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WiFi‑based non‑contact human 
presence detection technology
Yang Zhang 1*, Xuechun Wang 2, Jinghao Wen 3 & Xianxun Zhu 4

In the swiftly evolving landscape of Internet of Things (IoT) technology, the demand for adaptive 
non-contact sensing has seen a considerable surge. Traditional human perception technologies, such 
as vision-based approaches, often grapple with problems including lack of sensor versatility and 
sub-optimal accuracy. To address these issues, this paper introduces a novel, non-contact method for 
human presence perception, relying on WiFi. This innovative approach involves a sequential process, 
beginning with the pre-processing of collected Channel State Information (CSI), followed by feature 
extraction, and finally, classification. By establishing signal models that correspond to varying states, 
this method enables the accurate perception and recognition of human presence. Remarkably, this 
technique exhibits a high level of precision, with sensing accuracy reaching up to 99% . The potential 
applications of this approach are extensive, proving to be particularly beneficial in contexts such 
as smart homes and healthcare, amongst various other everyday scenarios. This underscores the 
significant role this novel method could play in enhancing the sophistication and effectiveness of 
human presence detection and recognition systems in the IoT era.
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In contemporary society, the observation and interpretation of human activities carry substantial societal value. 
The choice of appropriate technologies for human perception has emerged as a significant area of modern 
research1–3. Conventional human perception technologies mainly include vision4, sensors5, and infrared6. Vision-
based methods entail collecting images or videos through a camera, followed by the application of image process-
ing algorithms for recognition and perception. Despite its high accuracy, this technique is notably vulnerable 
to lighting conditions’ variability, and the capture of video images may encroach on individual privacy. The 
sensor-based approach requires users to constantly wear sensors, potentially causing interruptions in their daily 
activities. Infrared-based methods, employing infrared sensors for human perception, are plagued by a high 
frequency of false alarms and are easily obstructed.

In 2011, aiming to surmount the limitations of traditional technologies, Halperin et al.7 developed a WiFi 
device firmware based on the IEEE 802.11n standard. This pioneering effort aimed to simplify the collection of 
CSI, laying the groundwork for human perception recognition. Subsequent to this advancement, various research 
groups and scholars have thoroughly explored CSI-based human perception technologies8,9,24,25. In 2016, the 
WiFi ID method proposed by Zhang et al.10 utilized Fourier transformation and the relief algorithm to extract 
gait information, performing gait recognition via the Support Vector Machine (SVM) algorithm and achieving an 
average accuracy rate of 93% . In 2017, Shi et al.11 executed human identification using a neural network model, 
attaining an accuracy rate of 94% . Despite the swift progression in the theoretical foundation and practical appli-
cation of wireless sensing technology12,13, significant challenges such as inadequate robustness, low accuracy, and 
limited universality, continue to prevail26–28. This paper introduces a cutting-edge, non-contact human presence 
detection technology based on wireless sensing. The interpretation of the gathered sensing information allows for 
the identification of individuals within the sensing area, thereby enabling high-precision, non-contact sensing.

System block diagram
The block diagram of the WiFi-based non-contact human presence sensing system proposed in this paper is 
presented in Fig. 1. Initially, a network card with modified firmware is utilized to gather channel state informa-
tion. Following this, noise is mitigated using a low-pass filter and wavelet transform. Subsequently, an algorithm 
founded on a neural network is employed to extract distinguishing features. Ultimately, machine learning tech-
niques are used to classify and identify human states.
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Relevant theories
According to the IEEE 802.11 standard, the process of WiFi signal transmission is segmented into various 
subcarriers, each operating at a distinct frequency. The propagation paths of these subcarriers through the 
environment differ, leading to the diversity observed in the CSI data14. The CSI encompasses a range of data, 
including the time delay, amplitude attenuation, and phase shift experienced during the signal’s transmission 
and reception. Essentially, CSI represents the physical layer information of the subcarriers, characterizing the 
cumulative effect on wireless signals at the receiver after undergoing reflection, refraction, and scattering across 
different environmental paths29.

