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Predicting long‑term time 
to cardiovascular incidents using 
myocardial perfusion imaging 
and deep convolutional neural 
networks
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Cheng‑Hsueh Wu 2, I‑Fang Chung 1* & Kung‑Hao Liang 4*

Myocardial perfusion imaging (MPI) is a clinical tool which can assess the heart’s perfusion status, 
thereby revealing impairments in patients’ cardiac function. Within the MPI modality, the acquired 
three‑dimensional signals are typically represented as a sequence of two‑dimensional grayscale 
tomographic images. Here, we proposed an end‑to‑end survival training approach for processing 
gray‑scale MPI tomograms to generate a risk score which reflects subsequent time to cardiovascular 
incidents, including cardiovascular death, non‑fatal myocardial infarction, and non‑fatal ischemic 
stroke (collectively known as Major Adverse Cardiovascular Events; MACE) as well as Congestive Heart 
Failure (CHF). We recruited a total of 1928 patients who had undergone MPI followed by coronary 
interventions. Among them, 80% (n = 1540) were randomly reserved for the training and 5‑ fold cross‑
validation stage, while 20% (n = 388) were set aside for the testing stage. The end‑to‑end survival 
training can converge well in generating effective AI models via the fivefold cross‑validation approach 
with 1540 patients. When a candidate model is evaluated using independent images, the model 
can stratify patients into below‑median‑risk (n = 194) and above‑median‑risk (n = 194) groups, the 
corresponding survival curves of the two groups have significant difference (P < 0.0001). We further 
stratify the above‑median‑risk group to the quartile 3 and 4 group (n = 97 each), and the three patient 
strata, referred to as the high, intermediate and low risk groups respectively, manifest statistically 
significant difference. Notably, the 5‑year cardiovascular incident rate is less than 5% in the low‑
risk group (accounting for 50% of all patients), while the rate is nearly 40% in the high‑risk group 
(accounting for 25% of all patients). Evaluation of patient subgroups revealed stronger effect size 
in patients with three blocked arteries (Hazard ratio [HR]: 18.377, 95% CI 3.719–90.801, p < 0.001), 
followed by those with two blocked vessels at HR 7.484 (95% CI 1.858–30.150; p = 0.005). Regarding 
stent placement, patients with a single stent displayed a HR of 4.410 (95% CI 1.399–13.904; p = 0.011). 
Patients with two stents show a HR of 10.699 (95% CI 2.262–50.601; p = 0.003), escalating notably to 
a HR of 57.446 (95% CI 1.922–1717.207; p = 0.019) for patients with three or more stents, indicating 
a substantial relationship between the disease severity and the predictive capability of the AI for 
subsequent cardiovascular inciidents. The success of the MPI AI model in stratifying patients into 
subgroups with distinct time‑to‑cardiovascular incidents demonstrated the feasibility of proposed 
end‑to‑end survival training approach.
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Myocardial perfusion imaging (MPI) is a clinical modality which can be employed for assessing the cardiac 
perfusion in patients suspected of having compromised cardiac  function1–4. These people may have occasional 
chest discomfort or shortness of  breath5. After the examination, some may experience a slow and gradual disease 
progression, while others might see a more rapid deterioration in their cardiovascular (CV)  functions6. Precise 
prediction of outcomes would be very valuable for the clinical management of the patients. The coronary arter-
ies are essential to support oxygen to the myocardium. Individuals with impaired cardiac functions may exhibit 
constrained blood flow, particularly under stress  conditions7,8. MPI detects and records blood flow via radioactive 
tracers and single-photon emission computed tomography (SPECT)1. Acquired three-dimensional (3D) MPI 
datasets are typically represented as a series of two-dimensional (2D) cross-sectional slices orthogonal to three 
mutually perpendicular axes (short, horizontal, and vertical long), traversing different depths within the  heart1. 
This 2D tomographic representation can visualize cardiac conditions for  human9,10. The MPI is a useful tool for 
facilitating the diagnosis of heart function  impairments1, as well as for medical professionals to qualitatively 
foresee the future occurrence of major cardiovascular events.

In the realm of medical image processing such as color fundoscopy, X-rays, magnetic resonance imaging, 
computed tomography, ultrasound scans and MPI, the traditional workflow involves the sequential processing of 
images in two fundamental stages: (1) feature derivation, where specific attributes or patterns within the images 
are discerned and quantified. These attributes may encompass edge detection, texture analysis, or shape descrip-
tors; (2) feature-value correlation with relevant clinical characteristics, such as disease diagnosis, staging, or treat-
ment  planning11. Notably, these conventional approaches necessitate the design of features, demanding domain 
expertise of human. Moreover, manual selection of the most informative features can be inherently challenging, 
potentially missing subtle or intricate patterns crucial for accurate diagnosis. The recent breakthroughs in artifi-
cial intelligence (AI), particularly deep neural networks, enabled streamlined end-to-end training which ushered 
in a paradigm shift. These networks mimic the structural organization of biological neurons and offer well-suited 
frameworks for addressing tasks such as computer vision, natural language processing, and, increasingly, medi-
cal image analysis. This deep learning approach signifies a departure from traditional methods where feature 
derivation is done by manual, labor-intensive efforts. Among the diverse deep neural network architectures, the 
convolutional neural network (CNN) is particularly suitable to extracting spatial  features12. The convolutional 
kernels (also known as filters) can extract localized spatial features at multiple scales, a capability particularly 
apt for processing  images13. Furthermore, in typical CNN architectures, the extracted features undergo aggrega-
tion, facilitated by max pooling or average pooling functions. The convolutional layers and pooling layers are 
interwoven within the network’s architecture, resulting in a pyramidal, encoder structure, wherein contextual 
information is progressively distilled, layer by layer. In the applications of deep learning technique to MPI, CNN 
has demonstrated superior performance compared with multi-layer perceptron in classification  tasks14.

