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Modeling liquid rate 
through wellhead chokes using 
machine learning techniques
Mohammad‑Saber Dabiri 1*, Fahimeh Hadavimoghaddam 2, Sefatallah Ashoorian 3, 
Mahin Schaffie 1 & Abdolhossein Hemmati‑Sarapardeh 1,4*

Precise measurement and prediction of the fluid flow rates in production wells are crucial for 
anticipating the production volume and hydrocarbon recovery and creating a steady and controllable 
flow regime in such wells. This study suggests two approaches to predict the flow rate through 
wellhead chokes. The first is a data‑driven approach using different methods, namely: Adaptive 
boosting support vector regression (Adaboost‑SVR), multivariate adaptive regression spline (MARS), 
radial basis function (RBF), and multilayer perceptron (MLP) with three algorithms: Levenberg–
Marquardt (LM), bayesian‑regularization (BR), and scaled conjugate gradient (SCG). The second is a 
developed correlation that depends on wellhead pressure  (Pwh), gas‑to‑liquid ratio (GLR), and choke 
size  (Dc). A dataset of 565 data points is available for model development. The performance of the 
two suggested approaches is compared with earlier correlations. Results revealed that the proposed 
models outperform the existing ones, with the Adaboost‑SVR model showing the best performance 
with an average absolute percent relative error (AAPRE) of 5.15% and a correlation coefficient of 
0.9784. Additionally, the results indicated that the developed correlation resulted in better predictions 
compared to the earlier ones. Furthermore, a sensitivity analysis of the input variable was also 
investigated in this study and revealed that the choke size variable had the most significant effect, 
while the  Pwh and GLR showed a slight effect on the liquid rate. Eventually, the leverage approach 
showed that only 2.1% of the data points were in the suspicious range.

Keywords Wellhead chokes, Machine learning, Choke modeling, Correlation development, Liquid rate of 
two-phase flow, Adaboost-SVR

Abbreviations
NN  Neural network
MARS  Multivariate adaptive regression spline
Adaboost-SVR  Adaptive boosting-support vector machine
R2  Coefficient of determination
SCG  Scaled conjugate gradient
GLR  Gas to liquid ratio
RMSE  Root mean square error
LM  Levenberg–Marquardt
AI  Artificial intelligence
RBF-GM  Radial basis function-genetic model
MLP  Multilayer perceptron
ANN  Artificial neural network
BR  Bayesian-regularization
APRE%  Average percent relative error
RBF  Radial basis function
Pwh  Wellhead pressure
SD  Standard deviation
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GLR  Gas-to-liquid ratio
SVM  Support vector machine
Dc  Choke size
SR  Standardized residual
γo  Oil specific gravity
AAPRE%  Average absolute percent relative error
γg  Gas specific gravity
T  Temperature
W.C  Water cut

The momentous attributes of wellhead choke throughout oil and gas production cannot be overemphasized, as it 
restricts flow to regulate production rate. The adjustment of the production rate is mainly made by the wellhead 
chokes, which can be minimized by proper management of the production rate, formation damage, and prevent-
ing the occurrence of factors such as water and gas coning and sand  production1. The wellhead chokes can be 
either fixed (positive) or adjustable, depending on the bean settings. The bean size is fixed with a positive choke, 
while an adjustable choke is analogous to a variable valve. Due to a pressure drop in the production pipeline and 
a pressure falling, a bubble point of a two-phase current is created in the chokes. These two-phase components 
are divided into two categories, critical and subcritical. The critical flow occurs when the velocity of the fluid 
is higher than the velocity of the sound, and the flow velocity becomes independent of the upstream  pressure2. 
Conversely, in subcritical flow, the flow rate depends on the pressure difference, and changes in the upstream 
pressure affect the downstream  pressure3. Numerous techniques exist for forecasting choke patterns in these 
areas, and it is equally important to predict the boundary between critical and subcritical flow. For instance, at 
critical flow, the pressure downstream of the choke can be as low as 50% or 5% of the pressure upstream of the 
 choke4. The major problem created by two-phase flow via chokes is calculating the flow rate based on measurable 
parameters such as GLR, bean size, pressure, etc. The methods offered for multiphase flow through chokes fall 
into two categories, analytical and  empirical5. In 1949, Tangerang et al. made the first theoretical study of two-
phase flow limitations. He assumed the polytropic expansion of a gas uniformly distributed in a mixture into 
its continuous phase with a  liquid6. Since then, several approaches have been proposed to predict multiphase 
flow through chokes. These techniques can be classified into several groups. One group involved simple empiri-
cal equations similar to those of Gilbert. In 1954, Gilbert proposed an empirical equation for determining the 
liquid flow rate, in which the flow is linearly proportional to the  Pwh

7. Later, this equation was modified by  Ros8, 
 Achong9,  Baxendell10,  pilehvari11, Mirzaei and  Salavati12, and Beiranvand et al. The overall form of the Gilbert 
Equation is as follows:

where  Qliq is the liquid rate (STB/D),  D64 is choke diameter (1/64in), and Pwh and GLR are wellhead pressure 
(psi) and gas-to-liquid ratio (SCF/STB), respectively. a1, a2, a3, a4, a5, and a6 are the empirical coefficients of 
this equation presented in Table 1.

