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HIF-2a-dependent TGFBI promotes
ovarian cancer chemoresistance

by activating PI3K/Akt pathway

to inhibit apoptosis and facilitate
DNA repair process

Sijia Ma¥%3, Jia Wang?, Zhiwei Cui?, Xiling Yang'?3, Xi Cui%%3, Xu Li%%*3 & Le Zhao¥%3**

Hypoxia-mediated chemoresistance plays a crucial role in the development of ovarian cancer (OC).
However, the roles of hypoxia-related genes (HRGs) in chemoresistance and prognosis prediction
and theirs underlying mechanisms remain to be further elucidated. We intended to identify and
validate classifiers of hub HRGs for chemoresistance, diagnosis, prognosis as well asimmune
microenvironment of OC, and to explore the function of the most crucial HRG in the development
of the malignant phenotypes. The RNA expression and clinical data of HRGs were systematically
evaluated in OC training group. Univariate and multivariate Cox regression analysis were applied to
construct hub HRGs classifiers for prognosis and diagnosis assessment. The relationship between
classifiers and chemotherapy response and underlying pathways were detected by GSEA, CellMiner
and CIBERSORT algorithm, respectively. OC cells were cultured under hypoxia or transfected with
HIF-1a or HIF-2a plasmids, and the transcription levels of TGFBI were assessed by quantitative PCR.
TGFBI was knocked down by siRNAs in OC cells, CCK8 and in vitro migration and invasion assays were
performed to examine the changes in cell proliferation, motility and metastasis. The difference in
TGFBI expression was examined between cisplatin-sensitive and -resistant cells, and the effects of
TGFBI interference on cell apoptosis, DNA repair and key signaling molecules of cisplatin-resistant
OC cells were explored. A total of 179 candidate HRGs were extracted and enrolled into univariate
and multivariate Cox regression analysis. Six hub genes (TGFBI, CDKN1B, AKAP12, GPC1, TGM2
and ANGPTL4) were selected to create a HRGs prognosis classifier and four genes (TGFBI, AKAP12,
GPC1 and TGM2) were selected to construct diagnosis classifiers. The HRGs prognosis classifier
could precisely distinguish OC patients into high-risk and low-risk groups and estimate their clinical
outcomes. Furthermore, the high-risk group had higher percentage of Macrophages M2 and exhibited
higher expression of immunecheckpoints such as PD-L2. Additionally, the diagnosis classifiers
could accurately distinguish OC from normal samples. TGFBI was further verified as a specific key
target and demonstrated that its high expression was closely correlated with poor prognosis and
chemoresistance of OC. Hypoxia upregulated the expression level of TGFBI. The hypoxia-induced
factor HIF-2a but not HIF-1a could directly bind to the promoter region of TGFBI, and facilitate

its transcription level. TGFBI was upregulated in cisplatin-sensitive and resistant ovarian cancer
cells in a cisplatin time-dependent manner. TGFBI interference downregulated DNA repair-related
markers (p-p95/NBS1, RAD51, p-DNA-PKcs, DNA Ligase IV and Artemis), apoptosis-related marker
(BCL2) and PI3K/Akt pathway-related markers (PI3K-p110 and p-Akt) in cisplatin-resistant OC cells.
In summary, the HRGs prognosis risk classifier could be served as a predictor for OC prognosis and
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efficacy evaluation. TGFBI, upregulated by HIF-2a as an HRG, promoted OC chemoresistance through
activating PI13K/Akt pathway to reduce apoptosis and enhance DNA damage repair pathway.
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Ovarian cancer (OC) remains one of the most lethal malignancies affected gynecologic reproductive systems,
accounting for 5% estimated deaths in females. Despite the development of OC treatment strategies, the overall
5-year survival rate for OC patients remains only 49% for all races and 24% for advanced patients’. Establishing
molecular models using effective biomarkers for diagnosis and survival prediction is vital in optimizing patient
stratification and medical decision-making.