Nie et.al. used CNN to process magnetic resonance imaging (MRI) and derive features, which were sent to 
a support vector machine (SVM) module for patient  classification15. The two-step procedure does not function 
as a comprehensive end-to-end solution. Berkaya et al. developed a CNN and SVM based classification models 
to classify normal and abnormal (ischemia or infarction) SPECT MPI, where the CNN was used for the feature 
derivation, and SVM was subsequently used for the classification, i.e., a two-step  process16. Papandrianos et al. 
also addressed the classification problem, aiming to diagnose SPECT MPI images and achieve automatic classifi-
cation into normal or ischemic  categories17. The model utilized VGG-16 and DenseNet-121 pre-trained networks 
to obtain optimal results. Liu et al. examined the idea of using stress-state MPI images alone to automatically 
classify normal images and those with myocardial perfusion  abnormalities18. The performance of the AI model 
was similar to that of the conventional quantitative defect size  method18. Zahiri et al.19 and Apostolopoulos et al.20 
again aimed at classifying disease and non-disease patients. However, they employed a different approach in that 
they did not directly analyze the 2-D tomograms. Instead, they used a semi-manually processed formats called 
polar maps, which are of a circular visualization format showing the distribution of blood flow for the ease of 
human perception. Polar maps are derived from tomograms yet the procedure is not standardized across medical 
institutes which may hinder the wide use of this approach in many institutes.

Survival analysis is an important method in medical research for the assessment of time-to-event outcomes. 
It focuses on time-dependent event data, providing crucial insights into patient outcomes, treatment efficacy, 
and long-term prognosis, which cannot be adequately addressed by the binary classification of disease and 
non-disease. One important aspect of survival analysis is that it can handle the condition that some individuals 
have not experience the event during the follow-up period, referred to as "censored" data points, making it more 
flexible and appropriate for real-world medical data. Survival analysis provides a method of analyzing time-
dependent outcomes and allows researchers to assess not only the presence or absence of disease but also the 
timing and duration of events. With respect to the AI models for survival analysis, Zhu et al. proposed the Whole 
Slide Histopathological Images Survival Analysis framework (WSISA) to extract features from pathological slide 
images, finding discriminative patches and then predict patient survival  status21. Tang et al. utilized Capsule 
network to process the whole slide histopathological images to estimate the survival rates of glioblastoma and 
lung squamous cell  carcinoma22. However, both the two teams have not visualized longitudinal survival curves 
in the testing dataset.

Although CNN has been widely used for classification problems, a significant unmet need remains in the use 
of end-to-end deep learning technology directly for survival analysis. Therefore, in this study, we proposed a novel 
end-to-end survival training approach, and used a stringent cross-validation and testing procedure to demon-
strate the effectiveness of this approach in predicting time to cardiovascular incidents after the MPI examination.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3802  | https://doi.org/10.1038/s41598-024-54139-0

www.nature.com/scientificreports/

Methods
The patient cohort
A retrospective cohort of 3118 patients with symptomatic Coronary Artery Disease (CAD) who received coro-
nary intervention at the Taipei Veterans General Hospital between 2005 and 2015 were screened. Successful 
coronary interventions were performed and patients were followed in our outpatient clinic. This cohort was 
a retrospective observational study that complied with the Declaration of Helsinki and was approved by the 
appropriate Health Authorities, Independent Ethics Committees, and Independent Review Boards in Taipei 
Veterans General Hospital (2016-03-014CC). This study aimed to generate an MPI-AI model for subsequent 
outcome prediction in stable patients who received coronary intervention, therefore, patients who received 
coronary intervention due to acute coronary syndrome (myocardial infarction or unstable angina) or did not 
have MPI taken before coronary intervention were excluded for this analysis. This results in a cohort of 1928 
moderate-to-severe ischemia patients for this study (Fig. 1A). All patients included in this study have given 
informed consents. After successful coronary intervention, patients of this study were treated following the AHA 
guidelines for clinical practice and were followed  regularly23. The study examined the feasibility of end-to-end 
survival training, where the SPECT MPI scans are used to train the network to generate risk scores reflecting the 
subsequent cardiovascular events of interests (Fig. 1B). MPI taken before coronary intervention were obtained 
retrospectively from the Picture Archiving and Communication System (PACS) of the hospital.