Following Tangeren, the Ros conducted studies based on the continuous gas phase and extended the Tangeren 
Eq. (8). Poettmann and Beck improved the Ros equation using 108 production data. They compiled charts for 
different types of crude oil with varying degrees of API, ranging choke diameter from 4/64 to 28/64 inches and 
ranging oil flow rates from 10 to 1300  STBD15. Al-Attar and Abdul-Majid conducted a study in which they evalu-
ated and compared the available correlations used to assess the performance of multiphase fluid flow through a 
wellhead choke. They used 155 well-test production datasets from the east Baghdad  oilfield16. In another study, 
Abdul-Majid examined correlations developed for predicting liquid rate in oilfield chokes. A dataset including 
210 well-test data was used to predict the accuracy of eight correlation models. Additionally, a regression analysis 
was employed to find correlations that best matched measured data, and as a consequence, four new correlation 
coefficients were developed. Based on the statistical results, new correlations were more robust than previous 

(1)Qliq = a1
Pa2whD

a3
64

GLRa4

Table 1.  Specific empirical coefficient correlations proposed for liquid flow through oilfield chokes.

Author Formula Coefficient

Gilbert7
QL = a1

Pa2whD
a3
c

GLRa4
a1 = 0.1; a2 = 1; a3 = 1.89; a4 = 0.546

Ros13
QL = a1

Pa2whD
a3
c

GLRa4
a1 = 0.05747; a2 = 1; a3 = 2; a4 = 0.5

Achong9
QL = a1

Pa2whD
a3
c

GLRa4
a = 0.26178; a2 = 1; a3 = 1.88; a4 = 0.65

Pilehvari11
QL = a1

Pa2whD
a3
c

GLRa4
a1 = 0.021427; a2 = 1; a3 = 2.11; a4 = 0.313

Beiranvand et al.14
QL = a1

Pa2whD
a3
c

GLRa4
a1 = 0.0382; a2 = 1; a3 = 2.275; a4 = 0.589

Al-Attar16
QL = a1

Pa2whD
a3
c

GLRa4
a1 = 0.016266; a2 = 0.831; a3 = 1.63; a4 = 0.471

Mirzaei-Paiamann et al.12
QL = a1

Pa2whD
a3
c γ

a4
o γ

a5
g

GLRa6
a1 = 0.052439; a2 = 1; a3 = 1.9108; a4 = 0.3988; a5 = 0.1711; a6 = 0.5220

Baxendell13
QL = a1

Pa2whD
a3
c

GLRa4
a1 = 0.1046; a2 = 1; a3 = 1.93; a4 = 0.546
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 ones17. Fortunati Presented an empirical equation for both critical and subcritical currents. Additionally, he 
included a graphical representation and established the demarcation line between critical and subcritical  flow18. 
 Ashford19 and  Pilehvari11 performed their studies on subcritical currents in the wellhead chokes. They determined 
the boundary between critical and subcritical flow as a function of fluid properties and GLR. In another study, 
Al-Attar carried out research work based on the critical flow through the choke. In this study, he used 40 field 
data based on choke size adjustment and presented a more accurate empirical equation compared to the previ-
ous  ones5. Beiranvand and Babaei Khorzoughi presented an innovative correlation for multiphase flow through 
surface chokes, integrating recently introduced parameters. They did their research based on 182 production 
data from one of the Iranian oil fields. They also added temperature, sediment, and water to the Gilbert equation 
and obtained more confident results than the previous  correlations20.

Rashid et al. used the collected 276 data and radial basis function-genetic algorithm (RBF-GA) neural net-
work to estimate the flow rate via the wellhead chokes. In this study, the  R2 values for training and test data 
were obtained 0.9885 and 0.9795,  respectively21,22. Mirzaei-paiaman & Salavati using 102 production test data 
and adding the specific gravity of oil and gas to the general equation of Gilbert reached the following Eq. (12):

QL, liquid flow rate (STB/D);  D64, choke size (1/64 inches);  Pwh, wellhead pressure (Psia); Ɣo, oil specific grav-
ity; Ɣg,  gas specific gravity; GLR,  gas to liquid ratio (Scf/STB); and, A, B, C, D, and E are constants.

According to the literature, most of the experimental relationships presented for calculating the flow rate 
inside the choke can be classified into two categories, linear and non-linear, which typically yield a high error. 
However, the literature still suffers from the lack of a comprehensive and accurate model for predicting oil flow 
inside wellhead chokes. Hence, we attempt to develop a new correlation with a lower percentage of error than the 
empirical relationships presented in the literature. Additionally, we used robust machine learning algorithms to 
accurately predict liquid rate through the oilfield chokes. To the best of our knowledge, there has been no prior 
endeavor to undertake this type of modeling.

