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Ensemble averaging deep neural 
network for botnet detection 
in heterogeneous Internet 
of Things devices
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The botnet attack is one of the coordinated attack types that can infect Internet of Things (IoT) 
devices and cause them to malfunction. Botnets can steal sensitive information from IoT devices 
and control them to launch another attack, such as a Distributed Denial-of-Service (DDoS) attack or 
email spam. This attack is commonly detected using a network-based Intrusion Detection System 
(NIDS) that monitors the network device’s activity. However, IoT network is dynamic and IoT devices 
have many types with different configurations and vendors in IoT environments. Therefore, this 
research proposes an Intrusion Detection System (IDS) by ensemble-ing traffic from heterogeneous 
IoT devices. This research proposes Deep Neural Network (DNN) to create a training model from each 
heterogeneous IoT device. After that, each training model from each heterogeneous IoT device is used 
to predict the traffic. The prediction results from each training model are averaged using the ensemble 
averaging method to determine the final result. This research used the N-BaIoT dataset to validate 
the proposed IDS model. Based on experimental results, ensemble averaging DNN can detect botnet 
attacks in heterogeneous IoT devices with an average accuracy of 97.21, precision of 91.41, recall of 
87.31, and F1-score 88.48.
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Recently, the development of the IoT environment has become extensive and complex in structure. Along with 
this advancement, the occurrence of cyber-attacks has also increased in  complexity1. Among these attacks, bot-
net attacks have proven to be a valuable tool for taking control of IoT devices to launch another attack or steal 
sensitive information from the device. Botnets use networks to spread quickly and increase the possibility of 
infecting many IoT  devices2. NIDS commonly monitors the whole network by combining traffic from each host 
to analyze anomalies on the  network3. However, the IoT environment has heterogeneous devices with different 
configurations, vendors, and  types4. Detecting anomalies in the different characteristics of the host in the net-
work is challenging as the traffic pattern differs in each heterogeneous IoT  device5. To overcome that problem, 
an ensemble-based NIDS to detect cyberattacks in an IoT environment is proposed. According to  research6, 
ensemble learning is creating subset training to produce a subset classifier for better result prediction by com-
bining diversity among the training models. Analyzing data among diverse behavior in ensemble learning can 
help NIDS identify broader attack patterns in IoT networks with heterogeneous devices.

The NIDS commonly uses machine learning to analyze network traffic for anomaly detection. One of the 
machine learning algorithms that is famous for anomaly detection is DNN. The algorithm helps learn complex 
patterns and features from  data7. On the other hand, ensemble averaging is a highly advantageous ensemble 
learning method due to its ability to merge the strengths of many diversity classifiers. The ensemble averaging 
technique can produce more precise and resilient results by averaging their predictions. This approach can 
mitigate the imperfections of individual classifiers and attain better detection performance, such as increased 
detection rates and decreased false positive  rates8,9. The NIDS can best detect botnet attack patterns in hetero-
geneous IoT devices by leveraging a combination between DNN and ensemble averaging for anomaly detection.

This research used the N-BaIoT dataset from  research10 to simulate botnet attacks and heterogeneous IoT 
devices. This research conducts a more in-depth study on comparing the performance of prediction results 
between a single training model and averaging training model in each heterogeneous IoT device.
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Research questions
This research begins by defining research questions, which include: 

1. How is the performance of NIDS for botnet detection using a DNN in each IoT device?
2. How is the performance of NIDS for botnet detection using DNN when analyzing traffic from each other 

IoT devices?
3. How is the performance of NIDS for botnet detection using ensemble averaging DNN when analyzing traffic 

from each other IoT devices?

Overview of the paper
This research is organized as follows:

In “Introduction” section explains the background and state-of-the-art of this research. In “Related terms 
and works” section explains related terms about NIDS in IoT, DNN, and ensemble averaging. The section also 
explains the contribution and difference between this research with other research. In “Methodology” section 
explains step-by-step methods to propose the model and evaluation scenario. In “Result and discussion” sec-
tion discusses the experiment result from the proposed model. In “Conclusion” section concludes this research.

Related terms and works
This part of the research reviews related terms in DNN, ensemble averaging, and NIDS in IoT. This section also 
explains related works and contributions from this research.

DNN
DNN is a machine-learning algorithm inspired by the human brain. DNN can be represented as three parts con-
sisting of an input layer, an output layer, and a hidden  layer7. The detail of DNN architecture can be seen in Fig. 1.

The hidden layer processes data input from the input layer into the output system or the output layer. DNN 
uses more than two hidden layers to process data input. Perceptron is the unit process that processes data in 
the input, hidden, and output layers. This unit process contains an input value as xi and a weight value as wi . All 
input and weight will be processed using summation and adding bias b process like Formula 1 in a hidden layer.

(1)
m∑

i=1

(wi , xi)+ b

(2)R(s) = max(0, s)

Figure 1.  DNN architecture
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The result from the summation and adding bias process continues using activation before producing the output. 
This research using Rectified Linear Unit (ReLU) activations in hidden layers and the softmax activation function 
in the output layer. ReLU activations help the model learn complex features and relationships in the data, while 
softmax in the output layer provides a probabilistic interpretation of the model’s predictions, making it suitable 
for classification problems. This combination leverages the strengths of both activation functions to create a 
robust and efficient neural network architecture. The ReLU activation process in the hidden layer can see on 
Formula 2 and softmax activation process in the output layer can see on Formula 3.

This study employs a multi-class classification task to effectively categorize coordinated attacks. In this setup, 
each sample is assigned to one of the C classes. The DNN is configured with C output neurons, forming a vector 
s representing scores. The target vector t is designed as a one-hot vector, signifying a positive class and C − 1 
negative classes. Treating the task as a unified classification problem for samples within the C classes, the chosen 
loss function is the Categorical Cross-Entropy loss, given the nature of the multi-class classification. The formula 
4 illustrates the Categorical Cross-Entropy loss process during training.

Additionally, this research adopts the Adam (Adaptive Moment Estimation) optimizer for the training pro-
cess within the DNN. Adam stands out as an optimization algorithm suitable for gradient descent, especially 
in large-scale problems involving extensive data or parameters. Its efficiency is notable, requiring less memory. 
Conceptually, Adam combines aspects of both the gradient descent with momentum algorithm and the Root 
Mean Square Propagation (RMSP) algorithm, as outlined in  references11,12.

Ensemble averaging
The ensemble averaging approach can help tackle the diversity of classifiers by combining the predictions of 
multiple individual models. The detail of ensemble averaging architecture can be seen in Fig. 2.

Each model is trained on data from a specific source, capturing the unique characteristics of  data8. By aggre-
gating the predictions of these models through averaging, the ensemble model can capture the diversity of data 
patterns across different sources. This approach allows the ensemble model to make decisions based on differ-
ent perspectives, effectively handling the variations in data distributions and patterns across different sources.