Study outcomes and clinical events
The primary outcome was the composite of non-fatal myocardial infarction, non-fatal ischemic stroke, cardio-
vascular death (collectively referred to as Major Adverse Cardiovascular Events; MACE) and hospitalization for 
congestive heart failure (CHF). All these events together were referred to as the Total CV Events. Myocardial 
infarction was confirmed in patients presenting with ischemic symptoms with elevated serum cardiac enzyme 
levels and/or characteristic electrocardiogram (ECG) changes. Ischemic stroke was confirmed as an obstruction 
within a blood vessel supplying blood to the brain with imaging evidence by either MRI or CT scan and new 
neurological deficit lasting for at least 24 hours. The protocol for CV event follow-up was performed as previ-
ously  described24,25. We investigate the timing of occurrence of these cardiovascular incidents and the timing of 
MPI examinations, calculating the time to events. We also study clinical variables such as age, sex presence of 
diabetes, hypertension, hyperlipidemia, and smoking habits.

The MPI AI model needs to perform well on new data not specifically trained on, i.e., the capability of gen-
eralization. A model with such capability implied that it has learned the underlying patterns and relationships 
in the data rather than just memorizing the training data. To achieve this, the patients were randomly assigned 
into training/cross-validation cohort and testing cohort at the proportions of 80% and 20%, without one single 
patient appears in both cohorts (Fig. 1A). The model was derived from a training/cross-validation cohort and 
evaluated in an independent testing cohort.

End‑to‑end survival training for estimating the risks of cardiovascular incidents
We proposed here an end-to-end survival training approach, which aims to estimate the time to events using the 
baseline medical images. A specific task was used to demonstrate the feasibility of this approach, that is, training 
a MPI AI model for assessing patients’ risk with respect to future cardiovascular incidents and stratifying patients 
for Kaplan–Meier plot analysis (Fig. 1B). The events of interest are the total cardiovascular events (including 
MACE and CHF) of patients, and the input image is MPI scan presented in a format of 2D tomogram. This 
format comprises a total of 96 slices, including 48 slices taken at rest condition and 48 at stress condition. Each 
condition has 24 slices taken perpendicular to the short axis, 12 slices perpendicular to the horizontal long axis 
and 12 slices perpendicular to the vertical long axis. We used the CNN architecture, particularly ResNet50, for 
implementing the MPI AI model. The outstanding feature of ResNet lies in its use of skip connections or residual 

Figure 1.  Schematic diagrams of this research. (A) The flowchart of patient selection for this study. (B) 
Schematic diagram of the proposed end-to-end survival training architecture designed to evaluate the risk 
of patients with respect to their subsequent time to cardiovascular incidents. Myocardial perfusion images 
presented as a series of two-dimensional gray-scale slices which are perpendicular to the short, long-vertical 
and long-horizontal axes of the heart. This 2D tomographic presentation is defined as the input format of 
our MPI AI model, trained end-to-end with optimization functions related to the survival analysis. The risk 
scores derived from MPI AI model reflect patients’ subsequent outcome. Patient strata by the risk score can be 
analyzed using Kaplan–Meier plots.
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connections, addressing the vanishing gradient problem encountered in deep networks. Its effectiveness and 
stability have been extensively validated in numerous  studies26–28.

In the end-to-end survival training, we employed a stochastic gradient ascent method with MPIs in 
batches used for the training. The main difference between the proposed end-to-end survival training and 
conventional CNN is the optimization function. In survival analysis, some individuals did not experience the 
cardiovascular incidents during the study period before the end of follow-up, i.e. the "censored" observations. 
The Cox proportional hazards model, also known as the Cox regression, is often used for survival analysis where 
the goal is to maximize the likelihood function by choosing adequate coefficients of covariates (independent 
variables) in the regression equation. The likelihood function properly accounts for censored data, ensuring that 
the contribution of each individual is appropriately weighted.

 In end-to-end deep learning, we incorporated major concepts from Cox regression which captures the 
relationship between the survival time of subjects and predictor variables (in this case, the MPI in the format 
of numerical matrices, denoted as x). Data on the survival time (time to an event) are used for modeling the 
effect of predictor variables (x) on the hazard function of cardiovascular incidents using the following equation:

where h(t|xi) is the time (t)-dependent hazard function for an individual i with specific values of predictors xi. 
h0(t) is the baseline hazard at time t. xi represents the input of the MPI model from  patient i. f(xi) is the risk 
score generated by the MPI AI survival model estimated for the predictor variable xi. During the training and 
validation stage, we estimate f(x) using the partial likelihood as the optimization function. In each batch of the 
training process, the patient’s log likelihood is calculated:

where δi is the event (cardiovascular incident) indicator for patients from whom the image was taken. δi = 0 rep-
resents no event, and 1 represents an event. R(ti) represents the set of all patients for whom patient j’s survival 
time is equal to or greater than the time point ti.

In the study, we conducted an end-to-end survival training on the training and cross-validation cohort, where 
the model is referred to as the MPI AI model. The output of MPI AI is a risk score which should reflect the time 
to major cardiovascular events given the MPI scan as inputs. The evaluation metrics for our model performance 
included the C-index and statistical significance of log-rank tests. The fivefold cross-validation procedure was 
used to generate models in the training/cross-validation cohort. We utilized the validation set model with the 
highest C-index among the 1000, 2000, 3000 day analysis as the predictive model for the testing dataset.

