogeneous
IoT devices, we acknowledge these limitations and encourage ongoing research efforts to address them. A com-
mitment to addressing these challenges will undoubtedly strengthen the reliability and practical utility of our
proposed approach in the broader landscape of IoT security.

In future research, the exploration of the unique characteristics of individual IoT devices in more detail
is needed. While our current study has highlighted differences in how traffic behaves among various devices,
we haven’t thoroughly investigated the specific features that cause these distinctions. Moving forward, future
research can delve deeper into understanding the particular attributes associated with each device. This deeper
exploration could provide valuable insights into the distinct traits of individual devices, ultimately contributing
to a more thorough understanding of the IoT landscape.

Conclusion
This study aimed to devise an ensemble averaging DNN methodology for detecting botnet activities within a
diverse IoT setting characterized by heterogeneous devices. The ensemble averaging DNN demonstrated a notable
detection rate, showcasing a high level of accuracy compared to employing individual DNN models from each
device to detect botnet attacks across the range of other devices. While the ensemble averaging DNN’s perfor-
mance may fall short of that exhibited by individual models from each device when scrutinizing device-specific
traffic, it shines when analyzing botnet attacks occurring across the spectrum of devices. This signifies that the
proposed model possesses a comprehensive outlook, effectively analyzing and identifying botnet attacks within
IoT environments featuring a variety of heterogeneous devices.

Data availability
The data that support the findings of this study are available to the public at the link: https:// archi ve. ics. uci. edu/
datas et/ 442/ detec tion+ of+ IoT+ botnet+ attac ks+n+ baIoT.

Code availability
The source code is available to the public at the link: https:// github. com/ aulwa rdana/ ensem ble- DNN- IoT.

Received: 25 September 2023; Accepted: 13 February 2024

References
 1. Wardana, A. A., Kołaczek, G. & Sukarno, P. Collaborative intrusion detection system for internet of things using distributed ledger

technology: A survey on challenges and opportunities. in Intelligent Information and Database Systems 339–350 (2022).
 2. Kolias, C., Kambourakis, G., Stavrou, A. & Voas, J. Ddos in the IoT: Mirai and other botnets. Computer 50, 80–84. https:// doi. org/

10. 1109/ MC. 2017. 201 (2017).

https://archive.ics.uci.edu/dataset/442/detection+of+iot+botnet+attacks+n+baiot
https://archive.ics.uci.edu/dataset/442/detection+of+iot+botnet+attacks+n+baiot
https://github.com/aulwardana/ensemble-DNN-IoT
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/MC.2017.201

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

 3. Abdulganiyu, O., Ait Tchakoucht, T. & Saheed, Y. A systematic literature review for network intrusion detection system (IDS). Int.
J. Inf. Secur.https:// doi. org/ 10. 1007/ s10207- 023- 00682-2 (2023).

 4. Pötter, H. B. & Sztajnberg, A. Adapting heterogeneous devices into an IoT context-aware infrastructure. In Proceedings of the 11th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems 64–74 (2016).

 5. Mishra, N. & Pandya, S. Internet of things applications, security challenges, attacks, intrusion detection, and future visions: A
systematic review. IEEE Access 9, 59353–59377 (2021).

 6. Zhou, Z.-H. Ensemble Learning (Springer Singapore, 2021).
 7. Liu, Z. et al. Deep learning approach for ids. In Fourth International Congress on Information and Communication Technology 40

https:// doi. org/ 10. 1007/ 978- 981- 15- 0637-6_ 40 (2020).
 8. Ni, J., Xu, Y., Li, Z. & Zhao, J. Copper price movement prediction using recurrent neural networks and ensemble averaging. Soft.

Comput. 26, 8145–8161 (2022).
 9. Maqsood, I., Khan, M. R. & Abraham, A. An ensemble of neural networks for weather forecasting. Neural Comput. Appl. 13,

112–122 (2004).
 10. Meidan, Y. et al. N-baIoT-network-based detection of IoT botnet attacks using deep autoencoders. IEEE Pervas. Comput. 17,

12–22. https:// doi. org/ 10. 1109/ MPRV. 2018. 03367 731 (2018).
 11. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https:// doi. org/ 10. 1038/ natur e14539 (2015).
 12. Aggarwal, C. C. et al. Neural Networks and Deep Learning (Springer, 2018).
 13. Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M. & Suganthan, P. N. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 115,

105151. https:// doi. org/ 10. 1016/j. engap pai. 2022. 105151 (2022).
 14. Disorntetiwat, P. & Dagli, C. H. Simple ensemble-averaging model based on generalized regression neural network in financial

forecasting problems. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Sym-
posium 477–480 (2000).

 15. Nguyen, H., Ngo, Q. & Le, V. A novel graph-based approach for IoT botnet detection. Int. J. Inf. Secur.https:// doi. org/ 10. 1007/
s10207- 019- 00475-6 (2020).

 16. Anthi, E., Williams, L., Słowińska, M., Theodorakopoulos, G. & Burnap, P. A supervised intrusion detection system for smart
home IoT devices. IEEE Internet Things J. 6, 9042–9053. (2019).