Ensemble averaging is simply the average of the prediction result yi of multiple training models i, with 
i ∈ {1, 2, ..., n} . The averaging equation of prediction result can be seen in Formula 513,14.

NIDS in IoT
NIDS is an important part of securing IoT environments. NIDS helps to prevent various threats by monitoring 
network activity in IoT environments. The devices in IoT networks have limited security features, making them 
easy targets for attackers. NIDS can help safeguard these devices by proactively detecting and preventing threats 
before they can damage the  device15.

NIDS has two main components: a sensor unit to capture and monitor all traffic or activity in a network, and 
a detector unit to detect anomalies in the network. In IoT environments, each host or IoT device in the network 
has its own unique network properties, applications, and user behaviors, resulting in variations in activity and 
traffic patterns. This makes it challenging for the sensor unit to capture heterogeneous traffic from each device. 
The detector unit also needs the ability to analyze heterogeneous traffic from each  device16.

(3)f (s)i =
esi

∑C
j esj

(4)CE = −

C∑

i

ti log(f (s)i)

(5)yAVG =
1

n

n∑

i=1

yi

Figure 2.  Ensemble Averaging architecture.
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Related works
This research reviews the related literature on the topic of “NIDS for botnet detection in IoT using ensemble 
learning”.  Research17 implements ensemble algorithms to detect botnets in IoT networks. The research uses 
Random Forest and Gradient Boosted Decision Tree (GBDT) with Apache Spark tools to analyze the network 
traffic.  Research18 integrates an optimized LightGBM classifier and Naive Bayes classifier in an IDS to detect 
botnet attacks in an IoT environment.  Research19 uses various machine learning algorithms, such as artificial 
neural networks (ANN), decision trees (DT), Gaussian mixture models (GMM), and hierarchical clustering 
(HC), and then ensembles each pair of them.  Research20 proposes botnet attack detection using three ensemble 
techniques: AdaBoosted, RUSBoosted, and bagged, with DT as the base machine learning algorithm.

In IoT networks, the number of connected devices is often dynamic and heterogeneous. The dynamics refer 
to the fluctuating nature of device connections, as new devices can join the network, and existing ones may 
disconnect. Heterogeneity pertains to the diverse types and functionalities of IoT devices, which can vary sig-
nificantly in terms of capabilities, communication protocols, and  purposes21. This dynamic and heterogeneous 
nature poses challenges for managing and maintaining IoT networks, as they need to be adaptable to changes in 
device connectivity and diverse device  characteristics22.

The challenges become particularly apparent when considering an IDS that relies on a collective learning 
process involving all devices. In such cases, the IDS system might need to consider how the new data from the 
joining device influences the existing model and whether retraining is necessary. If the characteristics of the 
new device significantly differ from those of the existing devices in the dataset, it might be beneficial to restruc-
ture the dataset and retrain the model. This ensures that the IDS is well-equipped to handle the diverse nature 
of devices in the  network23. We need approaches that can efficiently update the model with new data without 
discarding the existing knowledge and restructuring the dataset. This allows the IDS to adapt to changes in the 
network without the need for extensive restructuring and retraining. Given that problem,  research17–19, cannot 
be applied to the issue at hand because they employ combined traffic from each device in the N-baIoT dataset 
to validate the proposed IDS model.

One of the studies attempts to propose two innovative approaches for feature extraction and classification, 
namely Logistic Regression (LR) and Artificial Neural Network (ANN). The evaluation process involves six 
devices from the N-BaIoT dataset. Notably, this research adopts an approach where each device’s traffic is ana-
lyzed individually, rather than combining all traffic into a single dataset. Consequently, machine learning models 
are generated separately for each device, utilizing specific datasets derived from the traffic generated by individual 
 devices24. This research inspires us to help answer the problem of managing dynamic and heterogeneous devices 
of IoT that join the network.

In addressing the challenges posed by the dynamic and heterogeneous nature of IoT networks, this research 
advocates for approaches that facilitate the efficient updating of intrusion detection models with new data, 
ensuring adaptability without extensive restructuring. The research distinguishes itself by adopting a unique 
strategy-utilizing individual DNN training models for each IoT device. This allows for a detailed analysis of the 
characteristics of each device’s traffic without amalgamating all traffic data. Such an approach aligns with the 
need for adaptability in the face of changing network dynamics, enabling the IDS to comprehend and adjust to 
the distinct features of each device while preserving existing knowledge and model structures.

The concept is inspired by the incremental learning paradigm. Incremental learning encompasses the itera-
tive process of acquiring fresh information or mastering additional skills while retaining previously acquired 
knowledge. This continuous learning approach involves the gradual enhancement and expansion of an existing 
model or system over time, diverging from the conventional practice of commencing anew with each new task or 
dataset. The essence of incremental learning lies in its adaptability and the ability to build upon existing knowl-
edge, making it a valuable paradigm for scenarios where systems need to evolve and incorporate new insights 
without discarding the wisdom gained from prior  experiences25.

The contributions and differences of this study compared to other research are as follows:

• This research proposes an ensemble NIDS anomaly detection model for botnet attack detection in IoT envi-
ronments with heterogeneous IoT devices.

• The ensemble anomaly detection in this research uses a combination of ensemble averaging and DNN.
• The proposed model was tested using the N-BaIoT dataset, which contains botnet attacks in heterogeneous 

IoT devices.
• This research does not only analyze the accuracy, but we also consider other parameters such as precision, 

recall, F1-score, training time, and size of the training model.
• This research approach creates a DNN training model from individual devices and then averages the results 

from each of these individual devices. This strategy is employed to address the dynamic nature of the number 
of IoT devices connected to the IoT network. The model update process involves incorporating new data 
without discarding existing knowledge or restructuring the dataset.

Methodology
The process diagram from this research can be seen in Fig. 3. The presented diagram encapsulates a systematic 
and structured approach to the development and testing of a machine learning model, specifically a DNN, 
employing data derived from distinct IoT devices. The stepwise process commences with the collection of datasets 
from nine specific IoT devices, setting the foundation for subsequent model development. This collected data is 
then intelligently divided, with 70% allocated for training the DNN model and the remaining 30% reserved for 
rigorous testing. The training phase involves the generation of nine unique DNN models, each attuned to the 
nuances of the data from the specified IoT devices.
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Following the model generation, the testing phase ensues, where the reserved dataset is employed to evaluate 
the performance of each DNN model. This evaluation involves comparing model predictions against true values 
to gauge accuracy. Moreover, the validation step employs a separate dataset from the IoT devices to ensure the 
reliability and accuracy of each individual model. A notable aspect of this approach is the incorporation of an 
ensemble method, where the outputs from the nine DNN models are averaged for each test data point. This 
ensemble averaging contributes to determining the overall classification result, categorized as normal, Mirai, 
or Gafgyt indicating the system’s potential in anomaly detection or categorization of botnets in IoT devices.