We conducted experiments on a server with an NVIDIA A6000 GPU, operating under the Ubuntu 20.04 
operating system. All model training and evaluation were carried out using the Python 3.8.11 programming 
language and the PyTorch 1.12.1 framework. The hyperparameters used for the AI model construction is shown 
in Supplementary Table 129. Parameter configuration aimed to avoid image size reduction and minimize infor-
mation loss, using the original image size as input and setting a batch size of 16 to optimize GPU memory and 
training speed. Adam optimizer was used to provide adaptive learning for network coefficients, preventing 
rapid convergence and potential overfitting with a relatively low learning rate of 0.0001. The epoch number was 
chosen as 70 which is sufficient to perform a successfully training. These parameter settings demonstrated stable 
outcomes in both training and testing sets during fivefold validation, indicating consistent results.

Performance evaluation
Performance of the MPI AI with respect to patient stratification were evaluated using Kaplan–Meier plots and 
Receiver Operating Characteristic (ROC) curves. Kaplan–Meier plots were employed to analyze survival prob-
abilities, providing insights into event occurrences over time for different risk groups. As the cardiovascular 
incidents occur in different times after baseline, we use ROC for classifying patients at different time points (such 
as 1000, 2000 and 3000 days after baseline), or with or without cardiovascular events, disregarding event timing 
or censoring. ROC curves were also used when patients have been stratified into low, intermediate, and high-
risk groups. In such cases, ROC curves are composed of three straight lines connected by two turning points, 
where the two turning points indicate the sensitivity and specificity when the median risk score and the score 
that separate quartiles 3 and 4 were used as thresholds.

Results
Patient characteristics
A total of 1,928 patients who had received MPI examinations and coronary intervention were analyzed. The 
clinical characteristics of the training and cross-validation cohort and testing cohort were compared, and no 
significant difference of the values of basic clinical variables between the two cohorts were found (Table 1).

Total CV events during follow‑up
Clinical follow-up was carried out with all patients for a mean period of 1789 ± 983 days. During this time, 
there was 58 (14.95%) total CV events in the testing cohort and 228 (14.81%) total CV events in training and 
cross-validation cohort identified. All events were presented in Table 2 and the event rate was similar between 
two groups (Table 2).
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MPI AI model generation
MPI AI model were trained using the baseline MPI of the training/cross-validation cohort (n = 1540), and the 
performance is presented in Fig. 2. The ROCs of models for classifying patients with or without events regardless 
of the time of event occurrence, or at 1000, 2000 and 3000 days, are presented in Fig. 2A–D respectively. The study 
employed a fivefold validation process, hence these figure panels depict five ROC curves, each corresponding to 
a different segmentation of training and validation data. The five ROCs for classifying patients with or without 
events regardless of the time of event occurrence, when patients are categorized as three different risk subgroups 
(i.e. quartile 1 and 2 combined, quartile 3 and quartile 4) are shown in Fig. 2E. These ROCs, composed of three 

Table 1.  Baseline characteristics of study population. Data are mean ± SD, BMI indicates body mass index. 
BP, blood pressure, LDL-C low density lipoprotein-cholesterol, HDL high density lipoprotein-cholesterol, CAD 
coronary artery disease, SVD single vessel disease, DVD double vessel disease, TVD triple vessel disease, ACE 
angiotensin converting enzyme, ARB angiotensinogen receptor blocker.

Training and cross-validation Testing

pN = 1540 N = 388

Age 69.12 ± 12.43 68.45 ± 12.65 0.343

Male, n (%) 1117 (72.53) 295 (76.03) 0.164

BMI, Kg/m2 25.70 ± 4.07 25.93 ± 3.31 0.254

Hypertension, n (%) 1022 (66.36) 248 (63.92) 0.364

Diabetes, n (%) 558 (36.23) 150 (38.66) 0.376

Systolic BP, mmHg 131.84 ± 20.29 132.08 ± 20.34 0.838

Diastolic BP, mmHg 74.04 ± 11.49 73.97 ± 12.52 0.926

LVEF, % 54.24 ± 12.03 53.84 ± 10.65 0.721

Glucose, mg/dL 121.28 ± 41.65 122.83 ± 41.92 0.569

Cholesterol, mg/dL 173.83 ± 42.01 174.16 ± 40.29 0.892

LDL-C, mg/dL 106.73 ± 34.63 108.11 ± 33.71 0.488

HDL-C, mg/dL 43.32 ± 12.36 43.13 ± 11.02 0.770

Triglyceride, mg/dL 136.74 ± 83.24 137.03 ± 88.30 0.953

TC/HDL-C ratio 4.28 ± 1.52 4.26 ± 1.43 0.809

Creatinine 1.54 ± 1.68 1.52 ± 1.72 0.890

CAD severity

 SVD, n (%) 106 (27.32) 438 (28.44)

0.701 DVD, n (%) 126 (32.47) 507 (32.92)

 TVD, n (%) 155 (39.95) 594 (38.57)

Total stents, n 1.85 ± 1.08 1.78 ± 1.01 0.295

Total stents size, mm 3.06 ± 0.44 3.05 ± 0.40 0.670

Total stents length, mm 23.36 ± 5.99 23.10 ± 6.27 0.494

Medication

 ACE inhibitor/ARB, n (%) 842 (54.68) 210 (54.12) 0.845

 β-blocker, n(%) 787 (51.10) 199 (51.29) 0.948

 Calcium channel blocker, n (%) 586 (38.05) 163 (42.01) 0.153

  Diuretics, n (%) 194 (12.60) 54 (13.92) 0.488

  Statin, n (%) 897 (58.25) 219 (56.44) 0.520

Table 2.  Clinical adverse cardiovascular events. MACE major adverse cardiovascular event. All CV events 
include MACE and CHF hospitalization.