In this study, the liquid rate in wellhead chokes is modeled using machine learning approaches. To this 
end, 565 real data points are collected from the literature. Then, for a precise and reliable prediction of oilfield 
chokes, several ML models of liquid rate are applied. Four kinds of ANNs MLP with three algorithms, RBF, 
MARS, and Adaboost-SVR, are employed to develop models to accurately predict the liquid rate through the 
chokes. Furthermore, statistical evaluation and graphical error criteria are used to investigate the validation and 
reliability of intelligent models and other correlations. In addition, the relative impact of inputs on the liquid 
rate in wellhead chokes is inspected by applying the relevancy factor definition. Finally, the leverage approach 
is utilized to investigate the credit and application of the best-proposed model. Therefore, the key contributions 
of this study can be summarized as follows:

• Gathering a comprehensive dataset of wellhead choke liquid rates, encompassing crucial variables like  Dc, 
 Pwh, and GLR.

• The development of precise models with minimal errors by employing Adaboost-SVR machine-learning 
algorithms.

• Developing a new empirical relationship that outperforms the previously developed relationships.
• Conducting sensitivity analysis to identify the relative impact of pressure, choke size, and gas–liquid ratio 

on the liquid rate in oil field chokes.
• Applying the leverage method to detect anomalous and outlier data associated with liquid rate as reported 

in the literature.

Data collection
First, for accurate prediction of the liquid rate of two-phase flow through wellhead chokes, a comprehensive 
database of 565 data points of liquid rate was  collected12,20, 23–28. Based on the literature, the most critical elements 
that affect the choke liquid flow rate are the  Pwh,  D64, and GLR. As a result, in this study, the liquid flow rate is 
defined based on the mentioned parameters. The implemented input parameter range and output parameter 
range are reported in Table 2. Additionally, the input data were analyzed by mean, minimum, maximum, and 
other parameters, as in Table 3. The liquid rate changes with a minimum value of 205 (STB/Day), a maximum of 
25,878 (STB/Day), and an arithmetic 8146.613. The  Pwh value changes between 50 and 4045 with an arithmetic 
mean of 1549.699. The statistical dispersion for a liquid rate through chokes was determined by calculating the 
kurtosis, skewness, and standard deviation, and values of 1.006, 0.760, and 4383.228 were obtained, respectively, 
which indicates that the data points are spread out over a broader range of values. Skewness is a measure of the 
level of asymmetry in the distribution of a dataset. Skewness in the normal curve is observed when a data set is 
asymmetrically distributed. Skewness can be positive, negative, or undefined. Additionally, kurtosis measures 
the tailedness of the probability distribution of a random variable. Positive kurtosis means that there are several 
data points in the tail of a distribution, while negative kurtosis results in a few data points in the tail.

Model development
Multilayer perception neural network (MLPNN)
A neural network processes the data through a learning process, stores it, and makes it available for use. Synaptic 
weights, connection strengths between neurons, are used to store  knowledge29. Neural networks which are sig-
nificantly important in this context, are a powerful, and comprehensive framework for representing non-linear 

(2)QL =
A.Pwh.d

B.γD
g .γ E

O

GLRC
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mappings from several input variables to several output variables, where several adjustable parameters govern 
the form of mapping. Before the emergence of the MLP neural network, in 1958 Frank Rosenblatt invented a 
neural network called a  perceptron30. Rosenblatt formed a layer of neurons and called the resulting network a 
perceptron. However, Rosenblatt’s perceptron also had many problems. For instance, it could only solve problems 
that were linearly  separable31. In 1969, Minsky and Paper wrote a book called Perceptron. They explored all the 
perceptron’s capabilities and problems in this book. Minsky and Paper proved that the perceptron could only 
solve problems that are linearly  separable32,33. Furthermore, the conceptually more appealing neural network 
model is the MLP  model34,35. In its most basic form, this model consists of several successive layers. Each layer 
consists of a small number of units called  neurons36,37. In this model, the units of each layer are connected to 
the next layers, which are called links or synapses. A multi-layer perceptron (MLP) comprises a minimum of 
three layers of nodes: these include an input layer, a hidden layer, and an output layer. MLP employs an admin-
istered learning strategy called feedback for training. Its multiple layers and nonlinear activation distinguish 
MLP from a linear perceptron. If a multilayer perceptron has a linear activation function in all neurons, it maps 
the weighted inputs of each neuron with this linear function. At that point, utilizing direct polynomial math, it 
appears that any number related to layers can be decreased to a two-layer input–output model. These functions 
usually include "Tanh", "Sigmoid", and "Linear". A linear function is typically used for the output layer. These 
functions are described  below38:

Consider an MLP with two hidden layers and logsig and tansig activation functions for the two hidden layers 
and purlin for the output layer, respectively. The output of the model can be calculated by the following formula:

where the bias terms for the 1st and 2nd hidden layers are b1 and b2 , respectively, and b3 is the bias of the output 
layer. In addition, w1 , w2 , and w3 are the weight matrixes for the 1st and 2nd, and the output layer, respectively. 