The concluding phases involve a comprehensive evaluation of the system’s performance using diverse met-
rics, including accuracy, precision, recall, F1 score, processing time, and the size of the model. This meticulous 
evaluation ensures a thorough assessment of the effectiveness of the machine learning system in the context of 
IoT devices. Overall, the diagram provides a clear and visual representation of the entire process, emphasizing 
both the structural aspects of the model development and the critical performance metrics used for evaluation.

Dataset preprocessing
The experiment started with preprocessing the N-baIoT dataset, which was obtained from  research10. The dataset 
used in this research was a labeled version of the N-baIoT dataset and was prepared for the machine learning 
process. The dataset contains Mirai and BASHLITE botnet malware and attacks 9 different types of IoT devices, 
as shown in Table 1.

The dataset contains various labels from the botnet activity, such as Table 2 for Mirai botnet and Table 3 for 
BASHLITE botnet. In this research, we simplify the labels into “mirai” for Mirai botnet attack and “gafgyt” for 
BASHLITE botnet attack. Normal traffic is labeled with “BENIGN” label. Each dataset from each device is split 
into two data: 70% of the data is used for the training data and 30% for the testing data.

Figure 3.  Classification process in our simulation approach.

Table 1.  Detail information of N-baIoT dataset.

ID Device model Device type Number of benign Mirai BASHLITE

D1 Danmini Doorbell 49548 Yes Yes

D2 Ennio Doorbell 39100 No Yes

D3 Ecobee Thermostat 13113 Yes Yes

D4 Philips B120N/10 Baby monitor 175240 Yes Yes

D5 Provision PT-737E Security camera 62154 Yes Yes

D6 Provision PT-838 Security camera 98514 Yes Yes

D7 SimpleHome XCS7-1002-WHT Security camera 46585 Yes Yes

D8 SimpleHome XCS7-1003-WHT Security camera 19528 Yes Yes

D9 Samsung SNH 1011 N Webcam 52150 No Yes
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The dataset includes distinctive headers representing various stream aggregation attributes, each providing 
valuable insights into the characteristics of packet streams within the N-baIoT dataset. These attributes encom-
pass H, which stands for “Source IP” in the N-BaIoT dataset, offering statistics summarizing recent traffic origi-
nating from the packet’s host based on IP. MI, denoting “Source MAC-IP” in the N-BaIoT dataset, provides stats 
summarizing recent traffic based on both IP and MAC addresses. HH, associated with “Channel” in the N-BaIoT 
dataset, involves statistics summarizing recent traffic from the packet’s host (IP) to the destination host. HH_jit, 
corresponding to “Channel jitter” in the N-BaIoT dataset, captures stats characterizing the jitter of traffic from 
the packet’s host (IP) to the destination host. Lastly, HpHp, signifying “Socket” in the N-BaIoT dataset, involves 
statistics summarizing recent traffic from the packet’s host and port (IP) to the destination host and port, exem-
plified by connections like 192.168.4.2:1242 -> 192.168.4.12:80. These stream aggregation attributes collectively 
contribute to a nuanced understanding of the packet stream dynamics and patterns within the N-baIoT dataset.

This research utilized all features from the dataset and did not employ a feature selection process. Instead, 
deep learning models were utilized, designed to effectively handle high-dimensional data and autonomously 
learn relevant features during the training  process26. Feature selection algorithms can be computationally expen-
sive, particularly when dealing with large datasets and a substantial number of features. In situations where 
computational resources are limited, the expenses associated with feature selection may surpass the potential 
 benefits27. Given that this research focuses on IoT, a limitation arises regarding computational resources. In 
such scenarios, the simplicity and interpretability of the model may take precedence over achieving the highest 
predictive performance. Consequently, opting to use all available features might be considered more favorable.

NIDS model
Our proposed Network Intrusion Detection System (NIDS) architecture for the Internet of Things (IoT) envi-
ronment, as illustrated in Fig. 4, envisions a model tailored to the intricacies of a diverse range of IoT devices. In 
our NIDS model, traffic emanating from each IoT device becomes instrumental in generating a device-specific 
training model through the utilization of a Deep Neural Network (DNN). This training model, unique to each 
device, is subsequently employed to predict network traffic and identify potential anomalies. The predictions 
from individual models are then aggregated using the ensemble averaging method, culminating in a final result 
that leverages the collaborative insights from multiple devices.

This collaborative Intrusion Detection System (IDS) model is designed for implementation within a central-
ized framework, such as a collaborative IDS hosted on a central server or a fog device in real-world deployment 
scenarios. Notably, in our simulation environment for this research, we emulate the centralized implementation, 
envisioning the real-world execution where all processes are consolidated in a central server or fog device. This 
simulation environment allows for a comprehensive evaluation of the proposed NIDS architecture’s efficacy, 
offering insights into its performance under controlled conditions. The envisioned deployment in a centralized 
collaborative IDS aligns with the increasing trend in IoT security solutions, providing a centralized and efficient 
approach to detect and mitigate potential threats across a diverse array of IoT devices.

Ensemble averaging DNN
This research proposes an ensemble averaging DNN by ensembling each DNN training model from every het-
erogeneous IoT device. Each device in IoT has its own characteristics, so generating individual training models 
from each device is expected to capture the characteristics of each heterogeneous device in the IoT environ-
ment. This research creates 9 DNN training models using 70% of the traffic from each device in the N-BaIoT 
dataset (Table 1). After that, the prediction results from each training model are averaged using the ensemble 

Table 2.  Mirai botnet attack activity in N-baIoT dataset.

Activity Details

SCAN Scanning process to find the vulnerability in the network

JUNK Process to sending data for spamming

UDP Flooding the UDP port

TCP Flooding the TCP port

COMBO Process to sending data for spamming with connect to specific IP address and port

Table 3.  BASHLITE botnet attack activity in N-baIoT dataset.

Activity Details

SCAN Scanning process to find the vulnerability in the network

ACK Flooding using ACK packet

SYN Flooding using SYN packet

UDP Flooding the UDP port

UDPPLAIN Process flooding UDP using some options with packets per second in higher optimization
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averaging method. This research uses 30% of the traffic from each device in the N-BaIoT dataset (Table 1) to 
test the proposed mechanism. 