Training and cross-validation Testing

pN = 1540 N = 388

Non-fatal MI 72 (4.68) 19 (4.90) 0.854

Stroke 23 (1.49) 8 (2.06) 0.426

CV death 33 (2.14) 5 (1.29) 0.279

MACE 119 (7.73) 32 (8.25) 0.733

CHF hospitalization 128 (8.31) 35 (9.02) 0.654

All CV event 228 (14.81) 58 (14.95) 0.943
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straight lines with two turning points, present risk stratification into low, intermediate, and high-risk groups 
using different thresholds. The Kaplan–Meier plot of the three risk subgroups of patients is shown in Fig. 2F. The 
model performances across folds are relatively robust, as the curves in Fig. 2A–D are relatively close to each other.

We then employ the candidate model to stratify patients of the testing cohort, an independent cohort from the 
training/validation cohort, using the MPI AI model. Patients in the testing cohort are stratified into two distinct 
risk groups: those with a risk score below the median and those with a risk score above the median. The distinct 
patterns of the patient strata in their time to major adverse cardiovascular events are graphically represented as 
Kaplan–Meier plots, and their significant difference are evaluated using log-rank tests (P < 0.0001), indicating 
that the MPI AI-derived risk score is a robust predictor of major adverse cardiovascular events (Fig. 3A). Within 
the above-median risk group, we performed additional stratification, dividing it into two subgroups: quartile 
3 and quartile 4, and referred to as the intermediate risk group and high-risk group respectively, for evaluating 
whether the AI model can further stratify patients with different levels of risks. The three strata revealed visually 
different survival curves in the Kaplan Meier plot (Fig. 3B). The high and intermediate risk groups have signifi-
cant difference (P = 0.0023). The intermediate-risk and the low-risk groups also manifest statistically significant 
difference (P = 0.0472). When the low-risk group (accounting for 50% of all patients) and the high-risk group 
(accounting for 25% of all patients) are compared, the difference in survival curves is very significant (P < 0.0001). 
Notably, the 5-year cardiovascular incident rate is less than 5% in the low-risk group, while the rate is nearly 
40% in the high-risk group.

We further evaluated the number of blocked vessels, assessed by the interventional cardiologists regarding 
the three major coronary arteries—Left Anterior Descending (LAD), Left Circumflex (LCx), and Right Coronary 
Artery (RCA). The grading of blockages established severity levels, further stratifying this moderate-to-severe 
patient population with their different risks: single vessel disease (SVD), double vessel disease (DVD), and triple 
vessel disease (TVD). In Fig. 3C, the Kaplan–Meier plots exhibit the survival analysis of patients categorized into 
three groups based on their coronary artery disease severity. It showed the survival curve of the occurrence of 
total CV events depends on the diseased vessel number. The risk of developing total CV events correlated with 
underling coronary disease severity. To evaluate the value of MPI-AI derived risk score in clinical use, its per-
formance was compared with the uses of coronary artery severity. In addition, traditional risk factors including 
age, gender, history of hypertension and diabetes were also compared. For MACE, the AUC of MPI-AI risk score 
is 0.779, which is significant higher than that of the clinical risk factors (AUC: 0.639); disease vessel numbers 

Figure 2.  MPI AI model performance in the training/cross-validation stage (n = 1540). (A) The receiver 
operating characteristic curves (ROC) of 5 models generated in the fivefold analysis, for classifying patients 
with or without events regardless of the time of event occurrence. (B) The ROC of detecting events occurred 
within the first 1000 days of observation. (C) The ROC of detecting events occurred within the first 2000 days of 
observation. (D) The ROC of detecting events occurred within the first 3000 days of observation. (E) The ROCs 
after the patients are divided into three subgroups with different risk levels, using the median risk score and 
the threshold that separate quartiles 3 and 4. (F) The Kaplan–Meier plots of patient strata, separated into three 
different risk subgroups.
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(AUC:0.577); combined traditional risk factors and disease vessels (AUC:0.647) (Fig. 3D) For All CV events, the 
AUC of MPI-AI risk score is 0.747, the clinical risk factors (AUC: 0.620); disease vessel numbers (AUC:0.577) 
and AUC of combined traditional risk factors and disease vessels is 0.636 (Fig. 3E; Table 3). Notably, the model, 
trained solely on total CV events, exhibits strong predictive performance for MACE as well. MPI-AI derived 
risk score have significant greater improvement in future outcome prediction than considering of clinical tradi-
tional risk factors and underlying coronary disease severity. In addition, AUC of the MPI-AI risk (AUC:0.747) 
is significantly higher than stent number deployed (0.530), indicating MPI-AI derived risk score provide better 
predictive value than stenosis lesions in clinical practice (Fig. 3F). Figure 3D–F revealed the limitations of using 
conventional classifiers such as blocked vessel or stent numbers and the excellency of MPI derived score in 
predicting imminent MACE or total CV events.