Hypoxia is an inherent characteristic of solid malignancies as the vascular nutrient is insufficient®. Emerging
studies have demonstrated that the pivotal roles of hypoxia on tumor progression, metastasis, chemoresistance
and immunosuppression®*. For ovarian cancer, the oxygen supply to ovarian cancer is severely impaired by
ascites, which exacerbates hypoxia dependency’. Therefore, investigating the physiological and pathological
effects of hypoxia, understanding its molecular mechanisms sustaining cancer development and chemotherapy
response and identifying effective targets are essential for early detection, diagnosis, and medical intervention
of OC.

Currently, the analysis of molecular mechanisms based on comprehensive bioinformatics is becoming
increasingly imperative in cancer researches®’. Recently, attentions have been focused on the identification
of novel signatures in cancer early diagnosis®, molecular typing’®, medical decision-making'® and prognosis
prediction!! with the application of comprehensive bioinformatics. Specifically, the comprehensive analysis of
hypoxia-related signature for diagnosis prediction, immune microenvironment and prognosis assessment were
explored in hepatocellular carcinoma'?, cervical carcinoma®?, gastric carcinoma'* and ovarian carcinoma'’.
However, there is still lacking in effective hypoxia-related diagnostic and therapeutic targets for OC.

In this report, an integrated evaluation of the expression profiles of hypoxia-related genes (HRGs) was
conducted to assess the function of HRGs on OC progression, prognosis and chemoresistance. TGFBI, a key
hub HRGs, was validated as a HIF-2a-responsive gene and promoted OC cisplatin resistance via activating
PI3K/Akt pathway.

Results

Construction of hypoxia-related prognostic model in OC

To better understand the imperative function of HRGs in oncogenesis of OC, 200 genes associated with the
hallmark gene sets of hypoxias were retrieved from Molecular Signatures Database. The prognostic function
of 179 hub HRGs in OC patients was explored (Supplementary Fig. 1). Based on the univariate Cox regression
analysis, 12 hub HRGs were found to be significantly correlated with patients’ overall survival (OS), including
FOS like 2, AP-1 transcription factor subunit (FOSL2), epidermal growth factor receptor (EGFR), collagen type
V alpha 1 chain (COL5A1), biglycan (BGN), Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-
terminal domain 2 (CITED2), transforming growth factor beta-induced protein (TGFBI), cyclin-dependent
kinase inhibitor 1B (CDKN1B), serpin family E member 1 (SERPINEL), A-kinase anchoring protein 12
(AKAP12), glypican 1 (GPC1), transglutaminase 2 (TGM2) , and angiopoietin-like 4 (ANGPTL4) (Fig. 1a).
In the multivariate Cox regression analyses, 6 hypoxia-related genes including TGFBI, AKAP12, CDKN1B,
GPC1, TGM2 and ANGPTL4 were chosen to build the predictive model (Fig. 1b). Based on the coefficients
obtained from the Cox regression algorithm, the risk scores of the training and validation cohorts were calculated,
respectively. Patients were divided into high-risk and low-risk groups based on median of the risk score. The
prognosis Index of prognosis model was showed in Supplementary Table 1.

Prognosis Index = (0.005*expression level of TGFBI) + (0.020s expression level of CDKN1B)
+ (0.023*expression level of AKAP12) + (0.010*expression level of GPC1)
+ (0.005*expression level of TGM2) + (0.017*expression level of ANGPTL4)

The OS of the high-risk group was shorter in the training cohorts (Fig. 1c). The AUC was 0.562 at 1 year,
0.660 at 3 years, and 0.677 at 5 years in the training cohort, respectively, indicating a higher predictive value
with longer follow-up (Fig. 1d).

The distribution of status, gene correlation, risk scores and survival time of the 6 hub HRGs in the training
cohort was displayed in Fig. 1le. The high-risk group had higher mortality compared with low-risk group. And
the 6 HRGs were highly expressed in the high-risk group as showed in heatmap (Fig. 1f), indicating that patients
in the high-risk group tended to develop hypoxic microenvironments.

