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A novel low light object detection 
method based on the YOLOv5 
fusion feature enhancement
Daxin Peng 1,2, Wei Ding 3* & Tong Zhen 1,2*

Low-light object detection is an important research area in computer vision, but it is also a difficult 
issue. This research offers a low-light target detection network, NLE-YOLO, based on YOLOV5, 
to address the issues of insufficient illumination and noise interference experienced by target 
detection tasks in low-light environments. The network initially preprocesses the input image with an 
improvement technique before suppressing high-frequency noise and enhancing essential information 
with C2fLEFEM, a unique feature extraction module. We also created a multi-scale feature extraction 
module, AMC2fLEFEM, and an attention mechanism receptive field module, AMRFB, which are 
utilized to extract features of multiple scales and enhance the receptive field. The C2fLEFEM module, 
in particular, merges the LEF and FEM modules on top of the C2f module. The LEF module employs a 
low-frequency filter to remove high-frequency noise; the FEM module employs dual inputs to fuse low-
frequency enhanced and original features; and the C2f module employs a gradient retention method 
to minimize information loss. The AMC2fLEFEM module combines the SimAM attention mechanism 
and uses the pixel relationship to obtain features of different receptive fields, adapt to brightness 
changes, capture the difference between the target and the background, improve the network’s 
feature extraction capability, and effectively reduce the impact of noise. The AMRFB module employs 
atrous convolution to enlarge the receptive field, maintain global information, and adjust to targets 
of various scales. Finally, for low-light settings, we replaced the original YOLOv5 detection head with 
a decoupled head. The Exdark dataset experiments show that our method outperforms previous 
methods in terms of detection accuracy and performance.
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In recent years, artificial intelligence technology has advanced significantly, and object detection as a fundamental 
problem in computer vision has become widely used. For example, in the realm of autonomous  driving1, it is 
employed for 3D object  detection2. Target detection is accomplished in real time and with excellent precision. 
In the realm of video  surveillance3, it combines adaptive background modeling to detect moving objects in vid-
eos. Furthermore, target detection technology is widely used in medicine, remote sensing, and other domains.

Target detection techniques emphasize target items to be discovered using image processing techniques, 
and the majority of current target detection techniques use high-quality images obtained from image collection 
equipment as data sets for research. However, high-quality, crisp photographs are frequently difficult to get in 
practical applications. Due to the limitations of the equipment in low-light environments, the captured images 
will be underexposed, with color distortion, low contrast, and signal-to-noise ratio degradation, which seriously 
affects the accuracy of target detection and is also a major challenge for the target detection task.

Some researchers try to enhance hardware devices to overcome the problem of low target detection accuracy 
in low-light circumstances; however, this strategy is expensive and difficult to implement broadly. As a result, 
additional researchers began to strive to improve target identification algorithms to make them more adaptable 
to low-light conditions. Some researchers have enhanced detection performance by restructuring the target 
detection network so that it can extract more critical information.  Literature4, based on RFB-Net5, employs a 
feature pyramid network and a context fusion network to perform target identification under low-light situa-
tions, which improves the network’s feature extraction capability. Although the aforementioned method solves 
the problem to some extent, in excessively complicated situations, such as extremely low-light conditions, it is 
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difficult to identify the foreground from the background of an image, resulting in a degradation of the detection 
effect. The researchers employed a low-light picture enhancement technique for preprocessing to overcome the 
aforementioned concerns. In the  literature6, color adjustment is performed on low-light photos for future detec-
tion.  Literature7 coupled the physical lighting model with a deep neural network to improve image quality and 
get good results in the target detection test. The  literature8 developed an image enhancement network that is 
better suited for low-light conditions, and when paired with the target detection network, it effectively enhanced 
detection accuracy. Although the enhancement method significantly improves brightness, it also amplifies noise 
and causes artifacts during the enhancement process, which is obviously not suitable for target detection.

To solve the aforementioned difficulties, we propose the NLE-YOLO low-light object detection model. We 
use the improved image as input in our model to extract more information for better results. Given that the 
C2f module allows the model to get richer gradient flow information, we propose a novel feature extraction 
module based on C2f, C2fLEFEM, that can suppress high-frequency noise and enhance essential information. 
To reduce the influence of noise and acquire richer feature information, we utilize this module to replace the 
C3 module in the original YOLOv5 network, except for the last three in the neck. Furthermore, we propose a 
new Attentional Receptive Field Block (AMRFB) inspired by  RFB5. This module can broaden the receptive field 
and allocate different attention domains to distinct receptive fields, boosting the network’s feature extraction 
ability. Because the input may have extreme values in low-light settings, we replaced the SPPF module with the 
SimSPPF module to achieve faster inference speed and stronger feature representation capabilities. Following 
that, we replaced the three C3 modules in the neck with the AMC2fLEFEM module, which merged the Simple 
Attention Module (SimAM)9 on the basis of the feature extraction module C2fLEFEM to extract features of 
various scales, causing the network to pay greater attention to them. The target area decreases the influence of 
noise and increases the network’s feature-learning capabilities. Finally, we replaced the initial detecting head 
with a decoupled head, which improves the network’s performance on the ExDark dataset and makes it more 
appropriate for low-light conditions.