(3)Tansig = tanh : h(x) =
ex − e−x

ex + e−x
=

2

1+ e−2x
− 1

(4)linear = purelin = h(x) = x

(5)sigmoid = logsig : h(x) =
ex

ex + 1

(6)output = purlin(w3 × (logsig
(

w2 ×
(

tansig(w1 × x)+ b1
))

+ b2)+ b3

Table 2.  The range of databases used in the developed model.

Pwh range
(Psia)

GLR range
(SCF/STB)

D range (1/64)
(in)

Qliq range
(STB/Day) References

261–2935 186–3792 16–64 282–8030 12

133–883 36–885 25.6–40 183–9284 20

1646–3000 828.1–13,095.1 21–68 668.4–14,480.8 23

50–2940 107–3660 24–80 1324–22,150 24

60–350 300–1100 16–64 200–3350 25

133–881 36–885 25.6–64 205–25,878 26

115–4308 158–6100 16–80 198–9643 28

1419.7–1827.7 186–272 32–64 3930–17,310 27

Table 3.  Statistical description of the data set used for modeling.

Parameters Pwh (psi) GLR (SCF/STB) D (1/64) in Qliq (STB/Day)

Mean 1594.699 1084.637 53.133 8146.613

Standard Error 39.798 35.917 0.552 184.404

Median 1500.000 915.000 54.000 8000.000

Mode 2400.000 1040.000 64.000 9280.000

Standard Deviation 945.988 853.733 13.117 4383.228

Sample Variance 894,894.137 728,860.845 172.060 19,212,685.885

Kurtosis − 1.098 6.010 − 0.455 1.006

Skewness 0.222 1.691 − 0.358 0.760

Minimum 50.000 36.000 16.000 205.000

Maximum 4045.000 5706.600 80.000 25,878.000
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The activation functions used for the first and second hidden layers are usually tansig and logsig, respectively, 
in the case of using two hidden  layers38.

Figure 1 shows the structure of an MLP model with two hidden layers. In this study, to develop the MLP 
model, three algorithms including Bayesian Regularization (BR), Scaled Conjugate Gradient (SCG), and Lev-
enberg–Marquardt (LM), were used. The type of activation function, the number of neurons, and the number 
of layers used for the MLP model are reported in Table 4.

Radial basis function neural network (RBFNN)
Similar to the MLP neural network model, there is another type of neural network in which processing units 
are focused on a specific distance. Regarding overall structure, neural RBF networks are not significantly differ-
ent from MLP networks, and the only difference is the type of processing the neurons perform on their inputs. 
However, RBF networks often have faster learning and training processes. since neurons are concentrated in 
specific functional areas, it will be easier to regulate them. Generally, the radial basis function (RBF) network is 
composed of a three-layer structure, where the initial and final layers serve as the input and output layers, while 
the intermediate layer functions as the hidden layer. There is one hidden layer in this model that identifies the 
relationship between input and output  data39,40. Figure 2 indicates an example of an RBF network. The output of 
this model is given by the following formula:

where wi , w0 , yk , N , ck , and M are the weights of the network, the model’s output, the cluster numbers, cluster, 
coefficient of bias, and data point number, respectively. The maximum number of neurons and the expansion 
coefficient are the main parameters that can be changed in this model. It should be noted that these factors are 
usually determined by trial and error.

Adaptive boosting support vector regression (AdaBoost‑SVR)
AdaBoost algorithm is a collective learning method and is a well-known algorithm from the family of Boosting 
algorithms presented by Freund and  Schapire41. In collective learning algorithms, one case is classified by several 
different classifiers, and the classifications’ results are intelligently combined and the final result is determined for 
that particular case. Typically, the collective learning algorithm is higher compared to the individual classifiers 
participating in its structure. In AdaBoost collective learning, each class is trained with a different bootstrap. The 
bootstrap sampling method is such that the number of training samples is randomly selected from the training 

(7)yk =

N
∑

i=1

∅ki × wi × (|xi − ck|)+ w0, k = 1, 2, ...,N; i = 1, 2, ...,M

Hidden layer Input layer Output layer

Pwh

GLR

D

Q, liq

Figure 1.  Structural of the MLP model used in this work.

Table 4.  Control parameters for MLP and RBF model used in this study.

MLP

Number of hidden layers 2

The objective function uses training MSE

Optimization algorithm LM-BR-SCG

RBF

Number of neurons in the hidden layer 250

Spread 0.1

The objective function uses training MSE
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data set. A nested pattern allows the same pattern to be selected multiple times. This algorithm has several steps 
that are mentioned  here42:

1. First, all data will be assigned some weights. Initially, all the weights will be equal. To determine the sample 
weight, the following formulas were used:

where N is the total number of data.
2. For m = 1 to M:

(a) Fit a classifier  Gm (x) to the learning data using weights  wi.
(b) Determine

3. Compute

4. set wi

5. Output

where M, errm , αm are the number of learners, the weight of the error rate, and the predicted weight.