In the frequency domain, the communication model for a system employing multiple transmitting and 
receiving antennas, characterized by narrowband flat fading, is represented as follows:

Here, y denotes the received signal, x symbolizes the transmitted signal, n represents noise, and H is the signal 
transformation matrix. This matrix H reflects the impact of the external physical environment on the transmit-
ted signal x, as it propagates from the transmitter to the receiver, transforming into y. The matrix H can also be 
estimated using the following equation:

CSI is essentially a representation of H. At the receiver, the CSI for each subcarrier can be quantified in terms of 
amplitude and phase, as per the equation:

In this notation, Hi signifies the value of the ith subcarrier in the Channel State Information, ‖Hi‖ represents 
the amplitude of the ith subcarrier, and ∠Hi denotes the phase of the ith subcarrier30. The Signal-to-Noise Ratio 
(SNR) plays a critical role in this context, as it quantifies the level of the desired signal relative to the background 
noise, which is crucial in analyzing the quality and reliability of the communication channel. Variations in the 
environmental conditions during the wireless signal transmission can lead to multipath propagation, encom-
passing a line-of-sight path and several paths involving reflection and refraction15,22. The crux of this paper is 
to analyze the alterations in channel propagation, induced by environmental changes during the propagation 
process, to facilitate the detection of human presence.

Methodology
Pretreatment
The channel state information acquired directly is susceptible to low-pass noise and, therefore, cannot be directly 
employed for human presence detection. Accordingly, a low-pass filtering method is chosen20. This technique 
exploits the characteristics of inductors with high resistance at low frequencies and capacitors with low resistance 
at high frequencies to perform data denoising. The formula is as follows:

(1)y = Hx + n

(2)Ĥ =
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Figure 1.   System block diagram.
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where R is the resistance, l is the load series inductor, C is the parallel capacitor at both ends of the load resist-
ance, and fc is the cutoff frequency.

To augment the detection of indoor human activities, wavelet transforms17, recognized for their aptitude to 
differentiate high and low-frequency components, are employed for noise reduction. The core principle hinges on 
signal extraction through localized transformations in both spatial and frequency domains. By employing scal-
ing and translation, the CSI is analyzed multi-scale. This approach distinctly segregates high and low-frequency 
components, enhancing the robustness and precision of the sensing technology.The mathematical representations 
of the hard(φ�hard(̟)) and soft ( φ�soft(̟) ) thresholding functions are shown in Eqs. (6) and (7), respectively.

where ̟  is the wavelet coefficient, � the threshold value, and sgn(.) denotes the signum function. In hard thresh-
olding, the coefficient is nullified if its absolute value is below the threshold, while preserved otherwise. In 
contrast, the soft thresholding reduces the absolute value of each coefficient by � and sets it to zero if the result 
is non-positive.

Feature extraction
While preprocessing significantly improves signal quality, the extensive volume of data complicates the direct 
classification and interpretation of human activities. A self-organizing neural network18, utilizing unsupervised 
learning with a competitive approach, skillfully extracts channel state information features following preprocess-
ing. This network primarily consists of input and output layers, dedicated to classification and clustering tasks. 
The operation sequence is as follows:

The data first undergoes normalization to facilitate uniformity in subsequent processes. This step is math-
ematically represented as:

Post-normalization, a similarity metric identifies the most relevant neurons. This involves the normalization of 
the weight vectors, expressed as:

where X̂ and Ŵj denote the normalized input and weight vectors, respectively.
The core of the competitive learning algorithm is to minimize the distance between the input vector and the 

weight vector of the selected neuron. This is encapsulated by the following equation:

where j∗ represents the index of the winning neuron.
Subsequently, the output values are updated as follows:

where yj(t + 1) denotes the output of the jth neuron at time (t + 1).
For the winning neuron, the weight vector is refined using the equation:

Here, Ŵj∗(t) is the weight vector at time t, adjusted to reduce the disparity with the input vector X̂ . The term α , 
representing the learning rate, falls within the range (0, 1]. It regulates the adaptation pace and magnitude of 
the weight vectors.

As the iteration count t progresses, the learning rate α gradually reduces to zero. This decline ensures the con-
vergence and stability of the learning algorithm, thus preventing any potential overshooting of the optimal weight 
configuration. This methodical reduction in α is pivotal for the efficacy and efficiency of the learning process16.