Our contributions are summarized as follows:

(1) We propose a novel low-light object identification network, NLE-YOLO, and a novel feature extraction 
module, C2fLEFEM, to suppress high-frequency noise and enhance essential information. We combined 
the simple attention module (SimAM) with the feature extraction module C2fLEFEM to extract features 
of different scales, allowing the network to pay more attention to the target area, reduce the influence of 
noise, and improve the network’s feature learning ability.

(2) We propose a new Attentional Receptive Field Block (AMRFB). This module may enlarge the receptive field 
and assign different attention domains to distinct receptive fields, greatly boosting the network’s feature 
extraction ability.

(3) In order to adapt to the low-light object detection task, we substitute the original detection head with 
a decoupled head. At the same time, we replaced the SPPF module with the SimSPPF module, which 
increases the network’s inference performance and feature extraction ability.

(4) Compared with other state-of-the-art methods, NLE-YOLO shows good performance on the low-light 
dataset ExDark.

Related work
Object detection
There are three types of existing object detection algorithms: one-stage algorithms, two-stage algorithms, and 
anchor-free methods. YOLO and SSD are examples of one-stage algorithms. RCNN, Fast RCNN, and Faster 
RCNN are two-stage algorithms.

One-stage detection algorithms: One-stage detection algorithms use only one feature extraction to complete 
the detection, which is faster but less accurate. The primary representatives are YOLO (You Only Look Once)10, 
 SSD11, and  RetinaNet12. YOLOv1 was proposed in the  literature13 in 2016. The program separates the image 
into numerous grids and forecasts each grid. This approach is fast but has poor detection accuracy.  YOLOv214 
has significantly improved in accuracy and speed when compared to YOLOv1. YOLOv2 employs DarkNet19 as 
a feature extraction network and combines training with target classification and detection to boost accuracy. 
However, YOLOv2 has just one detection branch, making it difficult to gather multi-scale context information. 
 YOLOv315 differs from YOLOv2 in that it employs DarkNet53 as a feature extraction network and FPN to handle 
multi-scale detection difficulties. However, there are issues with incorrect positioning.  YOLOv416 was proposed 
as a result of this. It has made significant changes and performs well when compared to the previous edition. 
Then there were YOLOv5,  YOLOv717, and YOLOv8. YOLOv5 is now in a relatively stable state. As a one-stage 
detection method, the SSD algorithm features several detection branches that may recognize targets of varying 
sizes and efficiently enhance accuracy. The RetinaNet algorithm is a high-precision target detection technique 
that employs focal loss to address the issue of imbalance between positive and negative samples.

Two-stage target detection algorithm: The two-stage target detection algorithm necessitates two feature extrac-
tions and predictions.  RCNN18 is the first effort to apply deep learning to object detection. A selective search tech-
nique is utilized to choose potential boxes first, and then features are retrieved and predicted. When compared 
to the previous method, its accuracy is greatly enhanced, but there will be feature redundancy, which will slow 
down the network’s performance. Fast  RCNN19 is an upgraded form of RCNN. It initially pulls features from the 
entire image, then uses ROI pooling and passes it to the fully connected layer to extract higher-level features, and 
lastly uses the Softmax layer to predict. This method eliminates the problem of recurrent feature extraction and 
significantly improves detection speed, but it still relies on the selective search algorithm to generate candidate 
regions, which has an impact on accuracy. Faster  RCNN20 improves on Fast RCNN. This approach replaces the 
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selective search algorithm with the RPN network to generate candidate regions, significantly improving detection 
speed and accuracy. Cascade  RCNN21 enhances Faster RCNN by cascading the detection elements to improve 
detection accuracy.

Anchor-free algorithm: This method does not employ anchor boxes and instead detects key spots.  CornerNet22 
is the anchor-free algorithm’s ground-breaking work. This method simplifies object detection by converting it 
to key point detection without the use of anchor boxes. However, this technique only concentrates on the most 
important points and ignores the target’s internal information.  CenterNet23 focused on detecting the target’s 
center point and developed cascaded corner pooling and center pooling modules to boost accuracy. However, 
this approach is poor at distinguishing overlapping items. Based on this, the  FASF24 network, which employs the 
FASF module to realize autonomous learning selection characteristics, is presented.