The subgroup analysis of the MPI AI score showed that patients with three blocked vessels (n = 155) exhibit 
a substantially higher hazard ratio of 18.377 (95% CI 3.719–90.801; p < 0.001), followed by the subgroup with 
two blocked vessels (HR = 7.484, 95% CI 1.858–30.150; p = 0.005) and the subgroup with blocked vessel num-
ber ≤ 1 (HR = 2.060, no statistical significance). This suggests that the MPI AI model is suitable for patients with 
blocked vessel number ≥ 2 (Fig. 3G). We also evaluated the subgroups with different number of stent placement. 
Patients without stents (n = 64) display a hazard ratio of 11.535 (95% CI 0.797–166.933) but have not achieved 
statistical significance. Those with a single stent (n = 163) exhibit a hazard ratio of 4.410 (95% CI 1.399–13.904; 
p = 0.011). Patients with two stents (n = 102) show a hazard ratio of 10.699 (95% CI 2.262–50.601; p = 0.003). In 
the extreme cases where patients with three or more stents (≥ 3) (n = 60) show a remarkably high hazard ratio 
of 57.446 (95% CI 1.922–1717.207; p = 0.019), indicating a potentially substantial association between multiple 

Figure 3.  MPI AI model performance in the testing cohort (n = 388). (A) The risk score derived from the 
baseline MPI images can stratify patients into below-median-risk group (shown in blue color, also referred to 
as the low-risk group) and above median-risk group (shown in red color), which have significant difference in 
their time to cardiovascular incidents (P < 0.0001). (B) The above-median risk group were further stratified into 
two equal-sized groups (n = 97 each), and referred to as the high (shown in green color, and corresponds to the 
4th quartile) and intermediate (shown in red color, and corresponds to the 3rd quartile) risk groups respectively. 
The corresponding survival curves of the two groups have significant difference (log-rank P = 0.0023). The 
intermediate risk and the low risk groups, also manifest statistically significant difference (log-rank P = 0.0472). 
When the low-risk group (corresponds to the 1st and 2nd quartiles together, accounts for 50% of all patients) 
and the high-risk group (accounts for 25% of all patients) are compared, the difference in survival curves is 
very significant (log-rank P < 0.0001). (C) The Kaplan–Meier plots of patients stratified as single vessel disease 
(SVD), double vessel disease (DVD) and thriple vessel disease (TVD). (D) The ROC of clinical model, vessel 
number, clinical and vessel combined model, as well as the MPI score for MACE events. (E) The ROC for Total 
CV events. (F) The ROC of patients stratified using the stent number. (G) The forest plot illustrates hazard ratios 
(HR) and their 95% confidence intervals (CI) for various clinical and ICA factors on the association between 
MPI derived scores and cardiovascular incidents. Among 388 patients, the score showed a strong association 
(HR: 8.328, 95% CI 3.604–19.245; p < 0.001). Male patients (n = 295) exhibited a higher association (HR: 
13.411, 95% CI 4.290–41.926; p < 0.001) compared to the overall population, while females (n = 93) displayed 
a significant but comparatively lower association (HR: 5.535, 95% CI 1.355–22.603; p = 0.017). Evaluation of 
blocked vessels revealed stronger associations in patients with more blockages (HR: 18.377 for three vessels, 
p < 0.001), while the presence of stents showed a rising trend in model performance, peaking notably in cases 
with three or more stents (HR: 57.446; p = 0.019) despite a smaller sample size.
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stents and stenosis risk, despite the small sample size. Overall, the hazard ratio increases notably as the number 
of stents inserted rises.

The performance of the end‑to‑end‑derived MPI AI model is comparable with the model utiliz‑
ing clinical variables
We also evaluated whether the addition of clinical information into the neural network can further improve 
the performance. To do so, we designed a generalized framework to evaluate models with or without clinical 
data (Fig. 4A). For model evaluations, we introduced three different representative time points, i.e., 1000 days, 
2000 days, and 3000 days after baseline. The performance of the multivariate clinical model is then shown as 

Table 3.  Comparison of predictors for future events. Clinical risk factors included age, gender, history of 
hypertension and diabetes. *Indicates P < 0.05 compared with clinical risk factors. Ψ Indicates p < 0.05 compared 
with combined traditional risk factors + disease vessel numbers. ※ Indicates p < 0.05 compared with disease 
vessel numbers.