Identification of hypoxia-related signaling pathways in OC

GSEA results (Hallmarks analysis, KEGG analysis and GO analysis) showed that signaling pathways correlated
with oncogenesis and chemoresistance were significantly enriched in the high hypoxia risk group (Supplementary
Fig. 2), including UV response, apical junction, focal adhesion, receptor interaction, epithelial mesenchymal
transition signaling pathway, hypoxia, DNA repair and homologous recombination, indicating that the hub HRGs
may contribute to chemoresistance in OC via activating DNA damage and repair pathway.
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Figure 1. Prognostic value of the hypoxia risk signature in OC. (a) The univariate Cox regression analysis of

12 hypoxia-related genes. (b) The univariate Cox regression analysis of 6 hypoxia-related genes. (c) The survival
probability of prognosis model based on the risk score in training cohort. (d) The area under the curve of
prognosis model based on the risk score in training cohort. (e) Distribution of risk score, OS, and OS status of
the 6 prognostic hypoxia risk gene signatures in the training cohort. (f) The heatmap of the 6 prognostic hypoxia
risk gene signatures in the training cohort.

Immunity analysis between high and low hypoxia risk groups in OC

The assessment of hypoxia-related risk signals in the immune microenvironment was explored through
CIBERSORT. The heatmap of all immune cells showed that patients with higher hypoxia risk score had
significantly lower percentages of B cells memory and higher fractions of Microphages M2 in the training
cohort (Supplementary Fig. 3a) and significantly higher percentages of B cells memory and lower fractions of
Mast cells resting (Supplementary Fig. 3b). Immune checkpoints such as PD-L2, immune-related genes, such as
CXCR3, CCL20, CCL19, CXCL16, CCR5, CXCL11, CX3CL1, CXCL9 and CXCL10 were upregulated in the high-
risk group (Supplementary Fig. 4a), which was also validated in the validation cohort (Supplementary Fig. 4b).

Construction of hypoxia-related diagnosis model in OC
The diagnostic prediction model was established to effectively predict OC based on the six-hub hypoxia-related
genes (TGFBI, AKAP12, GPC1, TGM2 and ANGPTL4). The binary FR models were as follows:

logit(P1) = 4.680 — 0.002*expression level of TGFBI
logit(P2) = 4.138 — 0.003*expression level of TGFBI 4 0.021 * expression level of GPC1
logit(P3) = 4.879 — 0.003*expression level of TGFBI — 0.006
*expression level of AKAP12 + 0.022 * expression level of GPC1
log it(P4) = 4.699 — 0.005*expression level of TGFBI — 0.007*expression level of AKAP12 + 0.022
* expression level of GPC1 + 0.022 x expression level of TGM2

The AUCs of the predicted probability 1, 2, 3 and 4 were 0.645, 0.826, 0.875 and 0.893, respectively
(Supplementary Table 2). The Variables in the equation of the four diagnostic models were shown in
Supplementary Table 3. Figure 2a showed the AUC of the four predicted models.

The validation of hub HRGs in hypoxia condition

To validate hub HRGs in hypoxia condition, the hypoxia-sensitive human ovarian cancer cell, SKOV3, was
cultured under normoxia and consistent 1% O, hypoxia condition for 24 h, respectively. The QRT-PCR result
showed that the mRNA levels of four hub HRGs (TGFBI, AKAP12, GPC1 and TGM2) were significantly higher
in hypoxia condition than normoxia condition, validating these four genes were hypoxia-responsive genes
(Fig. 2b). In order to determine which hypoxia factor contributed to their expression, HIF-1a and HIF-2a were
overexpressed separately. After transfected with HIF-1a, the mRNA levels of the four genes were insignificantly
changed, indicating that the four genes were not HIF-1a-responsive (Fig. 2c). But TGFBI was significantly
higher in HIF-2a-overexpressed cells (Fig. 2d). And in HIF-2a-knocked down cells, the protein levels of
TGFBI were subsequently reduced (Fig. 2e), indicating that TGFBI was transcriptionally regulated by HIF-2a.
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Figure 2. The role of hypoxia-related genes in hypoxic condition. (a) The area under the curve for four
diagnostic models. (b) The mRNA expression level of TGFBI, AKAP12, GPC1 and TGM2 in normoxia and
hypoxia condition. (c¢) The mRNA expression level of TGFBI, AKAP12, GPC1 and TGM2 after transfected with
HIFla-plasmid. (d) The mRNA expression level of TGFBI, AKAP12, GPC1 and TGM2 after transfected with
HIF2a-lentivirus. (e) The protein expression level of TGFBI after transfected with siHIF2a. (f) The Pearson and
Spearman correlation analysis of TGFBI and EPASI. (g) The promotor region of TGFBI and binding motif of
HIF2a. (h) Expression level of TGFBI in ovarian cancer and normal tissues. (i) K-M survival curves of TGFBI
in ovarian cancer. (j-m) Validation of TGFBI at the translational level using the Human Protein Atlas (HPA)
database (IHC).