Low light image enhancement
Low-light image enhancement seeks to recover detailed photos from low-light circumstances and deliver high-
quality images for computer vision tasks such as object detection. Guo et al.25 introduced a new reference-
free depth curve estimation (Zero DCE) method that uses a lightweight deep network, DCE-Net, to adapt the 
dynamic range of a given image and does not require the preparation of paired data in advance. However, this 
method ignores the effect of noise, and the network model is vast and time-consuming. Li et al.26 also released 
Zero DCE +  +, an accelerated and lightweight version of Zero DCE that has rapid processing speed while keep-
ing Zero DCE’s enhanced performance. Ni et al.27 introduced a new recurrent interactive generative confronta-
tion network (CIGAN) for unsupervised low-light picture augmentation that is divided into three components 
and incorporates an attention strategy to increase image quality. Wang et al.28 proposed MAGAN, a hybrid 
attention mechanism-guided generative adversarial network that uses a hybrid attention layer to understand 
the link between pixels and images in order to improve images while reducing noise. Qiao et al.29 proposed a 
generative adversarial network method based on the anti-attention mechanism, which removes noise using the 
deep aggregation pyramid pooling module combined with multi-scale background information and eliminates 
chromatic aberration using the anti-attention module to improve the quality of enhanced images. A semantically 
guided low-light image improvement network was proposed in the  literature30 (SGZ). The approach calculates 
illumination using depth-wise separable convolutions and uses a semantic segmentation network to preserve 
semantic information.

Target detection under complex conditions
Detecting objects in complex environments is critical for some activities, such as autonomous driving, video 
monitoring, and so on. Many strategies for adapting to target detection in difficult conditions have been pre-
sented. The  literature31 constructed a novel color scale offset compensation model to perform adaptive color scale 
correction on the image in order to increase the detecting capacity of autonomous driving equipment in severe 
situations. This approach improves target detection accuracy while also enhancing target clarity in tough situa-
tions.  Literature32 designed a multi-level functional cross-integration module and attention refinement module 
to overcome the problem of poor detection effects in low-light settings. The  literature33 considers low-light target 
identification to be a domain adaptation problem and presents a generative model that converts normal-light 
domain images to low-light domain images and adapts the network to low-light settings. Similarly,  literature34 
presents a data domain transfer-based training strategy that fuses a large-scale normal illumination dataset with 
a small number of low-light datasets and combines low-light enhancement and attention processes to improve 
low-light circumstances. In terms of object detection precision. The  literature35 proposed a foggy, weather-
adapted target identification framework, IDOD-YOLOv7. This method combines the image defogging module 
(AOD), the image enhancement module (SAIP), and the YOLOv7 detection module to significantly increase 
target detection in hazy circumstances. Furthermore, the  literature36 suggests IA-YOLO, a new adaptive image 
object identification approach for adapting to object detection under challenging conditions. This method, in 
particular, proposes a differentiable image processing module (DIP) and a tiny convolutional neural network 
for parameter prediction (CNN-PP). CNN-PP can effectively modify the DIP settings to enhance the image, 
allowing it to handle photos under tough conditions adaptively.

Method
Network structure
The YOLOv5 target detection technique is a one-stage detection system based on regression. It is faster than 
other detection methods, has less background interference, and has a broader range of applications. It is now in 
a relatively stable state. Given the detection accuracy and the experimental equipment, the YOLOv5l model is 
chosen as the baseline model in this research.

Images acquired in low-light situations have poor visibility due to low-light interference, low contrast, and 
noise, which reduces detection effectiveness. In order to address the aforementioned issues and increase detec-
tion performance while drawing inspiration from  literature37,38  and39, we propose the NLE-YOLO network, a 
revolutionary low-light object identification network. Figure 1 shows the structural diagram.

As illustrated in Fig. 1, we used our newly created C2fLEFEM module to replace the C3 module in the back-
bone as well as the initial C3 module in the neck. Our C2fLEFEM module can suppress high-frequency noise 
while increasing features, thereby improving the network’s feature extraction performance. We integrated the 
simple attention module (SimAM) with the feature extraction module C2fLEFEM to extract features of different 
scales so that the network may pay more attention to the target area and limit the influence of noise. We created 
an AMRFB module to replace the last two convolutional layers in the backbone component of our network 
layout, maximizing feature information retention. We replaced the original detection head with a decoupling 
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head and separated the classification task from the detection task because the original detection head shared the 
parameters of the two tasks of object localization and object classification, which would affect detection accuracy. 
Furthermore, we replaced the SPPF module with the SimSPPF module to achieve quicker inference speed and 
better feature representation ability.

C2fLEFEM module
In the original YOLOv5 network, the C3 module is employed to reduce model complexity while increasing the 
receptive field. However, in low-light situations, the image’s brightness and contrast are insufficient, and even 
noise is mixed, and the C3 module is unable to extract useful feature information and limit the influence of noise, 
which obviously impairs detection performance. In order to solve this problem, we designed a network inspired 
by C2f and  SKNet40, considering that low-frequency components often contain a large amount of semantic 
information in images and noise information often corresponds to high-frequency information. The C2fLEFEM 
module is responsible for enhancing feature semantic information. Figure 2 depicts a specific structure diagram.