AUC P

MACE

 Clinical traditional risk factors 0.651 (0.559–0.743) 0.060

 Disease vessels numbers 0.557 (0.459–0.655) 0.304

 Combined traditional risk + Disease vessel number 0.653 (0.561–0.745)※ 0.094

 MPI-AI risk score 0.727 (0.634–0.821)*Ψ※  < 0.0001

Total CV events

 Clinical traditional risk factors 0.620 (0.544–0.695) 0.098

 Disease vessels numbers 0.577 (0.504–0.650) 0.058

 Combined traditional risk + Disease vessel number 0.636 (0.562–0.711)*※ 0.075

 MPI-AI risk score 0.747 (0.679–0.814)*Ψ※  < 0.0001

Figure 4.  (A) This generalized schematic diagram accommodating inputs with the MPI only, with the clinical 
variable only, or with the combination of clinical variables and MPI. (B) The performance of the clinical 
AI model; (C) the MPI AI model, and (D) the combined model for classifying patients with or without 
cardiovascular incidents at 1000, 2000, and 3000 days after baseline, visualized as the time-dependent receiver 
operating characteristic curves.
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the time-dependent receiver operating characteristic curve at these time points. Heart diseases related clinical 
variables, including age, sex, diabetes, hypertension, hyperlipidemia, and smoking, are provided as inputs into 
the neural network. The performance of the clinical variable neural network in the independent testing dataset 
is shown in Fig. 4B, where the highest AUC was reached in classifying events before day 1000 (AUC = 0.72). 
For the MPI AI alone model, the highest AUC was reached in classifying events before day 2000 (AUC = 0.78, 
Fig. 4C). When the clinical data served as additional entry nodes to the MPI AI model, the highest AUC was 
reached in classifying events before day 2000 (AUC = 0.74, Fig. 4D). This demonstrates that using MPI images 
alone yielded the most favorable results.

Discussions
In this study, we employed deep learning technology to autonomously discover intricate associations of a dense 
array of signals such as MPI with clinical events and times, revolutionizing survival analysis which was previously 
limited to the scope of finite number of clinical variables. This transformative shift has unleashed the potential for 
automated, hands-free extraction of image features which can adequately reflect patients’ outcome. The proposed 
novel approach, end-to-end survival training, was applied successfully to the risk assessment of cardiovascular 
incidents using MPI, which are processed by the AI model trained in one cohort and validated in an independent 
cohort with images unseen previously. The trained model is capable of stratifying patients in the testing cohort 
into risk groups. Stratification based on median risk scores and quartiles allows for the distinguishing of differ-
ent risk groups. The study’s strength lies in its ability to visually represent distinct patterns of patient strata in 
Kaplan–Meier plots, demonstrating clear differences in time to cardiovascular incidents. This demonstrates the 
robust predictive power of AI-derived risk scores based on baseline MPI images.

In the current clinical guidelines (e.g. 2021 AHA guidelines), patients with moderate-to-severe ischemia on 
MPI are recommended for  ICA23. This research was conducted under the viewpoint that patients with moderate 
to severe ischemia are confronted by their varying, imminent risk of cardiovascular incidents. The estimation 
of risks for individuals in this population can facilitate their treatment planning. The patients included into this 
study were all considered to have moderate-to-severe conditions, and had received ICA as well as MPI. The risk 
stratification using baseline MPI demonstrated significant implications for cardiovascular risk assessment. We 
want to set aside approximately one quarter of patients that has a particularly high elevated risk of subsequent 
cardiovascular incidents who might benefit most from closer monitoring. Stratifying patients into low and 
high-risk groups based on median risk scores provides a straightforward categorization, aiding in comparative 
analysis. It allows for a clear differentiation between patients with lower versus higher predicted risks. Dividing 
the high-risk group further into quartiles allows for a more nuanced analysis within this cohort. Quartiles 3 and 
4 represent subsets of patients with progressively higher risk scores within the high-risk category, enabling the 
identification of even higher-risk subgroups. In this moderate-to-severe patient population, the 5-year cardio-
vascular incident rate is less than 5% in the low-risk group identified by our AI model (accounting for 50% of 
all patients), while the rate is nearly 40% in the high-risk group (accounting for 25% of all patients), who should 
receive more attention due to their elevated risk.

MPI is common used tool for CAD diagnosis which can provide the information of target diseased vessel and 
ischemic myocardium involved. Our study first generated a MPI-AI algorithm for future outcome prediction in 
CAD patients after successful coronary intervention. To our interest, the risk score from MPI-AI algorithm has 
significant predictive values than number of disease vessels or stents implanted, suggesting this risk score from 
MPI-AI algorithm could be used as risk stratification in stable CAD patients after successful PCI. In Fig. 3D 
and E, we showed that the number of coronary artery blockages alone does not reflect the risk of MACE/Total 
cardiovascular incidents as good as our MPI AI model.

We also evaluated the model performance on a predictive score for cardiovascular incidents in various clinical 
subgroups (Fig. 3G). The forest plot demonstrates how different factors such as gender, the number of blocked 
vessels, and stent placement impact the risk of stenosis, providing insights into the varying degrees of associa-
tion given these clinical and angiography factors. Among the patients in the testing cohort, the score showed 
a strong association. Male patients exhibited a higher association compared to the overall population, while 
females (n = 93) displayed a significant but comparatively lower association. Evaluation of blocked vessels revealed 
stronger associations in patients with more blockages, while increased stent numbers correlated with higher 
hazard ratios for stenosis risk. In the moderate-to-severe patient group, the response to treatment and disease 
progression can differ significantly even for patients with the same number of blockage (2 or 3), or receiving the 
same number of stent (1 or 2), an observation which indicates the importance of using MPI AI for fine-grain 
stratification. Although some of the subgroups does not show statistical significance due to reduced sample size, 
the general trend in the forest plot showed that hazard ratio increases as the disease severity increases, a trend that 
is consistent with the intuition and suggests that the AI model has captured the essence of the disease severity. 
Factors such as the presence and effectiveness of collateral circulation around blocked arteries can vary between 
individuals. This collateral circulation might mitigate the impact of severe blockages in some patients, reducing 
their imminent risk. Furthermore, some plaques might be stable, while others are prone to rupture, leading to 
a sudden blockage and subsequent cardiovascular incidents. Imaging techniques like intravascular ultrasound 
(IVUS) or optical coherence tomography (OCT) may provide insights into plaque characteristics, helping predict 
potential risks, after these new modalities achieve wide acceptance and be introduced to the clinical  work30,31.