Additionally, the correlation analysis of HIF-2a and TGFBI demonstrated that the mRNA levels of HIF2a and
TGEFBI were positively correlated with Spearman 0.39, Pearson 0.44, P <0.05 (Fig. 2f). The promoter region of
TGFBI (specifically -155- -145 “GCACGGGCCG”) was predicted as the binding motif of HIF-2aq, indicating that
HIF-2a may directly contribute to the high expression of TGFBI (Fig. 2g). Moreover, the mRNA level of TGFBI
was significantly higher in ovarian cancer tissues than in normal tissues (Fig. 2h), and the higher level of TGFBI,
the poorer prognosis of ovarian cancer patients (Fig. 2i). Furthermore, the protein level of TGFBI was strongly
expressed in OC tissues using standard IHC labeling collected from HPA (Figs. 2j—m).

The role of TGFBI in the regulation of OC progression and chemotherapy in vitro

In order to explore the role of TGFBI in the regulation of OC, several experiments in vitro were conducted. First
of all, as shown in Fig. 3a, the protein level of TGFBI was higher in 3A0 than in normal human ovarian epithelial
cell line IOSE80 and four other OC cell lines (A2780, Caov3, OVCAR3 and SKOV3). TGFBI interference by
siRNAs in 3A0 brought about no significant changes in cell viability, migration and invasion (Fig. 3b-e).

In view of a potential role of TGFBI in platinum-based therapy revealed by the Evaluation of drug sensitivity
(Fig. 4a), TGFBI expression level was examined in cisplatin-resistant ovarian cancer cell line A2780/CDDP and
cisplatin-sensitive ovarian cancer cell line A2780 (as showed in Fig. 4b, IC;, for A2780 was 119.2 uM, IC;, for
A2780/CDDP was 258.8 uM), the results showed that TGFBI was elevated at both mRNA and protein levels in
A2780/CDDP cells (Fig. 4c). And with the time gradient stimulation of cisplatin, the protein expression levels
of TGFBI were elevated in A2780 and A2780/CDDP cells (Fig. 4d and e). Therefore, TGFBI was interfered by
siRNAs in A2780/CDDP (Fig. 4f) and the ICs, values for A2780/CDDP cells transfected with siNC and siTGFBIs
were 194.5 uM, 154.5 uM and 175.6 uM, respectively, indicating that TGFBI contributed to cisplatin-resistance
in OC (Fig. 4g).

TGFBI promoted chemoresistance through inhibiting apoptosis and facilitating DNA damage
repair via activating PI3K/Akt signaling pathway

In order to explore the underlying mechanism by which TGFBI promoted chemoresistance in OC, we further
investigated the effect of TGFBI on the expression of multidrug resistant-related markers and DNA damage repair
pathway in A2780/CDDP cells. The Western blot results showed that suppression of TGFBI downregulated MRP1
and MDRI1 (Fig. 5a). TGFBI knockdown reduced the protein levels of BRAC2, p-p95, RAD51, p-DNA-PKcs,
DNA Ligase IV and Artmis, proving that TGFBI promoted chemoresistance via the combination of Homologous
Recommendation DNA repair (Fig. 5b) and Non-Homologous End Joining (NHE]) DNA repair (Fig. 5¢). KEGG
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Figure 3. The role of TGFBI in ovarian cancer proliferation, migration and invasion. (a) The protein expression
level of TGFBI in normal ovarian cell line and 5 ovarian cancer cell lines. (b) The mRNA and protein expression
level of TGFBI after knocking down by siRNA. The cell proliferation (c), migration (d) and invasion (e) after
knocking down TGFBI in 3AO cell line. The blots have been cropped to improve the conciseness and clarity of