The C2fLEFEM module, as shown in Fig. 2, is composed of three sub-modules: the Low Frequency Filter 
Enhancement Module (LEF), the Feature Enhancement Module (FEM), and the C2f module. To begin, the LEF 
module applies low-frequency filtering to the input features in order to remove high-frequency noise. The FEM 
module then accepts the low-frequency enhanced features and the original features as dual inputs and keeps 
the original low-frequency semantic information while reducing high-frequency noise through a series of pro-
cedures. Finally, the FEM module’s output is processed further by the C2f module to preserve more gradient 
information and reduce information loss.

The low-frequency components have the majority of the semantic information in the image and are the main 
information in the detection task among the components at each scale. We employ the LEF module to gather 
more low-frequency information in order to improve the semantic content of the image. We filter the acquired 
low-frequency information using adaptive mean pooling techniques of varying sizes. The FEM module then 
learns the weights of each feature channel, allowing the network to adaptively fuse the original low-light infor-
mation with the low-frequency semantic features to obtain richer semantic features. Finally, the feature fusion 
is accomplished using the C2f module, and the gradient information is maintained.

SKNet is a selective kernel-based network structure that dynamically modifies the size of each channel’s recep-
tive field to adapt to varied workloads and conditions. The core idea of SKNet is to use the attention mechanism 
to select the best kernel function to achieve adaptive feature fusion. Inspired by SKNet, we created the submodule 
FEM to improve semantic characteristics. We compare the submodule FEM with SKNet to assess the similarities 
and differences between the C2fLEFEM module and SKNet. The similarities between our module and SKNet are 
that both sub-module FEM and SKNet use the concept of segmentation and post-processing to quickly learn the 
weights of each feature channel to capture relevant information. Unlike SKNet, which employs the concepts of 
segmentation, processing, and selection, the sub-module FEM employs the concepts of segmentation, processing, 
and noise reduction. The steps of processing differ among them. Specifically, following segmentation, SKNet sums 

Figure 1.  Network structure diagram.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4486  | https://doi.org/10.1038/s41598-024-54428-8

www.nature.com/scientificreports/

the input features to achieve feature fusion. Given the effect of noise in this assignment, merely summing the 
input features will result in the end features being affected by noise, so we use feature splicing to achieve feature 
fusion. In the final stage, unlike SKNet’s selection of distinct spatial scale information, the sub-module FEM 
suppresses the noisy channels so that the network pays more attention to the channel where the goal information 
is located, and residual connections are established to prevent network degradation.

Assuming input feature I ∈ RH×W×C1 , the LEF module is the first to process it. The size of the input feature is 
initially reduced to I ∈ RH×W×C2 in the LEF module, where C1 is the original channel number and C2 is adaptively 
altered based on the channel number of each layer. Following that, we employ adaptive pooling to suppress high-
frequency noise while capturing low-frequency semantic information. We use 1× 1 , 2× 2,3× 3 , and 6× 6 adap-
tive average pooling modules to account for the various frequency thresholds of distinct semantic information. At 
each scale, an upsampling module is employed to restore the original feature information. Finally, the collected 
features are combined to achieve information fusion. Formula (1) depicts the exact implementation procedure.

where Ii represents the i-th input, Concat represents feature splicing,Up represents upsampling, and ak represents 
the adaptive mean pooling operation of size k × k.

It is passed to the FEM feature enhancement module after being processed by the LEF module. We begin by 
fusing the improved low-frequency features with the original input features in this module. The channel’s weight 
vector is then calculated by the CA module, and the vector is separated into two halves, with the two inputs 
weighted and calibrated separately. Finally, the feature vectors are inserted pixel by pixel, and residual connec-
tions are provided to prevent gradient dispersion. Assuming that this module’s input feature is M ∈ RH×W×C2 , 
the feature after feature fusion is F ∈ RH×W×2C2 . The channel vector acquired after the CA module’s processing 
is L ∈ R1×1×2C2 . Formulas (2–3) can be used to compute the channel vector.

where,W , W1 , and W2 are learnable parameters. The sigmoid function is represented by the number σ . The ReLU 
function is represented by the number δ . The adaptive average pooling layer is represented by layer AAP . The 
resultant channel vector is then separated into two sections, and the input features are weighted and calibrated 
to reduce the influence of noise and direct the network’s attention to critical feature information. Finally, the 
characteristics gathered are forwarded to the C2f module for processing to get the final result.

AMC2fLEFEM module
The last three C3 modules in the YOLOv5 network’s neck are upsampling and fusing modules, but they merely 
perform simple addition operations to fuse features, ignoring the relationship and weight values across feature 
maps. Furthermore, in low-light conditions, the image may be contaminated with noise and the brightness may 

(1)H(Ii)
i∈{1,2,3,4}

= Concat(Up(αk(Ii)))

(2)L = G(F,W)

(3)G(F,W) = σ(W2(δ(W1(AAP(F))))

Figure 2.  Diagram of the C2fLEFEM module structure.
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be poor, affecting the detection effect. To address these issues, we present the SimAM attention mechanism, which 
is based on the modules proposed in Section "C2fLEFEM module", as well as a novel feature fusion extraction 
module, AMC2fLEFEM. The network’s feature extraction capability is enhanced, and the influence of noise is 
successfully decreased. Figure 3 depicts its structural diagram.