Support vector regression (SVR)
SVR was first proposed in 1995 by Vapnik for classification problems. Recently, the SVR model has become 
one of the most common models in the field of petroleum engineering due to its acceptable performance in 
 forecasting43–45. For a simple case, input data x ϵ  Rd are regressed by hyper plane g(x):

The weight vector and the bias are w and b, respectively, with g(x) representing the regression function of 
the input space vector x. A minimization problem is formulated for regression purposes to compute vector b, 
in which Model complexity and associated empirical error are summarized under the so-called normalized risk 
 function46.

(8)w(xi , yi) =
1

N
, i = 1, 2, 3, ..., n

(9)errm =

∑N
i=1 wiI(yi �= Gm(xi))

∑N
i=1 wi

(10)αm = log((1− errm)/errm).

(11)w∗
i exp

[

αm.I
(

yi �= Gm(xi)
)]

, i = 1, 2, ...,N

(12)G(x) = sign[

M
∑

m=1

αmGm(x)]

(13)g(x) = w.∅(x)+ b

(14)ξ =
∣

∣yi − g(w, xi)
∣

∣

(15)|ξ |∈ =

{

0 if |ξ | <∈

|ξ |− ∈ otherwise

Pwh 

GLR 

D 

Q1 

Q2 

Q3 

Q, Liq 

W1 

W2 

WN 

W0 

Figure 2.  Structural of the RBF model used in this work.
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By considering the positive slack variables ( ξ , ξ *) optimization problem is formulated as: 

where 
∑n

i=1(ξi + ξ
∗
i ) represents the empirical error and ‖ω‖2 is the flatness of the function. C represents a penal-

izing factor for the data that their deviation from g is higher than ε47.

Multivariate adaptive regression spline (MARS)
MARS is an algorithm designed for multivariate non-linear regression  problems48. In each aspect, the Mars 
algorithm divides the input parameter space into separate subregions and corresponds to a spline function 
known as a basis function. MARS studies non-linear relationships between input and response variables with 
more flexibility, which is why this model differs from other linear regression techniques. Additionally, MARS 
checks all degrees of interaction in arrange to discover all conceivable intelligence between factors. This strategy 
takes into account all intuitive and convenient shapes between input parameters, so it can effectively follow hid-
den connections in high-dimensional datasets as well as complex structures found in data  points49. The general 
formula of this algorithm is represented as follows:

where  β0 and  βm  represent the parameters that give the best fit of data points, f(x) stands for the response, and 
M indicates BF in the model. In this algorithm, the basis function can take the form of a univariate spline func-
tion or a combination of multiple functions, depending on the various predictive inputs. �m(x) and the spline 
BF can be presented as follows:

where Skm is the right/left regions of the corresponding step function, taking either 1 or − 1, t(k,m) represents the 
knot location,  Km presents the number of knots and v(k,m) represents the predictor input’s label. Mars model 
builds BF using a step-by-step technique. MARS over-fits data in the forward step by investigating an expansive 
number of BFs. Duplicate BFs are removed backward from the equation to prevent overfitting. To remove dupli-
cate BFs, MARS uses the Generalized Cross-Validation (GCV) criteria. A GCV is expressed as:

The N parameter presents the whole data number. C(B) represents a complexity penalty, and it is defined  as50:

Generalized reduced gradient (GRG)
The generalized reduced gradient (GRG) approach is frequently applied as a solver for multivariable problems. 
Based on the concept of decreased gradients, this technique is designed to incorporate and solve Linear and 
non-linear Problems. The component is monitored in such a way as to ensure that the active constraints are kept 
satisfied when the process changes from one stage to another. The GRG provides a linear estimation of the gradi-
ent at a given point x. The constraint and objective gradient are resolved at the same time so that constraints can 
be represented by gradients of an objective function. By moving in a practical path, the search area is reduced. 
The following notations represent an objective function, f(z), which is subject to the constraint h(z)51.

The GRG can be adjusted using the following form:

Basically, f(z) will be minimum under two simple conditions which are df(z) = 0 or dfdzk = 052.

Evaluation of the model
Evaluation of the performance of the proposed models is ordinarily done by comparison of the model predic-
tion with the real values by calculating the various statistical parameters, including average percent relative error 
(APRE), average absolute percent relative error (AAPRE), standard deviation (SD), root mean square error 
(RMSE), and coefficient of determination. These statistical parameters are obtained from the following Equations:

(16)Minimize
1

2
�ω�2 + c

n
∑

i=1

(ξi + ξ
∗
i )

(17)f (x) = β0 +

m
∑

m=1

βm�m(x)

(18)�m(x) = �
km=1
k=1 [Skm(Xv(k,m) − t(k,m)]

(19)GCV =

1
N

∑n
i=1[yi − f (xi)]

[1− C(B)
N ]

2

(20)C(B) = (B+ 1)+ d(B)

(21)Minimizes : f(z) = z

(22)Subjected to : hk(z) = 0

(23)
df

dzk
= ∇ztkf −∇zti f

(

dh

dzi

)

dh

dzk
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where  Ei is the percent relative error and is stated based on the following  formula53:

Here 
(

Qliq,i

)

real
 is the real oil flow rate that measured in the field test; 

(

Qliq,i

)

pred
 is the predicted oil flow rate 

and N presented the whole number of data utilized for analysis.
At the same time, the performance of the machine learning model was assessed using the following graphical 

tools, which are described further below:
Cross plot: The most widely recognized method is graphical analysis, in which the predicted values are 

graphed against measured values, and the models’ accuracy is determined by how closely the data points align 
with a line of unity slope.