the display.
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Figure 4. The role of TGFBI in ovarian cancer chemoresistance. (a) Evaluation of TGFBI sensitivity

to chemotherapy drugs on tumor. (b) Cell survival between A2780 and A2780/CDDP followed by the
concentration gradient stimulation of cisplatin. (c¢) The mRNA and protein expression level of TGFBI in
cisplatin-sensitive ovarian cancer cell line-A2780 and cisplatin-resistant ovarian cancer cell line-A2780/CDDP.
(d) The protein expression level of TGFBI after time gradient of cisplatin in A2780 (ICs, as 119.2 pM). (e)

The protein expression level of TGFBI after time gradient of cisplatin in A2780/CDDP (ICs, as 258.8 uM). (f)
The protein expression level of TGFBI after knocking down by siRNA in A2780/CDDP. (g) Cell survival after
A2780/CDDP were transfected with siRNA, followed by the concentration gradient stimulation of cisplatin (0,
2.5, 5, 10, 20, 40, 80, 160, 320 and 640 uM).
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Figure 5. TGFBI promoted chemoresistance through inhibiting apoptosis and facilitating DNA damage repair
via activating PI3K/Akt signaling pathway. (a) The protein expression level of MRP1 and MDR1 in A2780/
CDDP after TGFBI knockdown. (b) The protein expression level of Homologous Recommendation DNA repair
related markers in A2780/CDDP after TGFBI knockdown. (c) The protein expression level of Non-Homologous
End Joining (NHE]) DNA repair related markers in A2780/CDDP after TGFBI knockdown. (d) The KEGG
enrichment pathway analysis of TGFBI-related differentially expressed genes in OC. (e) The protein expression
level of PTEN, PI3K/p110, PI3K/p85, p-Akt, Akt, BCL2, Bax and Beclinl in A2780/CDDP after TGFBI
knockdown.

analysis indicated the involvement of TGFBI in PI3K/Akt pathway (Fig. 5d). In siTGFBIs-transfected A2780/
CDDP cells, PI3K-p110 and p-Akt were reduced while Akt negative regulator PTEN was increased. Additionally,
the anti-apoptotic protein Bcl-2 was decreased while pro-apoptotic protein Bax remained unchanged with TGFBI
inhibition (Fig. 5e). Taken together, TGFBI activated PI3K/Akt pathway to inhibit apoptosis and facilitate DNA
repair to promote chemoresistance in OC.

Discussion

Ovarian cancer (OC) is one of the deadly gynecological malignancies in the worldwide, and the progression
of OC is a complicated process regulated by various factors'®. The prognosis of OC patients remains poor in
spite of the development of emerging therapeutic options for OC'. Currently, high-throughput sequencing
complimented with integrated big-data analysis have gradually become more and more important applications
for medical research, which can effectively identify biomarkers for diagnosis, clinical stratification, prognosis
and recurrence monitoring et al.'®. Bioinformatic analysis focusing on one biophysical, biochemical or biologic
feature of OC will help to explore key targets in OC progression.