The AMC2fLEFEM module combines the learned features with the C2f convolution branch to gain more 
gradient features and semantic information. This module combines the SimAM attention mechanism with the 
extraction of low-level features. It is worth noting that this is not merely using an attention mechanism. Our 
innovation is that we created the LEF and FEM modules to extract and enhance semantic features, as well as a 
feature learning branch with an attention mechanism, so that the network can efficiently extract low-level features 
while decreasing the impact of noise. Finally, feature fusion is conducted on this branch with other branches to 
obtain richer semantic characteristics.

The SimAM attention module is introduced in this module. The attention module is a non-parameter, three-
dimensional weight attention module that may focus on crucial information without the use of extra parameters. 
SimAM attention uses the relationship between different pixels to obtain key features under different receptive 
fields, particularly in low-light conditions where the image’s brightness and contrast are insufficient. The above 
mechanism can well adapt to brightness changes and effectively capture the target. The distinction between 
the background and the background in order to extract crucial information more effectively. This attention 
mechanism calculates weights expressing the relevance of pixels using an energy function, as indicated in Eq. (4).

where, t̂ = wt + bt and x̂i = wtxi + bt are linear transformations of t  and xi , t  and xi are the target and input 
features, respectively.wt and bt represent weights and biases, respectively. M = H ×W represents the total num-
ber of neurons.

(4)et
(

wt , bt , y, xi
)

=
(

yt − t̂
)2

+
1

M − 1

M−1
∑

i=1

(

yo − x̂i
)2

Figure 3.  Diagram of the AMC2fLEFEM module structure.
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AMRFB module
Ordinary convolutional layers struggle to extract useful features in the original YOLOv5 network because of 
low-light image contrast and substantial noise and blur issues. How to simultaneously increase the receptive 
field and focus on crucial target areas is an important issue in low-light target identification jobs. The receptive 
field is the area size of the input image corresponding to each output unit in the convolutional neural network, 
which influences the range of information that the network can acquire. Extending the receptive field can help 
increase perceptions of long-distance information and global semantic understanding. However, increasing the 
sensory field might generate issues such as information sparsification, loss of details, and additional processing, 
which can cause the network to fail to focus on crucial target areas. As a result, overcoming the interference of 
low-light circumstances and maintaining focus on essential target areas while increasing the receptive field is a 
difficulty that must be overcome. To address this issue, we offer a unique module, AMRFB, for feature informa-
tion extraction. We integrate the unique attention mechanism SimAM on the basis of RFB, which enhances 
the receptive field while directing the network’s attention to critical target locations, effectively increasing the 
network’s feature extraction capability. Figure 4 depicts the structure diagram of this module.

Given that extending the receptive field will blur the target, which is undesirable for some smaller targets, 
we replaced the convolution of the medium target and large target detection layers with the AMRFB module in 
the backbone network.

As shown in Fig. 4, the AMRFB module we built employs atrous convolution, which efficiently maintains 
more global information while extending the receptive field. Using varied dilation rates, adapt the network to 
objects of varying scales. We introduce SimAM, a novel attention mechanism, to make the network pay greater 
attention to effective target regions. In comparison to attention mechanisms such as CBAM, SE, ECA, and 
others, this attention mechanism does not require any additional parameters to calculate weights. By adding 
the SimAM attention mechanism, the network can efficiently capture the difference between the target and the 
background in the low-light image and pay more attention to the critical information, resulting in a stronger 
feature extraction capacity.

The following factors explain why the AMRFB module can broaden the receptive field while focusing on 
critical target areas: First, different scale features are produced using different expansion rates, and distinct scale 
information is collected and used using different scale features. This increases the size and variety of the recep-
tive field. Second, using the SimAM attention mechanism, the attention to different channels and locations may 
be dynamically altered, highlighting critical target information and capturing the difference between the target 
and the background. Finally, cross-scale feature fusion allows for feature complementation and improvement, 
which improves feature quality and expressive ability.

Figure 4.  AMRFB module structure diagram.
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Inspired by  literature41, we replace the detection head of the original network with a decoupling  head42–44. 
The decoupling head assigns classification and regression tasks to distinct network branches and uses different 
weight values. This can improve detection performance by better distinguishing the foreground and background 
in low-light settings.

SimSPPF module
To increase model speed, the YOLOv5 network employs the SPPF module and the SiLU function as the activa-
tion function. However, if the input image contains extreme values in low-light settings, the SiLU function may 
produce vanishing or expanding gradient issues. To address this problem, we employ the SimSPPF module in 
place of the SPPF module. Figure 5 depicts the structural diagram of the SimSPPF module.