 17. Jwalin, B. & Saravanan, S. A large scale IoT botnet attack detection using ensemble learning. Adv. Comput. 183–193 (2023).
 18. Cao, Y., Wang, Z., Ding, H., Zhang, J. & Li, B. An intrusion detection system based on stacked ensemble learning for IoT network.

Comput. Electr. Eng. 110, 108836. https:// doi. org/ 10. 1016/j. compe leceng. 2023. 108836 (2023).
 19. Rezaei, A. Using ensemble learning technique for detecting botnet on IoT. SN Comput. Sci. 2, 148. https:// doi. org/ 10. 1007/ s42979-

021- 00585-w (2021).
 20. Al-Haija, A.Q & Al-Dala’ien, M. ELBA-IoT: An Ensemble Learning Model for Botnet Attack Detection in IoT Networks. J. Sens.

Actuator Netw. 11(1), 2224–2708. https:// doi. org/ 10. 3390/ jsan1 10100 18 (2022).
 21. Shao, X., Yang, C., Chen, D., Zhao, N. & Yu, F. R. Dynamic IoT device clustering and energy management with hybrid noma

systems. IEEE Trans. Ind. Inf. 14, 4622–4630. https:// doi. org/ 10. 1109/ TII. 2018. 28567 76 (2018).
 22. Hategekimana, F., Whitaker, T. J. L., Hossain Pantho, M. J. & Bobda, C. IoT device security through dynamic hardware isolation

with cloud-Based update. J. Syst. Architect. 109, 101827. https:// doi. org/ 10. 1016/j. sysarc. 2020. 101827 (2020).
 23. Martins, I. et al. Host-based IDS: A review and open issues of an anomaly detection system in IoT. Futur. Gener. Comput. Syst.

133, 95–113. https:// doi. org/ 10. 1016/j. future. 2022. 03. 001 (2022).
 24. Abbasi, F., Naderan, M. & Alavi, S. E. Intrusion detection in IoT with logistic regression and artificial neural network: Further

investigations on n-baIoT dataset devices. J. Comput. Secur. 8, 27–42 (2021).
 25. van de Ven, G. M., Tuytelaars, T. & Tolias, A. S. Three types of incremental learning. Nat. Mach. Intell. 4, 1185–1197. https:// doi.

org/ 10. 1038/ s42256- 022- 00568-3 (2022).
 26. Thakkar, A. & Lohiya, R. A survey on intrusion detection system: Feature selection, model, performance measures, application

perspective, challenges, and future research directions. Artif. Intell. Rev. 55, 453–563. https:// doi. org/ 10. 1007/ s10462- 021- 10037-9
(2022).

 27. Xue, B., Zhang, M., Browne, W. N. & Yao, X. A survey on evolutionary computation approaches to feature selection. IEEE Trans.
Evol. Comput. 20, 606–626. https:// doi. org/ 10. 1109/ TEVC. 2015. 25044 20 (2016).

Acknowledgements
The first author would like to thank Wroclaw University of Science and Technology (WUST) and Narodowa
Agencja Wymiany Akademickiej (NAWA) for funding this research through PhD scholarship and NAWA STER
scholarship. Also, thanks to Telkom University for all the support during this research and PhD studies.

Author contributions
A.A.W. and G.K. discuss the big idea of the research. A.A.W. carried out the experiment. A.W. helped Aulia Arif
Wardana prepare the server environment for the experiment. A.A.W. wrote the manuscript with support from
G.K. and P.S.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.A.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s10207-023-00682-2
https://doi.org/10.1007/978-981-15-0637-6_40
https://doi.org/10.1109/MPRV.2018.03367731
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1007/s10207-019-00475-6
https://doi.org/10.1007/s10207-019-00475-6
https://doi.org/10.1016/j.compeleceng.2023.108836
https://doi.org/10.1007/s42979-021-00585-w
https://doi.org/10.1007/s42979-021-00585-w
https://doi.org/10.3390/jsan11010018
https://doi.org/10.1109/TII.2018.2856776
https://doi.org/10.1016/j.sysarc.2020.101827
https://doi.org/10.1016/j.future.2022.03.001
https://doi.org/10.1038/s42256-022-00568-3
https://doi.org/10.1038/s42256-022-00568-3
https://doi.org/10.1007/s10462-021-10037-9
https://doi.org/10.1109/TEVC.2015.2504420
www.nature.com/reprints

18

Vol:.(1234567890)

Scientific Reports | (2024) 14:3878 | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Ensemble averaging deep neural network for botnet detection in heterogeneous Internet of Things devices
	Research questions
	Overview of the paper
	Related terms and works
	DNN
	Ensemble averaging
	NIDS in IoT
	Related works

	Methodology
	Dataset preprocessing
	NIDS model
	Ensemble averaging DNN
	Performance parameter
	Benchmarking scenario

	Result and discussion
	Experiment environment
	Preliminaries analysis
	Proposed model result
	Computational complexity analysis
	Discussion
	Future works

	Conclusion
	References
	Acknowledgements