Algorithm 1.  Ensemble Averaging DNN
The detailed ensemble averaging DNN mechanism for botnet attack detection in heterogeneous devices can 

be seen in Algorithm 1. The algorithm described here, named “Ensemble Averaging DNN,” is designed to harness 
the collective capabilities of multiple devices to enhance the predictive performance of a Deep Neural Network 
(DNN) model. The input to the algorithm includes training data ( X_traini ,Y_traini ) from n devices, a tensor 
X_data representing data to be analyzed, and the number of devices ( NumDevices ). The process begins by initial-
izing an empty list called models to store the trained DNN models. Subsequently, the algorithm iterates over 
each device, trains an individual DNN model, and appends it to the models list. After training, the algorithm 
proceeds to generate predictions. It initializes an empty list called predictions to store predictions made by 
each individual model. The algorithm then iterates over each model in the models list, predicting the output 
for the input data X_data and appending each prediction to the predictions list.

Following the generation of predictions, the algorithm enters a phase of averaging predictions. It initial-
izes an empty list called avg_predictions to store averaged predictions. The algorithm iterates over each 

Figure 4.  Our view in NIDS architecture for IoT network with heterogeneous IoT device.
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element in the input data X_data and, for each element, iterates over each prediction in the predictions 
list. It sums up the predictions and calculates the average prediction for the current element by dividing the sum 
by the total number of models. The averaged prediction is then appended to the avg_predictions list. 
Finally, the algorithm assigns the avg_predictions list to the variable FinPred, representing the final 
ensemble-averaged prediction. In essence, this algorithm aims to collaboratively train multiple DNN models on 
diverse data sources, generate individual predictions, and then aggregate these predictions through averaging to 
produce a robust and generalized final prediction.

The detailed information of the hyperparameters from the DNN used in this research can be seen in Table 4. 
In Table 4, the input dimension is specified as 115 features, with a neural network structure comprising 4 hid-
den layers and an output layer designed for multi-class classification with 3 classes. The output layer employs 
the Softmax activation function, and the optimization algorithm chosen for training is Adam. The batch size 
for training is set to 1000, with 10 epochs used to iterate through the entire training dataset. The loss function 
employed is Categorical Crossentropy, and evaluation metrics include Accuracy, Recall, Precision, and F1-Score.

Table 5 provides insights into the specifics of each hidden layer within the neural network architecture. The 
hidden layers are indexed from 1 to 4, and the number of nodes in each layer decreases progressively from 13 
to 7. The activation function applied to the nodes in each hidden layer is Rectified Linear Unit (ReLU), a com-
mon choice for introducing non-linearity in neural networks. Collectively, these tables furnish a comprehensive 
overview of the DNN’s configuration, facilitating a clear understanding of the model’s structure and training 
settings for the specified machine-learning task. The detailed visualization of DNN architecture from Tables 4 
and 5 can be seen in Fig. 5.

Performance parameter
In this research, some parameters were used to evaluate the benchmarking study. The accuracy, F1-score, preci-
sion, and recall of the algorithms were measured based on the benchmarking scenarios. These are all important 
evaluation metrics for classification tasks because they provide different perspectives on the performance of a 
classification model. Each metric offers insights into different aspects of the model’s predictive capabilities and 
can help assess its effectiveness in solving the classification problem.

Additionally, the size of the training model produced by each algorithm and the time taken for the training 
and testing processes were also measured in this research. These metrics play important roles in the practical 
deployment and performance of classification models. They influence resource utilization, cost, latency, scal-
ability, and user experience. Balancing model size, training time, and prediction time is crucial to ensure efficient, 
effective, and practical solutions for classification tasks in real-world scenarios. 

1. Accuracy (%). The accuracy of an IDS is critical to ensure that it can effectively identify and respond to mali-
cious activity while minimizing the number of false positives. High accuracy means the system correctly 
identifies true positives and true negatives. The accuracy is calculated using Eq. (6). 

(6)
TP + TN

TP + FP + TN + FN
= Accuracy

Table 4.  DNN hyperparameter.

Hyperparameter Details

Input dimension 115

Hidden layer 4

Output dimension 3 (multi-class)

Output layer activation function Softmax

Optimisation algorithm Adam

Batch size 1000

Epochs 10

Loss function Categorical crossentropy

Metrics Accuracy, recall, precision, F1-score

Table 5.  Hidden layer details.

Hidden layer Number of node Activation function

1 13 ReLU

2 11 ReLU

3 9 ReLU

4 7 ReLU
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 Where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. Precision (%): 
The precision in IDS is the ratio of true positive predictions to the total number of positive predictions 
made by the model. It measures the accuracy of positive predictions. Specifically, the proportion of correctly 
predicted positive instances out of all instances predicted as positive. The precision parameter is calculated 
using Eq. (7). 

2. Recall (%): The recall metric, also known as sensitivity or true positive rate, is the ratio of true positive 
predictions to the total number of actual positive instances in the dataset. It measures the model’s ability 
to correctly identify positive instances, regardless of whether some instances are incorrectly predicted as 
negative. The recall parameter is calculated using Eq. (8). 

3. F1-Score (%): The F1 score is a widely used evaluation metric in machine learning, particularly for classifica-
tion tasks. It is a measure of the model’s accuracy that combines both precision and recall into a single value. 
The F1 score provides a balanced assessment of the model’s performance, especially in situations where false 
positives and false negatives carry similar importance. The F1 score is calculated using Eq. (9). 

4. Processing Time (seconds (s)): Processing time consists of training time and prediction time in machine 
learning. Training time refers to the time it takes for a model to learn from a given dataset and adjust its 
parameters to optimize its performance. Prediction time refers to the time it takes for the trained model to 
make predictions on new unseen data. The processing time has been defined by Eq. (10). 

 Where TT is Training Time, PdT is Prediction Time, and PcT is Processing Time.
5. Size of Training Model (kilobyte (Kb)). Each machine learning or ensemble learning training process will 

produce a training model. All training models can be saved into storage and used again for the prediction 
process in anomaly detection. The larger the training model, the more storage capacity is needed to store it. 
Therefore, measuring the size of the training model as a benchmarking parameter is essential for analyzing 
performance.

(7)
TP

TP + FP
= Precision

(8)
TP

TP + FN
= Recall

(9)
2 ∗ (Precision ∗ Recall)

Precision+ Recall
= F1− Score

(10)TT + PdT = PcT

Figure 5.  DNN Architecture for each devices.
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Benchmarking scenario
This research has two categories of benchmarking scenarios: preliminary analysis and proposed model result. The 
preliminary analysis section consists of Scenario 1 and Scenario 2. The preliminary analysis section was used to 
answer research questions 1 and 2. The proposed model result section consists of scenario 3. The proposed model 
result is used to answer research question 3. There are some term lists to make it easier to explain benchmarking 
scenario results in the result and discussion section. Table 6 shows the term list from the benchmarking scenario. 
The detail of each scenario is below: 

1. Scenario 1: The first scenario involves benchmarking the performance of each DNN training model from 
every device (M1–M9) and testing using testing data from their device traffic (TS1–TS9). So, M1 will test 
using TS1, M2 will test using TS2, and so on. This scenario aims to assess the performance of the training 
model from each device using their data test from each device traffic. It is designed to answer research ques-
tion 1.