Experimental results
Experimental details
The experiment makes use of an Intel (R) Xeon (R) Platinum 8350C processor, an RTX 3090 graphics card, 
and the Linux operating system. Python 3.8, Cuda 11.3, Pytorch, and version 1.10.0 are the software environ-
ments. The training parameters are critical to the model’s convergence speed and generalization capabilities. As 
a result, in order to obtain an optimal set of training parameters for the experiments, these parameters must be 
dynamically updated so that the model achieves the best performance. During the experiments, we employ the 
control variable approach to alter these parameters, which include the optimization strategy, starting learning 
rate, momentum, and weight decay. In addition, we examined hardware characteristics such as batch size. We 
assess convergence speed and model performance by examining metrics graphs and training loss graphs. Based 
on these evaluations, we arrived at the following parameter settings: In the experiment, the SGD optimizer is 
employed, with an initial learning rate of 0.01, momentum set to 0.937, and weight decay set to 0.0005. During 
training, mosaic data augmentation is employed, with the batch size set to 16 and the picture size set to 256× 256 . 
We train for 200 epochs in order to avoid local optima. We analyzed many enhancement methods in Section 
"Evaluation Metrics" and ultimately chose SGZ as the picture improvement approach for our method.

Experimental dataset
We chose the low-light object detection dataset Exdark as the main dataset to test our method’s performance 
in low-light situations. The Exdark  dataset45 is a low-light object detection dataset that contains 7363 low-light 
photos in 10 different situations. It is organized into 12 different categories, each of which covers a different object 
or situation. Allows for full algorithm evaluation in low-light circumstances. In the experiment, we divide the 
data set into three parts: training, verification, and testing, in the ratio of 6:2:2.

Loss functions
The loss function of YOLOv5 is made up of three parts: bounding box regression loss, classification loss, and 
target loss. Among them, the loss function is determined as follows:

where, Lobj is determined using the CIoU  loss function, and the formula for CIoU  is as follows:

(5)L = Lbox + Lcls + Lobj

(6)LCIoU = 1− IoU +
ρ2(b, bgt)

c2
+ av

(7)a =
v

1− IoU + v

Figure 5.  SimSPPF module structure diagram.
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where, ρ2(b, bgt) is the Euclidean distance between the genuine bounding box and the anticipated bounding 
box. c is the diagonal length of the smallest enclosing rectangle of the genuine bounding box and the predicted 
bounding box. v is the distance between the aspect ratios of the ground truth and forecasted bounding boxes. a 
is the weight coefficient. w is the width of the estimated bounding box. h is the estimated bounding box height. 
wgt is the width of the genuine bounding box, and hgt is its height.

Evaluation metrics
We employ P (Precision), R (Recall), mAP (mean Average Precision), and FPS (Frames Per Second) as evaluation 
metrics to assess the performance of our model.

The fraction of correct detections among all detection findings is referred to as accuracy. It is defined as the 
ratio of true positive cases (objects belonging to the target category are correctly detected as belonging to the 
target category) to the sum of true positive cases and false positive cases (objects not belonging to the target 
category are incorrectly detected as belonging to the target category). The higher the accuracy value, the more 
effective the model. Equation (9) illustrates this.

The recall rate is defined for a certain category as the ratio of projected positive samples to all positive samples. 
It is specifically shown in Eq. (10).

We utilize the mAP to express the average precision across all classes, which is the average of the AP for each 
class.

The average precision of each category is referred to as AP, and it is used to assess the model’s correctness 
for each category. The region enclosed by the PR curve is defined as the AP value, and the larger the value, the 
better the performance. It is specifically demonstrated in Eq. (11).

mAP stands for the average precision across all classes. mAP shows the model’s performance across all categories, 
and the higher the value, the better the performance of a particular kind. It is specifically illustrated in Eq. (12).

where n represents the total number of categories and APi represents the AP value of the i-th category.
The frame rate per second (FPS) specifies how many images the object detection network can handle per 

second. Equation (13) depicts its calculating formula.

where N is the number of photos processed and T represents the overall processing time.

Comparison with state-of-the-art methods
We undertake comparative experiments on the low-light dataset Exdark to validate the efficiency of our 
technique.

Quantitative evaluation. First, we compare our method to other augmented models. Table 1 shows the results. 
Among them, mAP@0.5 reflects the average accuracy of all categories when the IoU (Intersection over Union) 
criterion is 0.5. mAP@0.5:0.95 represents the average mAP at different IoU (0.5–0.95, step size 0.05) criteria. 
As seen in Table 1, our technique yields significant performance improvements, demonstrating its superior-
ity. Among these, the SGZ algorithm paired with our technique produces the best results. When compared 
to the original YOLOv5l model, the P value grew by 1.5%, the R value increased by 0.3%, the mAP@0.5 value 
increased by 1.7%, and the mAP@0.5:0.95 ratio climbed by 1.5%. The value rose by 2.7%. The SGZ algorithm 
most likely preserves more semantic information while predicting the pixel-level light insufficiency of low-light 
photos, whereas our method efficiently reduces noise while boosting features. Although the mAP@0.5 value of 
the URetinexNet algorithm and our method is 0.5% higher than that of the SGZ algorithm and our method, 
our method runs faster than URetinexNet + NLE-YOLO. The running time of our method is only half that of 
URetinexNet + NLE-YOLO, and the number of frames per second (FPS) of our method is more than four times 
its FPS, which is obviously necessary for time-critical applications. indispensable.