Cumulative frequency plot: This plot is a comparative chart that can compare several models with each other. 
In this diagram, a model predicting more data with lower error can be determined. If the model is close to the 
vertical axis, the higher percentage of data is predicted by a lower error, therefore, it is more accurate than the 
other model.

Trend plot: This diagram plots both real data and the model’s estimate against a given feature or an index to 
determine whether that model is valid.

Error distribution plot: Plotting the difference between the measured value and the predicted value against 
the actual data to assess the dispersion of the data around the zero-error line and analyze any patterns in errors.

Results and discussion
In the present work, models were developed based on 565 production data points that were collected from dif-
ferent sources in the literature. For all models with different algorithms, 80% of the data points were randomly 
selected to train the set, and the remaining 20% were employed to test and validate the model.

Development of the correlation
In this work, the GRG algorithm is used to predict the liquid rate through wellhead chokes. The correlation was 
developed based on four coefficients to optimize the APRE and RMSE, which is presented below:

where  Qliq, liquid flow rate (STB/Day);  Pwh,  upstream pressure(psi); Dc, choke size (1/64) in and GLR, gas to 
liquid ratio (SCF/STB).

a1, a2, a3, a4 are equation coefficients are reported in Table 5.
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Qliq = a1× Pa2wh × Da3
c GLRa4

Table 5.  Coefficients developed correlation to optimized AAPRE and RMSE.

Coefficients a1 a2 a3 a4

Optimized AAPRE 0.10606 1.10596 1.98196 − 0.70193

Optimized RMSE 0.35152 0.99381 1.82910 − 0.66705
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Statistical analyses of models
First, we have to compare intelligent models and correlation based on statistical parameters including (R2, 
APRE%, AAPRE %, RMSE, and SD), to find the most accurate and efficient models. Table 6 shows the model 
development, validation, and statistical evaluation of the total sets for a liquid rate through oil field chokes by 
Adaboost-SVR, MARS, MLP-LM, MLP-BR, MLP-SCG, and RBF models. Furthermore, Table 7 reports the sta-
tistical assessment of the proposed correlations by Gilbert, Ros, Achong, Baxendell, Pilehvari, Beiranvand, and 
developed correlation to optimized AAPRE and RMSE.

As seen in Table 6, using the Adaboost-SVR model results in the lowest value of AAPRE for predicting the 
liquid rate of two-phase flow through wellhead chokes. The total APRE, AAPRE, RMSE, SD, and  R2 for Adaboost-
SVR are − 1.5%, 5.15%, 643.38, 0.086, and 0.9784, respectively. After Adaboost using the MARS leads to the 
lowest overall AAPRE. As appeared in this Table, the total AAPRE for MLP-SCG is 11.44% which indicates the 
lowest precision.

Furthermore, according to the results presented in Table 7, the proposed correlation by Pilehvari has the low-
est accuracy compared to other correlations to estimate liquid rate, while using Beiranvand leads to the lowest 
value of the total AAPRE which is 19.03%. After Beiranvand, using the Achong correlation leads to the lowest 
value of the overall AAPRE. Comparing the statistical analysis of the errors in Tables 6 and 7, it can be concluded 
that all the proposed models of ANN had a much higher accuracy than the correlation studied in this research 
for the prediction of liquid rate in the choke.

To further evaluate the validity and reliability of the Adaboost-SVR model, an external validation dataset 
containing 28 liquid rates in oilfield chokes over a range of operating choke size (14–48 in), pressure (250–1697.9 
psia), and GLR (600.1–800 SCF/STB), were collected from the  literature17. This data falls entirely outside the 
training and testing sets utilized for modeling in this paper. As a result, it enables an assessment of the model’s 
performance beyond the data sets used for modeling. Predicted values for Adaboost-SVR are reported in Table 8. 

Table 6.  Statistical evaluation of the developed models.

Adaboost-SVR MARS MLP-LM MLP-BR MLP-SCG RBF

Training set

AAPRE % 5.3 6.58 8.7 9.24 11.51 8.11

APRE % − 1.76 − 1.19 − 2.66 − 2.42 − 2.04 − 1.84

RMSE 661.56 469.19 682.99 747.87 917.04 672.42

SD 0.09 0.149 0.31 0.31 0.3 0.22

R2 0.9772 0.9889 0.9757 0.9707 0.9525 0.9761

Test set

AAPRE % 4.57 12.14 9.19 7.92 10.9 8.45

APRE % − 0.47 − 4.27 − 2.08 − 0.88 − 3.13 1.76

RMSE 564.86 921.01 913.49 710.84 976.23 959.29

SD 0.1 0.31 0.14 0.13 0.19 0.14

R2 0.9827 0.9465 0.9571 0.9744 0.9477 0.9559

Total

AAPRE % 5.15 7.69 8.9 8.74 11.44 8.18

APRE % − 1.5 − 1.81 − 2.3 − 1.99 − 1.97 − 1.12

RMSE 643.38 588.02 726.34 733.78 958.04 738.76

SD 0.086 0.19 0.29 0.28 0.28 0.2

R2 0.9784 0.9819 0.9726 0.9719 0.9522 0.9716

Table 7.  Statistical analysis errors proposed correlation used in this study and developed correlation.