Hypoxia is a prominent characteristic of malignant tumors, especially in OC". It was found that hypoxic
environment was involved in the aggressive progression of OC with significantly poor prognosis®. Nevertheless,
the detailed mechanism of hypoxia in OC remains unclear'®. Hence, exploring the role and underlying mechanism
of hypoxia in OC may offer opportunities for potential therapeutic purposes. In this study, six hypoxia-related
genes (TGFBI, AKAP12, CDKN1B, GPC1, TGM2 and ANGPTL4) were identified for their correlations with
the prognosis of OC and four of them (TGFBI, AKAP12, GPC1 and TGM2) were chosen for prediction model
of OC. TGFBI, also known as BIGH3, has been demonstrated to play roles in regulating cell adhesion and the
pathogenesis of human disease?"*>. AKAP12 is involved in promoting colon cancer metastasis via HDAC6-
dependent AKAP12 deacetylation and ubiquitination mediated degradation®*. CDKN1B, encoding for the CDK
inhibitor p275P!, has been confirmed mutant in various cancers including breast?, prostate cancer? and small
intestine neuroendocrine tumors®, of which the mutation and copy number variation are associated with tumor
aggressiveness”. GPCl, as well as glypican-1, is specifically enriched on cancer-cell-derived exosomes and may
serve as a potential non-invasive diagnostic and screening tool to detect early stages of pancreatic cancer?. TGM2
transcriptionally activates FN1 by promoting nuclear factor kappa B (NFxB) p65 nuclear translocation, ultimately

Scientific Reports |

(2024) 14:3870 |

https://doi.org/10.1038/s41598-024-53854-y nature portfolio



www.nature.com/scientificreports/

promoting PTC invasion/metastasis®®. ANGPTL4, plays a critical role in regulating reactive oxygen species
(ROS) production, which might provide new targets for improving outcomes in patients with hyperlipidemia-
associated CRC metastasis*’. Our results showed that these six hub HRGs were independent factors for evaluating
the prognosis of OC with great predictive performance. According to the prognosis Index, we divided the OC
patients into two clusters (high- and low-risk groups) and compared the differences between the two groups. It
should be pointed out that the high-risk group had a higher PD-L2 expression, indicating that high-risk patients
were more likely to benefit from immunocheckpoint inhibitor therapy. More importantly, the diagnostic model
based on the four HRGs (TGFBI, AKAP12, GPC1 and TGM2) presented a higher accuracy and sensitivity and
could accurately and effectively distinguish OC from normal ovary.

Much attention has been paid on the role of hypoxia in regulating the immune microenvironment in tumor
progression and metastasis'2. Several studies have demonstrated that hypoxia can interfere with tumor-associated
immune cells to enhancing proliferation, differentiation, vessel growth and distant metastasis of tumors>!-33,
However, a number of inhibitory pathways, known as immunocheckpoints, were responsible for suppressing this
anti-tumor response in the tumor microenvironment®. Our results demonstrated that the high-risk group had
a higher fractions of B memory cells and M2 macrophages and higher expression levels of immune checkpoints
like PD-L2 and immune-related genes including CCL19, CCR5, CX3CL1 and CXCL9. These results highlighted
the pivotal role of immunotherapy for high-risk OC patients based on the expression levels of HRGs.

Moreover, TGFBI was selected to further explore its specific mechanism in hypoxia and ovarian cancer
progression and chemotherapy. Our results showed that TGFBI was up-expressed under hypoxic condition and
HIF-2a overexpression, but remained unchanged when HIF-1a was overexpressed. And HIF-2a binding site
was found in the promoter region of TGFBI, indicating HIF-2a could directly promote TGFBI transcription.
Additionally, we found that the expression level of TGFBI may be positively related with the ICy, of platinum
including oxaliplatin. Moreover, TGFBI was highly expressed in cisplatin-resistant ovarian cancer cells than
sensitive ovarian cancer cells. The TGFBI expression was increased with the increase of cisplatin concentration
gradient, and downregulation of TGFBI could impair the chemoresistance of cisplatin-resistant ovarian cancer
cells. Furthermore, we found that TGFBI may function as a key regulator in chemoresistance of ovarian cancer
mainly through activating HR DNA repair and NHE] DNA repair; also, TGFBI activate PI3K/Akt pathway to
inhibit cell apoptosis and facilitate chemoresistance (Fig. 6). All in all, TGFBI could serve as a potential target
for chemoresistance and its inhibitor may be auxiliary complemented with chemotherapy.