2. Scenario 2: The second scenario aims to evaluate the performance of each DNN training model from every 
device (M1–M9) and cross-test using testing data from each other device (TS1–TS9). So, M1 will test using 
M2–M9 traffic, M2 will test using M1 and M3–M9 traffic, and so on. This scenario aims to see the perfor-
mance of the training model in each device when analyzing the traffic from another device. This scenario is 
designed to answer research question 2.

3. Scenario 3: The third scenario benchmarks the performance of the proposed ensemble averaging DNN (ENS) 
and tests using each device’s traffic (TS1–TS9). This scenario is designed to answer research question 3.

Result and discussion
In this section, the results of the simulation modeling and benchmarking study are presented and discussed. 
The findings of this research are discussed in the context of their impact on ensemble averaging for NIDS in 
heterogeneous IoT devices. Additionally, potential areas for future research in this field are highlighted.

Experiment environment
This research used a server with the following specifications: Processor 2.3 GHz 16-Core Intel(R) Xeon(R) CPU 
E5-2650 v3 and 128 GB memory. The operating system used was Ubuntu 22.04.2 LTS. Python version 3.10.6 and 
Keras version 2.12 were employed as the machine learning library for conducting the DNN experiments. Jupyter 
notebook version 6.5.3 was used for presenting the experiment and simulation results.

Preliminaries analysis
In this section, the explanation of results from both Scenario 1 and Scenario 2 is provided. The main objective 
of Scenario 1 was to assess the performance of individual DNN models constructed using device-specific traffic 
for the purpose of detecting botnet attacks occurring within the traffic of each respective device.

The results of Scenario 1 are presented in Table 7. The findings indicate that the DNN models within each 
device exhibited robust performance when analyzing the traffic generated by that specific device. Notably, accu-
racy for each device reached 100%, signifying accurate identification of both true positive and true negative 
instances of botnet attacks within the corresponding device’s traffic. Precision and recall metrics also dem-
onstrated performance exceeding 99%, implying the models’ ability to minimize misclassifications of normal 
traffic while accurately recognizing positive instances. Moreover, the DNN models achieved a high F1-score in 
detecting botnet attacks, highlighting their proficiency in both precision and recall aspects. Both training and 
prediction times for each model were influenced by dataset volume, with larger datasets leading to longer train-
ing and prediction durations. Remarkably, the model size remained consistent at around 70 Kb for each DNN 
model, indicating a stable size unaffected by variations in training data volume.

Scenario 2 aimed to evaluate the performance of individual DNN models constructed using device-specific 
traffic to detect botnet attacks within traffic from other devices. In this scenario, each DNN model developed 
from one device’s traffic was applied to analyze testing data from different devices. Results from Scenario 2 

Table 6.  Benchmarking scenario term list.

ID Details ID Details ID Details

TR1 Training data from device ID D1 M1 Training model from TR1 TS1 Testing data from device ID D1

TR2 Training data from device ID D2 M2 Training model from TR2 TS1 Testing data from device ID D1

TR3 Training data from device ID D3 M3 Training model from TR3 TS3 Testing data from device ID D3

TR4 Training data from device ID D4 M4 Training model from TR4 TS4 Testing data from device ID D4

TR5 Training data from device ID D5 M5 Training model from TR5 TS5 Testing data from device ID D5

TR6 Training data from device ID D6 M6 Training model from TR6 TS6 Testing data from device ID D6

TR7 Training data from device ID D7 M7 Training model from TR7 TS7 Testing data from device ID D7

TR8 Training data from device ID D8 M8 Training model from TR8 TS8 Testing data from device ID D8

TR9 Training data from device ID D9 M9 Training model from TR9 TS9 Testing data from device ID D9

ENS Ensemble training model from M1 - M9
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are documented in Table 8. The outcomes revealed that performance metrics (accuracy, precision, recall, and 
F1-score) of DNN models when analyzing testing data from different devices were notably lower compared to 
their performance when analyzing data from their own device’s traffic. This suggests that training models from 
each device were optimized for analyzing traffic originating from their respective devices and demonstrated 
reduced effectiveness when applied to traffic analysis from different devices.

In summary. the evaluation of DNN model performance highlighted their effectiveness in analyzing traffic 
from their respective devices. However, it also revealed reduced performance when confronted with traffic from 
diverse devices. This emphasizes the importance of training models on data that accurately represents the specific 
environment, ensuring optimal results.

Proposed model result
The preliminary analysis results indicate that the DNN model from each device is unable to analyze testing data 
from other devices. This implies that the traffic characteristics in each device differ, reflecting the heterogeneity 
of devices within the IoT environment. An IDS with a comprehensive perspective is needed to analyze botnet 
attacks across these diverse devices in the IoT environment. To address this, the research proposes an ensemble 
averaging approach using DNN to establish a unified view for analyzing botnet attacks across heterogeneous 
devices within the IoT environment.

The objective of the third scenario is to assess the performance of the ensemble averaging DNN model in 
detecting botnet attacks within the traffic of each heterogeneous device. The results of Scenario 3 are presented 
in Table 9. The proposed model demonstrates a performance level exceeding 89% accuracy in detecting botnet 
attacks within IoT environments characterized by heterogeneous devices. Additionally, the model achieves pre-
cision, recall, and F1-score metrics surpassing 98% when analyzing botnet attacks across most heterogeneous 
devices. However, exceptions occur for testing data from devices 2 and 9 due to device vulnerabilities specific to 
the BASHLITE botnet, resulting in the absence of Mirai botnet attacks. Consequently, this imbalance in traffic 
contributes to precision, recall, and F1-score falling below 98%.

To compare the performance of the ensemble averaging DNN with single DNN models from each device, the 
research averages the results from accuracy, precision, recall, and F1-score in Tables 8 and 9, as shown in Fig. 6. 
The findings reveal that the ensemble averaging DNN outperforms single DNN models from individual devices 
in terms of accuracy, precision, recall, and F1-score when detecting botnet attacks across the entire spectrum of 
IoT heterogeneous devices. This underscores the model’s ability to comprehensively consider all IoT heterogene-
ous devices, accurately identifying true positives and negatives, minimizing incorrect classifications of normal 
traffic, and correctly recognizing positive instances.

The training time for the ensemble averaging DNN is longer than that of individual models from each device 
due to its utilization of all individual training models from heterogeneous devices. Thus, training time is contin-
gent on the number of devices and the training time required for generating individual models. In this research, 
the training time encompasses the total time spent training the DNN model constructed from traffic data of 
nine distinct IoT devices. Prediction time for the ensemble averaging DNN is similarly dependent on the total 
number of training models. Each testing data point is predicted using every training model, and the prediction 
outcomes are averaged through an ensemble averaging process. In this research, prediction time accounts for 
the total prediction instances using the nine DNN training models. The model size of the ensemble averaging 
DNN comprises the cumulative size of all nine training models.