Model
APRE
(%) AAPRE (%) RMSE SD R2

Gilbert 9.84 22.36 2418.76 0.33 0.8118

Ros − 8.58 21.32 2221.49 0.39 0.7461

Achong − 14.12 21.05 1641.73 0.43 0.8804

Baxendell − 10.37 20.36 1915.18 0.40 0.8124

Pilehvari − 43.76 51.82 5107.94 0.73 0.4230

Al-Attar 32.34 36.97 4206.89 0.43 0.8300

Beiranvand − 1.54 19.03 1719.97 0.37 0.8502

Developed correlation-optimized AAPRE − 4.18 17.20 1532.12 0.35 0.8809

Developed correlation-optimized RMSE − 7.38 18.84 1507.41 0.40 0.8822



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6945  | https://doi.org/10.1038/s41598-024-54010-2

www.nature.com/scientificreports/

The values presented in this Table for experimental and predicted data show that the Adaboost-SVR model 
demonstrates reliable predictive accuracy even for new fluid rates beyond the range of chokes used during the 
modeling process.

Graphical error analysis
Another way to assess model performance and compare it to other models and proposed correlations is to use 
graphical error analysis. This graphical strategy impressively helps when there are several models whose perfor-
mance should be compared together. To assess the precision of the intelligent models consisting of Adaboost-
SVR, MARS, MLP-LM, MLP-BR, MLP-SCG, and RBF the predicted liquid rate data was plotted against the real 
values in Fig. 3. It can be concluded that all intelligence models show relatively good accuracy. The Adaboost-
SVR model gives the most noteworthy exactness level compared to other models. Also, it can be concluded that 
from the Figure MLP with algorithm SCG shows the lowest accuracy compared to the two algorithms MLP-LM 
and MLP-BR.

Furthermore, Fig. 4 is plotted to evaluate the performance of different correlations. As seen in Fig. 4, all cor-
relations proposed for an estimated liquid rate through wellhead chokes showed weak performance. The Gilbert 
correlation predicts the flow rate is lower than its actual value. Under these conditions, the relative error could 
be a positive number, and expectations go astray from the proper values. Also, the Pilehvari model overestimates 
the real data points. In other words, this model tends to predict values to be larger than the real values. In this 
situation, the relative error could be a negative number, and forecasts veer off from the right values. It is obvious 
that Ros, Achong, Beiranvand, and Baxendell are models that suffer from a random error in anticipating real 
value and show poor performance in estimating the liquid rate. It can also be concluded from the Figure that 
Gilbert and Pilehvari are the models with the least accuracy with the most considerable AAPRE value among all 
the correlations proposed for estimating the liquid flow through oil field chokes.

Figures 5 and 6 illustrate the percent relative error distribution versus the real flow rate for the AI models and 
correlations to determine the error trend of the predictive models when an independent variable is increased. 
Concerning Figs. 5 and 6, it can be concluded that AI models have much higher accuracy than the presented 
correlations.

The data points lie close to the zero-error line regardless of the change in their value. Moreover, these Figures 
show that by increasing the value of the liquid rate, there is no error trend in this plot, which means that the 
developed models are suitable for using any range of data. It should be noted that the training phase of these 
models was developed based on a sufficient amount of data.

Furthermore, the cumulative relative frequency of data (with absolute relative errors below specific increas-
ing values) is plotted against absolute relative error (ARE%) to quantify the number of data that the model can 
accurately predict. To find cumulative frequencies, it is first necessary to sort the column of the absolute relative 
errors in ascending order, then the relative frequency of each row is calculated. Relative frequency is obtained 
by dividing the number of rows by the number of total data. Then, cumulative frequency versus absolute relative 
error is  plotted54.

Figure 7 illustrates the cumulative frequency error versus ARE % for AI models consisting of Adaboost-SVR, 
MARS, RBF, MLP-LM, and developed correlations consisting of Gilbert and correlation in this study. As seen in 
Figure, the developed AI models performed better in estimating the liquid flow compared to the others.

correlation studied in this research. The Adaboost-SVR model is the most accurate model among the devel-
oped artificial intelligence models showing 91% of the full data set with 15% ARE. It can also be deduced from 
Fig. 7 that the developed correlations in this study with four coefficients estimate approximately 60% of data 
with 15% ARE. Regarding correlations, the correlation developed by Gilbert demonstrated poor performance.

Furthermore, Fig. 8 demonstrates the trend plots of liquid rate in oil field chokes at different choke sizes by the 
Adaboost-SVR model. As seen in this Figure, there is a very good match between the real and predicted values.