Classification
In the pursuit of classifying and discerning features indicative of human presence, this study employs a softmax 
classifier19. This classifier adeptly computes probabilities for various states corresponding to different feature 
vectors. The operational flow of the softmax classifier is outlined as follows:

Initially, data is introduced into the input layer. It then traverses through two distinct feature layers, undergo-
ing processing and transformation. Conclusively, the softmax function is applied, ensuring that each output is 
normalized to a probability range of 0 to 1. This normalization is formally represented as:
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(

X̂ − Ŵj∗
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for an input vector x ∈ R
K , where i is the index of a particular element, and K is the total number of classes.

Through this process, the classifier effectively transforms raw data into a probability distribution, facilitat-
ing the interpretation of each output as a conditional probability under various scenarios. This probabilistic 
framework allows for a more nuanced and accurate classification, pivotal in the intricate task of human presence 
feature recognition.

Ethics approval
This article does not contain any studies with human participants performed by any of the authors.

Experiment and analysis
Experimental setup
In response to the necessity for detailed experimental methodologies and architectural insights, this document 
meticulously delineates the experimental procedures, ensuring lucidity and reproducibility.

Experimental setup: The CSI dimension in our study is 1*3*30. This configuration comprises 1 transmitting 
antenna and 3 receiving antennas. The experimental hardware involves two Lenovo desktop computers, each 
powered by Intel Core i5800 CPUs. The transmitting computer is equipped with a single antenna, while the 
receiving computer features three antennas. The wireless transceiving system includes a Monitor Point (MP) for 
signal reception and an Access Point (AP) for signal transmission. The spatial arrangement of these antennas 
is illustrated in Fig. 2.

Software and model construction: The model is developed on MATLAB, a platform well-regarded for its 
robust capabilities in algorithm development and simulation. To ensure a consistent operational environment, 
both computers utilize Ubuntu 14.04 LTS. Equipped with Intel 5300 network cards, these systems are subjected 
to precise kernel and driver configurations prior to the installation of the CSI toolbox, as referenced in23. This 
toolbox is instrumental in processing the CSI, offering a comprehensive suite of functionalities for analyzing and 
interpreting wireless signal characteristics. It facilitates the extraction and manipulation of CSI data, essential 
for our research. Moreover, the Self-Organizing Map neural network employed in our study is configured with 
a default output dimension of 100, optimizing the performance for our specific application.

Data collection environment and process: Data was gathered in two distinct environments to evaluate the 
model’s versatility and efficacy under various conditions. The first environment was a laboratory measuring 6.5 m 
by 8 m, filled with test benches, chairs, and computers, presenting significant obstructions and strong multipath 
interference. The second was a spacious conference room, sized 9.5 m by 11 m, where multipath interference 
was minimal. In each setting, 200 datasets representing both occupied and unoccupied states were meticulously 
collected, with each session lasting 180 s and involving the transmission of 100 Channel State Information 
packets per second. The data was collected at different speeds and by different personnel, with a training and 
testing set ratio of 8:2.

Dataset and validation: Due to the lack of a standardized dataset for human presence detection, our research 
utilizes a proprietary dataset for model validation. This dataset covers two distinct scenarios, facilitating a thor-
ough evaluation.

Evaluation metrics: To comprehensively evaluate the performance of our experiment, we utilized the True 
Positive Rate (TPR) and False Positive Rate (FPR) as key metrics. The True Positive Rate refers to the probability 

(13)Softmax(x)i =
exi

∑K
j=1 e

xj

Figure 2.   Experimental environment plan.
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of successfully detecting the presence of a person in the test set when someone is actually present. Conversely, 
the False Positive Rate indicates the probability of incorrectly identifying the presence of a person when, in 
reality, no one is present.

Baseline
To benchmark our model, the dataset is also utilized in replicating the methodologies outlined in the references 
FreeSense, Wi-alarm, and HAR.

FreeSense17: FreeSense identifies human motion by detecting the phase difference of amplitude waveforms 
on multiple antennas.

Wi-alarm18: Wi-alarm uses raw channel state information for human motion monitoring and uses SVM for 
detection.

HAR21: In this study, the author used CNN to perform edge detection on CSI data, enhancing human activity 
recognition based on WiFi.