Computational complexity analysis
The computational complexity of the “Ensemble Averaging DNN” algorithm (Algorithm 1) is a critical aspect 
to assess, considering its application in detecting botnet attacks across multiple heterogeneous IoT devices. 
The algorithm encompasses several phases, each contributing to the overall complexity. In the model training 
phase (Lines 3–5), the algorithm iterates over each of the NumDevices IoT devices, involving the training of 
individual DNN models. The training complexity for one DNN model is denoted as O(TDNN) , encapsulating 
processes such as forward and backward passes, weight updates, and iterative epochs. Consequently, the total 
training complexity for all devices becomes O(NumDevices× TDNN) , emphasizing the computational burden 
associated with training diverse models for each IoT device.

Table 7.  Scenario 1 result.

Model Testing data Accuracy Precision Recall F1-score Training time (s) Prediction time (s)
Processing time 
(s)

Size of 
model (Kb)

M1 TS1 100 99.9 100 100 31 16 47 70.3

M2 TS2 100 99.9 100 99.9 11 5 16 70.3

M3 TS3 100 99.9 99.9 99.9 21 12 33 70.4

M4 TS4 100 100 100 100 31 16 47 70.4

M5 TS5 100 99.9 99.9 99.9 21 14 35 70.4

M6 TS6 100 99.9 99.9 99.9 21 13 34 70.4

M7 TS7 100 99.9 99.9 99.9 21 12 33 70.4

M8 TS8 99.9 99.6 99.8 99.7 22 12 34 70.4

M9 TS9 100 100 100 100 11 5 16 70.4



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3878  | https://doi.org/10.1038/s41598-024-54438-6

www.nature.com/scientificreports/

Following model training, the prediction phase (Lines 7–8) involves generating predictions for the input 
data using each of the trained DNN models. The prediction complexity for one model is denoted as O(PDNN) , 
accounting for the intricacies of model prediction. The total prediction complexity for all models becomes 
O(len(models)× PDNN) , underscoring the computational demands associated with predicting outcomes across 
multiple models. Subsequently, the algorithm proceeds to average predictions (Lines 9–15), introducing two 
nested loops that iterate over the input data and predictions. The complexity of this averaging step is O(N ×M) , 
where N  is the length of predictions and M is the number of models. This phase adds an additional layer of 
complexity, reflecting the computational cost of aggregating predictions from diverse models.

In this section, we aim to simulate the computational complexity using the average trends of data obtained 
from the experimental section. The computational complexity of the algorithm involves three primary compo-
nents: training, prediction, and averaging. The training complexity ( O(NumDevices× TDNN) ) depends on the 
number of IoT devices ( NumDevices ) and the training time for one DNN model ( TDNN ). It explores how the 
computational complexity varies with the number of IoT devices involved, examining both scenarios with and 
without retaining knowledge. In the context of the N-baIoT dataset with nine devices and the associated training 
times, the overall training complexity would be influenced by the cumulative training time for all devices. Simi-
larly, the prediction complexity ( O(len(models)× PDNN) ) is influenced by the number of models ( len(models) ) 
and the prediction time for one model ( PDNN ). Given the diverse characteristics of the IoT devices and their 
associated prediction times, optimizing the prediction phase becomes crucial for efficiency. The averaging phase 
complexity ( O(N ×M) ) involves the length of predictions ( N  ) and the number of models ( M ). In the given 
scenario, the length of predictions corresponds to the size of the testing dataset, and the number of models is 
nine (as there are nine IoT devices). This phase’s computational cost is influenced by the quantity of predictions 
and the number of models involved. Based on Table 9, the average training time for the ensemble averaging 
DNN model (in seconds) is 190, and the average prediction time for the ensemble averaging DNN model (in 
seconds) is 100.44.

The result of computational complexity can be seen in Fig. 7. The trend of the data in the graph shows that 
as the number of IoT devices increases, the computational complexity also increases. The training complexity 
exhibits a linear increase, indicating that the time required for training the system grows steadily with the number 
of devices. On the other hand, the prediction complexity increases at a much slower rate, suggesting that the 
time required for making predictions is less affected by the number of devices. The averaging complexity remains 
relatively constant, indicating that this aspect of computational complexity is not significantly impacted by the 
number of IoT devices. The total complexity, represented by the sum of the other complexities, grows nonlinearly, 
with the training complexity having the most significant influence on the overall computational complexity. This 
trend suggests that as the number of IoT devices increases, the training process becomes the dominant factor 
contributing to the total computational complexity.

The observed data trend in the graph illustrates a direct relationship between the number of IoT devices and 
computational complexity, indicating that as the count of devices rises, so does the overall computational load. 
However, it’s crucial to interpret this trend within the context of the incremental learning paradigm. The initial 
increase in complexity aligns with the conventional understanding that more devices lead to higher compu-
tational demands, especially during the initial phases of learning. Notably, as the learning process progresses 

Figure 6.  Average accuracy, recall, precision, and F1-score from ensemble averaging DNN when compared 
with single device DNN in analyzing traffic on each device.
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Model Testing data Accuracy Precision Recall F1-score Training time (s) Prediction time (s) Processing time (s) Size of model (Kb)