In addition, we visualized the training results, as shown in Figs. 6 and 7. Figure 6 compares the PR curves 
of the models engaged in the comparison. It can be seen that the area enclosed by our model’s PR curve is the 
greatest, implying that our method has the best performance.

(8)v =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)2

(9)Precision =
TP

TP + FP

(10)Recall =
TP

TP + FN

(11)AP =

∫ 1

0

P(R)dR

(12)mAP =

n
∑

i=1

APi

(13)FPS =
N

T
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Table 1.  Comparison of our method with several enhancement models (Higher metric values reflect higher 
performance. Red, green, and blue represent the top-three indicator values, respectively).

Method P R mAP@0.5 mAP@0.5:0.95 FPS

YOLOv5l 0.767 0.642 0.696 0.407 45.563

URetinexNet+ YOLOv5l 0.771 0.642 0.704 0.418 5.565

SGZ+ YOLOv5l 0.767 0.639 0.699 0.415 37.692

DRBN+ YOLOv5l 0.771 0.615 0.685 0.410 7.264

URetinexNet+NLE-YOLO 0.777 0.661 0.718 0.433 4.818

DRBN + NLE-YOLO 0.767 0.647 0.712 0.428 5.988

SGZ+ NLE-YOLO 0.782 0.645 0.713 0.434 19.706

Figure 6.  Comparison of PR curves.

Figure 7.  Training mAP and loss comparison. (a) Training mAP; (b) Training loss.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4486  | https://doi.org/10.1038/s41598-024-54428-8

www.nature.com/scientificreports/

Figure 7a shows that our technique consistently maintains a higher mAP0.5 value than the original YOLOv5l 
model. The increase in mAP value indicates that our approach has increased detection accuracy, proving its 
superiority even more. The training loss in Fig. 7b shows that our technique has lower loss and faster conver-
gence than the original YOLOv5l model. It also demonstrates that our model has superior model learning and 
optimization capabilities.

To demonstrate our method’s superiority, we compare it to other cutting-edge approaches (DE-YOLO46, 
DLN-YOLO47, and IAT-YOLO48), and the results are provided in Table 2. Table 2 shows that our method has the 
highest index value, demonstrating its superiority. DLN-YOLO has the best effect among the approaches in the 
comparison, with a P value of 0.779, a R value of 0.621, a mAP@0.5 of 0.698, and a mAP@0.5:0.95 of 0.412. Our 
approach has a P value of 0.782, a R value of 0.645, a value of mAP@0.5 of 0.713, and a value of mAP@0.5:0.95 
of 0.434, which is 0.3%, 2.4%, and 1.5% greater than DLN-YOLO. When compared to the baseline model, it 
improves by 1.5%, 0.3%, 1.7%, and 2.7%. The explanation for the increase in index value could be that we incor-
porated the denoising module and enlarged the receptive field to collect additional semantic information from 
low-light images.

In addition to the above evaluation indications, the algorithm’s efficiency should be examined, ensuring a 
full evaluation of the algorithm.

Table 3 compares our method to other methods in terms of FLOPs. Table 3 demonstrates that our method 
has a larger FLOPs metric value than other methods and needs more computer resources. This is because adding 
individual modules increases the computational resources of the model. The comparison of the measures above 
reveals some of our approach’s limitations. One disadvantage of our technique is that it necessitates additional 
computing resources. In the future, we will consider implementing model pruning and employing lightweight 
models to reduce the computing resources used by the model and further increase performance while keeping 
lightweight models.

Qualitative comparison. To demonstrate our method’s superior performance, we have included some repre-
sentative photographs to compare with other cutting-edge methods. Figures 8 and 9 highlight this in particular.

As illustrated in Fig. 8, our technique outperforms existing augmented models in terms of performance. The 
figure clearly shows that there are missed detections in other ways, particularly in the method combined with 
DRBN, where no target is discovered. In contrast, our technique can detect all items in their entirety. This could 
benefit from our model’s ability to extract rich semantic characteristics while removing the influence of noise.

We quantitatively compared our method to other detection methods to further validate its efficiency. Fig-
ure 9 depicts the outcome. The figure clearly shows that our technique has good detection performance and can 
accurately recognize the item bus in the figure, whereas other methods fail to detect the bus. This totally proves 
the effectiveness of our method.