Performance evaluation
Overall performance evaluation: To effectively assess its overall performance, the method was compared with 
FreeSense17, Wi-alarm18, and HAR21. As shown in Figs. 3 and 4, the method achieved the lowest FPR value across 
different data types, averaging approximately 1.2% , with a high TPR of 99.5% . This indicates fewer false alarms 
triggered by the method when detecting human presence.

Performance analysis in different environments: The versatility of our approach was further substantiated 
through a series of experiments conducted in diverse environments and postures, as depicted in Fig. 5. These 
figures illustrate the influence of environmental conditions on performance metrics. In both conference room and 
laboratory settings, the average TPR for detecting human presence was recorded at 98.8% and 98.4% , respectively, 
while the average FPR was 1.3% and 1.5% . This indicates a minor variance in the accuracy of human perception 
technology across different testing environments. The more spacious conference room experienced a reduced 
multipath effect. Conversely, the laboratory, smaller in size and cluttered with numerous objects, exhibited 

Figure 3.   Overall performance evaluation FPR.

Figure 4.   Overall performance evaluation TPR.
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stronger multipath interference, leading to a decline in signal quality. Nevertheless, the overall TPR consistently 
exceeded 96% . Notably, the SNR in the conference room was approximately 19.7 dB, compared to 17.4 dB in the 
laboratory environment, underscoring the method’s resilience under varying conditions.

Performance analysis across different body types: It allowed for the perception of individuals with varying 
genders, weights, and heights. The experimental results showed no substantial changes due to the posture of the 
subjects, thereby emphasizing the strong versatility of the method. As shown in Fig. 5.

Performance at different movement speeds: This study also assessed human motion perception at different 
speeds, such as slow walking, normal walking, fast walking, and sprinting. The experimental results were com-
pared side by side with two typical methods, as shown in Figs. 6 and 7. The findings indicated that the method 
maintained a stable TPR and FPR across different movement speeds. However, the FPR significantly increased 

Figure 5.   FPR under different environment and personnel posture.

Figure 6.   TPR at different moving speeds.

Figure 7.   FPR at different moving speeds.
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while the TPR notably decreased for the other three methods when participants moved at slower speeds. This 
outcome can be attributed to the reduced interference characteristics of the wireless signal during the slower 
speed sampling period, causing less impact of the human body on the wireless signals. Nevertheless, the Self-
Organizing Competitive Neural Network used in this method, with its rich feature set, maintained stable TPR 
and FPR, proving the robust reliability of the method.

Performance under environmental changes: To investigate the robustness of our model in the face of envi-
ronmental changes, especially the effect of furniture rearrangement in rooms, we conducted targeted experi-
ments. We modified the placement of chairs and tables in both lab and conference room settings to evaluate the 
impact on model performance. The results revealed that furniture rearrangement indeed influenced the model’s 
performance. In the lab setting, post-adjustment, the TPR decreased by about 1.8%, and in the conference room, 
it decreased by approximately 2.1%. These findings suggest that while the model demonstrates considerable 
robustness, it is still somewhat affected by changes in furniture layout. Importantly, these tests were conducted 
without retraining the model, underscoring its adaptability to environmental shifts. However, the impact of 
furniture layout on performance warrants attention. In future research, we aim to explore this issue more thor-
oughly, with the goal of developing a more stable and efficient model for human presence detection. Through 
optimization and adjustments, we aspire to improve its detection accuracy and robustness in diverse settings, 
enhancing its applicability in smart homes, healthcare monitoring, and other scenarios.

Conclusion
Addressing the stability issues and user inconveniences of traditional human perception recognition techniques, 
this study presents a non-contact human presence detection technology. By preprocessing, extracting features, 
and classifying the CSI signals, we can discern different states such as an empty room, a room with a present 
individual, and a room where someone has recently been, demonstrating robust accuracy and versatility. Never-
theless, the current study only detects human presence within a room and does not recognize specific movements 
or simultaneous actions of multiple people, which limits its applicability. Future research will pivot towards the 
perception of multiple individuals’ actions, broadening the scope and functionality of this technology.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
The code can be obtained from the corresponding author upon a reasonable request.
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