M1

TS1 100 99.9 100 100 31 16 47 70.3

TS2 8.4 60 9.4 15.9 31 5 36 70.3

TS3 95.4 97 87.2 91.3 31 12 43 70.3

TS4 99.2 99.2 98.4 98.7 31 18 49 70.3

TS5 97.8 98.3 92.7 95.1 31 10 41 70.3

TS6 96.5 97.2 91.7 94 31 10 41 70.3

TS7 92.7 94.2 80.1 84.9 31 13 44 70.3

TS8 94.2 95.8 75.6 81.1 31 10 41 70.3

TS9 72.2 65.6 28.9 32.1 31 5 36 70.3

M2

TS1 16.2 11.3 45.4 17.6 11 14 25 70.3

TS2 100 99.9 100 99.9 11 5 16 70.3

TS3 38.4 22.5 66 33.4 11 14 25 70.3

TS4 44 44 66 49.6 11 14 25 70.3

TS5 47 35.2 65.5 45.5 11 12 23 70.3

TS6 48.4 40 66.1 48.9 11 12 23 70.3

TS7 40.1 32.9 65.3 43.2 11 11 22 70.3

TS8 39.2 22.8 65.6 33.7 11 12 23 70.3

TS9 99.8 99.8 99.4 99.6 11 6 17 70.3

M3

TS1 97.8 98 93.7 95.7 21 16 37 70.4

TS2 59.7 64.6 27.8 36.1 21 5 26 70.4

TS3 100 99.9 99.9 99.9 21 12 33 70.4

TS4 96.5 96.4 93.8 94.7 21 14 35 70.4

TS5 97.6 98 93 95.2 21 13 34 70.4

TS6 96.6 97.2 91.9 94 21 13 34 70.4

TS7 98.2 98.4 90.1 93.4 21 12 33 70.4

TS8 99.8 99.4 97.4 98.4 21 12 33 70.4

TS9 83.1 65.9 36.3 40.6 21 5 26 70.4

M4

TS1 99.4 99 99.4 99.2 31 16 47 70.4

TS2 79.4 61.8 56.8 58.8 31 13 44 70.4

TS3 95.9 95.5 96.5 95.9 31 5 36 70.4

TS4 100 100 100 100 31 16 47 70.4

TS5 99.4 99.3 99.2 99.3 31 19 50 70.4

TS6 98.9 99.1 98.3 98.7 31 14 45 70.4

TS7 94.5 94.5 83.5 87.5 31 6 37 70.4

TS8 95 88.8 78.5 82.1 31 13 44 70.4

TS9 86.1 66.4 48.1 54.8 31 14 45 70.4

M5

TS1 95.7 94.4 97.5 95.8 21 16 37 70.4

TS2 85.5 62.6 37 41.2 21 6 27 70.4

TS3 88.8 82.8 89.2 85.6 21 13 34 70.4

TS4 99.4 99.4 98.8 99.9 21 18 39 70.4

TS5 100 99.9 99.9 99.9 21 14 35 70.4

TS6 99.9 99.9 99.8 99.9 21 13 34 70.4

TS7 89.5 89.4 91 90.2 21 13 34 70.4

TS8 89.3 85.9 90.7 88.1 21 14 35 70.4

TS9 85.8 66.2 39 44 21 6 27 70.4

M6

TS1 68.8 56.1 72.2 54.4 21 13 34 70.4

TS2 89.3 64.8 44.5 50.4 21 5 26 70,4

TS3 92.6 80.6 94 85.5 21 12 33 70.4

TS4 98.5 98.3 98.6 98.5 21 16 37 70.4

TS5 99.8 99.8 99.8 99.8 21 11 32 70.4

TS6 100 99.9 99.9 99.9 21 13 34 70.4

TS7 92.6 89.4 93.7 91.3 21 11 32 70.4

TS8 92.4 83.8 94.3 88 21 15 36 70.4

TS9 83.1 65.9 38.3 43.8 21 4 25 70.4

Continued
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and the model adapts to the existing devices, the graph suggests a potential stabilization or slower growth in 
complexity.

One distinctive advantage of incremental learning becomes apparent in this context. With the incorporation 
of a new device, the system doesn’t necessitate a complete reiteration of the training process. Instead, it intelli-
gently builds upon the existing knowledge, leveraging prior learning experiences. This means that after the initial 
training phase, the impact of adding new devices on the overall computational complexity might not follow a 
linear trajectory. The system optimizes its efficiency by selectively updating its knowledge base, demonstrating 
the adaptability inherent in incremental learning. This nuanced perspective provides a more insightful under-
standing of the relationship between device count and computational complexity, showcasing the efficiency gains 
afforded by incremental learning in dynamically evolving IoT environments.

Discussion
The research demonstrates the effectiveness of ensemble learning, specifically the ensemble averaging DNN 
approach, in addressing the challenges of detecting botnet attacks in diverse IoT devices. The study reveals that 

Table 8.  Scenario 2 result.

Model Testing data Accuracy Precision Recall F1-score Training time (s) Prediction time (s) Processing time (s) Size of model (Kb)

M7

TS1 99 98.8 99 98.9 21 14 35 70.4

TS2 26.9 53.6 19.9 28.4 21 6 27 70.4

TS3 99.8 99.3 97.1 98.1 21 13 34 70.4

TS4 95.7 95.6 93.7 94.3 21 13 34 70.4

TS5 95.1 96.2 84.8 88.7 21 12 33 70.4

TS6 92.4 94.1 83.2 86.5 21 13 34 70.4

TS7 100 99.9 99.9 99.9 21 12 33 70.4

TS8 99.9 99.5 99.6 99.5 21 11 32 70.4

TS9 83.7 48.3 34.4 36.6 21 4 25 70.4

M8

TS1 98.4 98.3 91.8 94.5 22 16 38 70.4

TS2 61.6 44.3 32.4 37.2 22 5 27 70.4

TS3 99.9 99.2 99.8 99.5 22 9 31 70.4

TS4 98.7 98.5 98.3 98.4 22 16 38 70,4

TS5 99.1 98.2 98.1 98.2 22 10 32 70.4

TS6 99.3 98.9 98.6 98.8 22 12 34 70.4

TS7 99.4 99.1 97.2 98.1 22 13 35 70.4

TS8 99.9 99.6 99.8 99.7 22 12 34 70.4

TS9 79 64.1 36.5 42.7 22 4 26 70.4

M9

TS1 35.8 20.8 66.2 31.3 11 16 27 70.4

TS2 97 89.7 97.7 93.2 11 4 15 70.4

TS3 38.7 18 66.4 25.9 11 11 22 70.4

TS4 39.5 29.9 56.5 37.8 11 13 24 70.4

TS5 45.7 25.5 59.3 35.2 11 12 23 70.4

TS6 47.2 29.6 62.6 40.1 11 10 21 70.4

TS7 40.1 22.6 64.4 32.8 11 12 23 70.4

TS8 39.4 19.3 66.2 27.7 11 13 24 70.4

TS9 100 100 100 100 11 5 16 70.4

Table 9.  Scenario 3 result.

Model Testing data Accuracy Precision Recall F1-score Training time (s) Prediction time (s)
Processing time 
(s)

Size of 
model (Kb)

ENS

TS1 99.5 99.3 99.6 99.5 190 132 322 633.4

TS2 89 61.6 45.8 51.3 190 41 231 633.4

TS3 99.2 99.1 99.5 99.3 190 108 298 633.4

TS4 99.1 99 99.2 99.1 190 129 319 633.4

TS5 99.9 99.8 99.8 99.8 190 111 301 633.4

TS6 99.9 99.9 99.8 99.9 190 110 300 633.4

TS7 99 98.7 98.6 98.7 190 114 304 633.4

TS8 98.8 98.7 99.2 98.9 190 111 301 633.4

TS9 90.5 66.6 44.3 49.9 190 48 238 633.4
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by employing ensemble learning, the algorithm creates subsets of training data, leveraging diverse behaviors 
among training models. This strategic utilization of diverse models contributes to enhanced prediction accu-
racy, as showcased by the average accuracy of 97.21, precision of 91.41, recall of 87.31, and an F1-score of 88.48. 
The research confirms that the collaborative nature of ensemble learning observed through the combination of 
individual DNN models, results in a robust intrusion detection strategy capable of handling the intricacies of 
IoT environments with heterogeneous devices. In essence, the study provides evidence that ensemble learning, 
as applied in the research, contributes to better predictions by utilizing the distinctions among training models, 
addressing the specific challenges of botnet attack detection in IoT networks.