Ablation experiment
We conduct ablation experiments for a complete comparison to verify the impact of different modules on model 
performance. × indicates that no module is used, while √ indicates that a module is utilized. In the experiments 
in this section, we start with the YOLOv5l model as the baseline model and gradually add additional modules 
on top of it to demonstrate the importance of different modules and their impact on model performance. Table 4 
displays the outcomes of the ablation trials.

Table 4 demonstrates that we receive the best experimental results when all modules are employed, indicating 
that each module we use is essential for our strategy. Following the addition of the C2fLEFEM module, all model 

Table 2.  Comparison of our method with state-of-the-art methods (Higher metric values reflect higher 
performance. Red, green, and blue represent the top-three indicator values, respectively).

Method P R mAP@0.5 mAP@0.5:0.95

YOLOv5l 0.767 0.642 0.696 0.407

DE-YOLO 0.703 0.439 0.510 0.256

DLN-YOLO 0.779 0.621 0.698 0.412

IAT-YOLO 0.763 0.617 0.684 0.398

Ours 0.782 0.645 0.713 0.434

Table 3.  Comparison of the FLOPs (G) of our method with other methods.

Method FLOPs

YOLOv5l 107.8

DE-YOLO 87.6

DLN-YOLO 678.5

IAT-YOLO 126.1

Ours 219.5
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Figure 8.  Comparison of alternative image enhancement methods. (a) Input, (b) YOLOv5l, (c) 
URetinexNet + YOLOv5l, (d) SGZ + YOLOv5l, (e) DRBN + YOLOv5l, (f) URetinexNet + NLE-YO-LO, (g) 
DRBN + NLE-YOLO, (h) Ours.

Figure 9.  Comparison with other state-of-the-art methods. (a) Input, (b) YOLOv5, (c) DE-YOLO, (d) DLN-
YOLO, (e) IAT-YOLO, (f) Ours.

Table 4.  Ablation experiment results (Higher metric values reflect higher performance. Red, green, and blue 
represent the top-three indicator values, respectively).

Model C2fLEFEM AMC2fLEFEM AMRFB
Decouple 

Head
SimSPPF mAP@0.5

mAP@0.5:0.

95

YOLOv5l × × × × × 0.696 0.407

A √ × × × × 0.707 0.420

B √ √ × × × 0.711 0.429

C √ √ √ × × 0.713 0.431

D √ √ √ √ × 0.717 0.432

Ours √ √ √ √ √ 0.713 0.434
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indicators improved, with the value of mAP@0.5 increasing by 1.1% and the value of mAP@0.5:0.95 increasing 
by 1.3%. This effectively demonstrates that this module can increase the model’s feature extraction capability. The 
AMC2fLEFEM module enhanced the values of mAP@0.5 and mAP@0.5:0.95 by 0.4% and 0.9%, respectively. This 
demonstrates that the module can direct the network to retrieve more significant feature information. Following 
the addition of AMRFB, the values of mAP@0.5 and mAP@0.5:0.95 increased by 0.2%. The index improvement 
demonstrates that the AMRFB module can efficiently extract the features of low-light images while extending 
the receptive field. With the introduction of the Decouple Head module, the value of mAP@0.5 grew from 0.713 
to 0.717, while the value of mAP@0.5:0.95 increased from 0.431 to 0.432. This module’s requirement has been 
demonstrated. The index value was effectively enhanced once the SimSPPF module was introduced to replace 
the original SPPF module. The following trials convincingly demonstrate the necessity and usefulness of each 
module, as well as the superiority of our method.

Figure 10 shows some typical ablation experiments to demonstrate the superiority of our technology and the 
effectiveness of each module. As illustrated in Fig. 10, our approach is the most comprehensive. It demonstrates 
that our method outperforms other methods in terms of detection performance.

Conclusion
To address the existing issues with low-light object detection and the noise created during the enhancement pro-
cess, we offer NLE-YOLO, a revolutionary low-light object detection model. For improved results, we use the aug-
mented image as input to extract more information. We propose a novel feature extraction module, C2fLEFEM, 
and replace the C3 module in the original YOLOv5 network with this module to reduce high-frequency noise 
and increase critical information. Furthermore, we suggest a new Attentional Receptive Field Block (AMRFB). 
This module may broaden the receptive field and assign different attention domains to distinct receptive fields, 
thus boosting the network’s feature extraction ability. We replaced the SPPF module with the SimSPPF module 
for faster inference and better feature representation. Furthermore, we modified the C2fLEFEM feature extraction 
module into the AMC2fLEFEM module, which extracts features of different scales by incorporating a simple 
attention module (SimAM) to increase the network’s feature learning capacity. Finally, to make the network more 
appropriate for low-light conditions, we replaced the initial detection head with a decoupled head. Experiments 
are carried out on the Exdark dataset, and quantitative and qualitative findings reveal that our method beats 
state-of-the-art methods and has higher detection accuracy.

Data availability
The datasets analysed during the current study are a-vailable at https:// github. com/ cs- chan/ Exclu sively- Dark- 
Ima- ge- Datas et.
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