Table 8.  The experimental and predicted values for evaluation of the Adaboost-SVR model.

Experimental Prediction Experimental Prediction

5250.7 4207.7 400 400

5220.5 4207.7 500 700

1890.2 1895.2 540 540

1900.2 1900.2 570 770.1

1350.1 1700 690.1 927

6500.8 6758.01 940.1 1158.04

2500.3 2500.3 1100.1 1205.05

1300.1 1300.1 1380.1 1380.1

711 711 1680.1 1532.067

800.1 749.86 1900.5 1680.1

260 330 2050.3 1900.26

290 330 2250.3 2006.325

330 340 3000.4 2919.822

360 360 3500.5 3000.4
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The comparison of AAPRE and RMSE between the proposed AI models and other correlations is shown 
in Fig. 9. As seen in this Figure, the lowest value of AAPRE and RMSE is related to the Adabost-SVR model.

Sensitivity analysis
Sensitivity analysis of the input parameters was performed in estimating the liquid flow by using Eq. (30). To 
this end, input data points and real liquid flow rate data were used. This diagram shows the effect of inputs on 
the liquid flow rate through the choke, which is based on the Pearson relationship. This is defined as  follows26,55:
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Figure 3.  cross-plot for the intelligence models to estimate the liquid rate.
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where  Ik Indicates the input value of the k number of the model  (Pwh, D (1/64), GLR, and  QL) and Ik indicates the 
average value for the input variable k number of the model. O and O predicted liquid flow rate and the average 

(30)r =

∑n
i=0(Ik − Ik)(Oi − O)
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predicted liquid flow rate, respectively. also Iki shows the amount of k-number input  data25. Figure 10 illustrates 
the relative effect of input parameters on the liquid flow rate. This figure demonstrates that the input variable, 
such as the choke size, exerts a positive influence on the target value. Conversely, the output variable is adversely 
affected by both  Pwh and GLR. This implies that any rise in  Pwh or GLR would lead to a reduction in the liquid 
flow rate in chokes. As can be seen from this Figure, the largest effect on the liquid flow rate is related to the 
choke size. Furthermore, the lowest r-value among the input variables considered is − 0.045, which suggests that 
the gas–liquid ratio has the least impact on the flow rate.
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Outlier diagnostics and model reliability assessment
To find suspicious and out-of-bounds data, a William diagram is drawn using the leverage  technique56. Such 
data are not necessarily non-standard data, and their proper  Pwh range,  Dc, and GLR may differ from other data 
in a valid range. Data with a hat between 0 and an H* and standardized residual (SR) between −3 and 3 are valid 
data. Also, data with SR values greater than 3 or lower than −3 are lab-suspicious (regardless of their hat value), 
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and data with Hat higher than Hat* and SR between − 3 and 3 are outside the model  scope57,58. The SR, Hat*, 
and H are represented as  follows59:

H is defined as a matrix (k × j), in which k and j determine the total number of data and the model param-
eters, respectively, and t is the concept of transposition. Using the main elements of the matrix diameter, the 
relationship between each point is obtained and finally, the suspicious data are calculated. Figure 11 illustrates 
the Williams chart for Adaboost-SVR  model60. According to the graph, the number of data points out of lever-
age data is insignificant, affecting the model accuracy considerably, and most of the used data is in the valid 
zone of the Williams chart. As depicted in Fig. 11 most of the data points are situated within the range of 
0 ≤ H ≤ H * and − 3 ≤ R ≤ 3. Data points with lower values of R and H demonstrate higher reliability. Therefore, the 
identification of data points outside the model’s intended scope amounted to a mere 2.1%, which is insignificant 
when considering the substantial volume of data points used during the model’s development. These findings 
indicate that the proposed Adaboost-SVR model exhibits high reliability.
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Conclusions
In this study, the liquid rate in chokes was modeled using 565 datasets including  Pwh, GLR, and  Dc. Six intelligent 
models were developed for forecasting the liquid rate. Additionally, developed an empirical equation with four 
coefficients based on  Pwh, GLR, and  Dc. Statistical analysis confirms that all the developed models in this study 
can properly estimate the liquid rate through oilfield chokes. Nevertheless, the accuracy of the different models 
can be ranked as follows:

Adaboost-SVR > MARS > RBF > MLP-LM > MLP-BR > MLP-SCG.
The Adabboost-SVR model is the most precise compared to other intelligent models. The statistical param-

eters for this model are:  R2 of 0.9784; RMSE of 643.38; APRE of − 1.5%, and AAPRE of 5.15%. The correlation 
developed with four coefficients showed the best performance among the earlier correlations in this work (Sup-
plementary file). Furthermore, the results of sensitivity analysis indicated that  Dc has a positive effect and owns 
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Figure 10.  The relative importance of each input on the liquid rate.
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the highest influence on liquid rate through chokes, while GLR and  Pwh have a negative effect. Finally, outlier 
detection applying the leverage approach revealed that only 2.1% of the real data points are doubtful.

Data availability
The datasets used during the current study are available as a Supplementary file.
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