The time-dependent receiver operating characteristic curves, as illustrated in Fig. 4B–D, provide insights 
into these analyses. It is evident from the figures that the clinical model excels in predicting cardiovascular 
incident events occurring within the first 1000 days (as indicated by the ROC curve being closest to the outer-
most point), while the MPI AI model performs optimally in predicting events occurring within 2000 days. The 
combination of both models yields the best prediction performance for cardiovascular incident events occurring 
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within 2000 days. In other words, the clinical model is more suitable for more imminent events, while the MPI 
AI model is capable of predicting long-term events. While clinical variables are relevant to heart diseases, we 
found that their incorporation alongside MPI might not always enhance predictive performance. While this 
may seem beneficial by incorporating more information, the addition of clinical variables to the MPI-AI neural 
network could introduce increased complexity. Interactions between the MPI-AI features and clinical variables 
might not be adequately captured or might introduce unexpected interactions that diminish the model’s predic-
tive power. Failure to account for these complex interactions could impact the model’s accuracy. Additionally, 
the neural network might inherently prioritize certain types of data over others. For example, the model might 
be biased towards learning more from clinical variables rather than the MPI. This bias could overshadow the 
potential synergistic contribution of clinical information and MPI, leading to relatively poorer performance. 
Furthermore, the timing of when the clinical variables are most informative might differ from the timing of the 
MPI in predicting events. As seen in the results, the highest AUC for the clinical model was before day 1000, 
whereas the MPI images alone showed better performance before day 2000. This discrepancy suggests that the 
clinical variables might not offer additional relevant information within the specific timeframes being assessed. 
While our initial attempt to include clinical variables alongside MPI didn’t yield improved results, refining this 
approach could involve feature selection, identifying more informative clinical variables, or modifying the way 
these variables are integrated into the model.

The end-to-end survival training approach can be applied to coronary Computed Tomography Angiography 
(CTA). This requires the use CTA as the input signal for training the AI model. The loss function is the same as 
the MPI AI model. The use of CTA is a good direction for our future research. Rather than utilizing individual 
patient risk scores as the ground truth, our methodology directly employed the time-to-event data, comprising 
both the occurrence and timing of censored and non-censored events, within our end-to-end training process. 
This approach aligns with the principles of Cox regression, aiming to ascertain coefficients for a regression equa-
tion that elucidates the time-to-event dynamics within a patient batch.

The MPI AI model, although powerful, still have inherent limitations. We did not include negative-mild 
ischemia patients in the current study, which makes the current AI model incapable of estimating the risk of 
patients who still have varying degrees of cardiovascular risks despite not showing perfusion abnormalities. 
Patients with negative or mildly ischemic MPI results could still benefit from preventive strategies to mitigate 
potential future risks, in this sense, the current AI model has yet to provide a complete picture of the entire 
patient spectrum. Therefore, we will incorporate negative-mild ischemia patient populations into our future 
study, offering opportunities to these patients for early intervention and tailored management plans.

In the future, we plan to do the following to potentially improve the model’s performance. We will evaluate 
model with different scales such as ResNet18 and ResNet101 in additional to Res50 for a more comprehensive 
assessment. Increasing the sample size of the training dataset in the current study is crucial for improving the 
model’s performance. We will employ techniques such as semi-supervised learning to utilize unlabeled data 
in conjunction with the limited labeled dataset. These methods can leverage the structure within the data to 
improve model performance even with limited labeled dataset. Additionally, Combining datasets from multiple 
sources can potentially compensate for the limitations of a small dataset and enhance model performance. We 
will seek collaborations with other institutions or research groups, probably with the federated learning technol-
ogy, to access larger datasets for validation or fine-tuning purposes. Furthermore, we will use stopping criteria 
to dynamically determine the length of training/validation, as opposed to the current method of fixing the 
number of epochs for training. We will also improve model interpretability using techniques like saliency maps 
or GradCAM  visualization29 which can provide insights into the features or areas that is crucial for reflecting 
subsequent risks of cardiovascular incidents, aiding clinicians in the interpretation of MPI.

Conclusion
We demonstrated feasibility of the proposed end-to-end survival training for patient stratification according 
to the estimated risk of subsequent cardiovascular incidents. By leveraging this technology, the research sought 
to maximize the power of deep learning with the learned features from MPI which can be used to indicate car-
diovascular incidents. These findings underscore the potential clinical utility of the trained MPI AI model in 
future risk assessment and highlight the ability to further refine risk stratification within high-risk patient popu-
lations, such as those who have three blocked vessels. The trained model has significant implications for patient 
management and the development of personalized healthcare strategies in the context of cardiovascular disease.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available, as we are still investi-
gating a suitable approach of data release. Currently, data will be available for academic scientists upon reasonable 
request to the corresponding authors.
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