The computational complexity analysis of the “Ensemble Averaging DNN” algorithm is crucial for its applica-
tion in detecting botnet attacks across multiple heterogeneous IoT devices. The algorithm comprises phases like 
model training, prediction, and averaging, each contributing to overall complexity. The training phase involves 
iterating over NumDevices IoT devices, resulting in O(NumDevices× TDNN) complexity. Prediction complex-
ity ( O(len(models)× PDNN) ) accounts for the intricacies of model prediction. The averaging phase complexity 
( O(N ×M) ) reflects the computational cost of aggregating predictions. Simulated computational complexity, 
influenced by training, prediction, and averaging, demonstrates an increase with the number of IoT devices. The 
training complexity exhibits linear growth, whereas prediction complexity increases at a slower rate. Averag-
ing complexity remains constant, and the total complexity grows nonlinearly, emphasizing the training phase’s 
dominance. The observed trend aligns with expectations, but incremental learning mitigates the impact of adding 
new devices, optimizing efficiency and showcasing adaptability in evolving IoT environments.

Our single DNN approach in every device achieves 100% of accuracy, so the average of our DNN approach 
is to achieve 100% accuracy. If we compare  with17–19 our single DNN approach can compete with the result from 
this research. When we talk about ensemble averaging results in our approach, the accuracy is not quite good. 
However, if we talk about the security of dynamic IoT devices and simple scenarios to update the model with 
new data without discarding the existing knowledge and restructuring the dataset, our approach is more feasible 
to implement than other research. Our approach can not be a direct head-to-head comparison because there is 
a difference in validating methods to overcome the formulated problem.

Future works
This study concentrates on an ensemble approach employing DNN models, where prediction results are equally 
averaged to identify botnet attacks within IoT environments characterized by heterogeneous devices. However, 
a limitation of the proposed model arises from its inability to manage imbalanced data within individual devices. 
Certain devices may lack certain types of botnet attacks due to their inherent resistance, leading to imbalanced 
traffic data. Therefore, for future research, the incorporation of a balancing averaging method becomes essential.

Figure 7.  Computational complexity simulation.
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Furthermore, there exists potential for extending this research towards the creation of a decentralized ensem-
ble averaging framework. This could involve decentralizing the DNN training process across IoT devices. Subse-
quently, the resultant training model outcomes could be shared among devices to facilitate the ensemble predic-
tion procedure. Technologies like peer-to-peer connections could be employed within each device to achieve this 
goal. Additionally, devices would need the capability to undertake DNN model training and prediction processes 
using multiple DNN models. It’s worth noting that this investigation employed a homogeneous IoT network 
with heterogeneous devices. Future research could explore the implementation of ensemble averaging within 
a heterogeneous network. This approach could lead to the development of collaborative Intrusion Detection 
Systems (IDS) aimed at detecting significant attacks across the entire network.

In reflecting on the outcomes of our study, it is essential to address potential limitations that may impact the 
generalizability and applicability of our proposed ensemble averaging DNN for detecting botnet attacks across 
heterogeneous IoT devices. Firstly, while our approach exhibits commendable performance in capturing the 
diverse traffic patterns across the IoT devices considered in our study, it is crucial to acknowledge that the pre-
sented results may be influenced by the specific characteristics of the devices in our dataset. The generalizability 
of our ensemble model to a broader array of IoT environments, each with its unique set of devices and traffic 
profiles, remains an area of consideration. Future research should aim to explore the model’s adaptability to 
various IoT ecosystems, encompassing a wider spectrum of devices, network architectures, and usage scenarios. 
Additionally, the discussion around device vulnerabilities warrants further elaboration. While our study briefly 
touches upon the notion of device vulnerabilities influencing the observed performance, a more in-depth analysis 
of specific vulnerabilities and their potential impact on the model’s effectiveness is imperative. Understanding 
the limitations imposed by device-specific vulnerabilities is essential for refining and tailoring our approach to 
address real-world security challenges more effectively.

Another aspect that merits attention is the scalability of our ensemble model. As IoT ecosystems continue to 
expand, accommodating an increasing number of devices, the scalability of intrusion detection systems becomes 
paramount. We acknowledge that the computational demands of our proposed approach may pose challenges 
in large-scale deployments. Future work should explore optimization strategies to enhance the scalability of the 
ensemble averaging DNN, ensuring its practical viability in extensive and dynamic IoT environments. Further-
more, the nature of our simulated environment, though valuable for controlled experimentation, introduces a 
degree of abstraction from real-world complexities. Factors such as dynamic network conditions, varying device 
behaviors over time, and the introduction of new IoT devices may present challenges not fully captured in our 
simulation. Future research could incorporate more dynamic and realistic settings to validate the robustness 
and adaptability of our model in real-world IoT scenarios. In conclusion, while our study contributes valuable 
insights into the effectiveness of ensemble averaging DNNs for botnet attack detection across heterogeneous 
IoT devices, we acknowledge these limitations and encourage ongoing research efforts to address them. A com-
mitment to addressing these challenges will undoubtedly strengthen the reliability and practical utility of our 
proposed approach in the broader landscape of IoT security.

In future research, the exploration of the unique characteristics of individual IoT devices in more detail 
is needed. While our current study has highlighted differences in how traffic behaves among various devices, 
we haven’t thoroughly investigated the specific features that cause these distinctions. Moving forward, future 
research can delve deeper into understanding the particular attributes associated with each device. This deeper 
exploration could provide valuable insights into the distinct traits of individual devices, ultimately contributing 
to a more thorough understanding of the IoT landscape.

Conclusion
This study aimed to devise an ensemble averaging DNN methodology for detecting botnet activities within a 
diverse IoT setting characterized by heterogeneous devices. The ensemble averaging DNN demonstrated a notable 
detection rate, showcasing a high level of accuracy compared to employing individual DNN models from each 
device to detect botnet attacks across the range of other devices. While the ensemble averaging DNN’s perfor-
mance may fall short of that exhibited by individual models from each device when scrutinizing device-specific 
traffic, it shines when analyzing botnet attacks occurring across the spectrum of devices. This signifies that the 
proposed model possesses a comprehensive outlook, effectively analyzing and identifying botnet attacks within 
IoT environments featuring a variety of heterogeneous devices.

Data availability
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