In summary, the hub HRGs were identified and used to establish effective prognosis and diagnosis models for
OC diagnosis and prediction. One of the HRGs, TGFBI, was found upregulated by HIF-2a and promoted OC
chemoresistance via interfering apoptosis and facilitating DNA damage repair through the activation of PI3K/
Akt pathway, further verifying the effectiveness of the bioinformatic strategy utilized here.

Methods and materials

Data acquisition of HRGs related with OC

The mRNA expression and corresponding clinicopathologic data associated with OC were retrieved from The
Cancer Genome Atlas (https://portal.gdc.cancer.gov/)- Ovarian Serous Cystadenocarcinoma- (TCGA-OV)**3
(including 379 OV tissue samples and 587 clinical information) as training set. The mRNA expression data of
OC tissue samples and related clinical information were retrieved from the Gene Expression Omnibus database
(GEO) (https://www.ncbi.nlm.nih.gov/geo/)- GSE63885% (including 70 OV tissues samples and corresponding
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Figure 6. A model of the role of TGFBI in chemoresistance.
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clinical information) as validation set. A list of HRGs was retrieved from Hallmark gene sets of the Molecular
Signatures Database®.

Protein—protein interaction (PPI) network and acquisition of hub HRGs
After PPI analysis by STRING database (https://cn.string-db.org/)*’, we obtained totally 172 hub HRGs with
OV-related clinical characteristics from TCGA.

Establishment and validation of prognostic predictive models based on hub HRGs

The univariate Cox regression was performed to assess the prognostic value of hub HRGs. Subsequently,
the multivariate Cox regression was conducted to identify hub HRGs and the prognostic HRGs classifier
was constructed. The regression coeflicient (§) was derived from multivariate Cox regression analysis*. The
composition of the final HRGs classifier was selected to generate the risk score based on the following formula:

Prognosis Index = (Pgenel*expression level of genel) + (Bgene2*expression level of gene2) + ...

+ (BgeneN*expression level of geneN)

All patients were divided into two groups (high-risk and low-risk group) based on the median value of the
risk score. The risk score of the validation cohort was also calculated using the same formula.

Survival analysis

Based on Kaplan—Meier analysis, overall survival (OS) was compared between groups with high- and low-risk. To
validate the predictive accuracy of the risk models, receiver operating characteristic (ROC) curve was generated
by using the R language package “timeROC”™*.

Gene set enrichment analysis (GSEA)
Gene set enrichment analysis (GSEA)** was conducted to determine underlying mechanisms of hub HRGs
classifier on OC with “Clusterprofiler” package*’.

Estimation of immune cell type fractions and immune-related genes
CIBERSORT** was performed to characterize the cell composition and immune cells infiltration. The fractions
of immune cell types between high-risk and low-risk groups were assessed by using CIBERSORT.

Establishment of a diagnostic predictive signature based on hub HRGs

The diagnostic prediction model was constructed to predict OC based on hub HRGs effectively. Sensitivity,
specificity, AUC, and 95% CI were calculated to assess the accuracy of the prediction model. The model is as
follows:

logit(P) = B0+ Blx1 + B2x2 + ... + BMxM

Cell culture

Normal human ovarian epithelial cell line IOSE80 and five human ovarian cancer cell lines (3A0, A2780, Caov3,
OVCAR3 and SKOV3) were from ATCC, Shanghai Cell Bank of Chinese Academy of Sciences and Shandong
Academy of Medical Sciences. The cisplatin-resistant derivate ovarian cancer cell line A2780/CDDP was cultured
in intermittent incremental exposure to cisplatin. The cells were cultivated in 1640 supplemented with 10% fetal
bovine serum (FBS) at 37 °C with 5% CO,. Hypoxia was evaluated by treating OC cells with 1% oxygen for 24 h
after being cultured under normoxia conditions to 70% confluence.

Cell transfections

siRNA against TGFBI and negative control siRNA were purchased from RiboBio Co., Ltd (Guangzhou, China).
The overexpression of HIF-1a in OC cells was performed using Flag-tagged HIF-1a plasmid and negative control
plasmid. The overexpression of HIF-2a in OC cells was performed with lentiviruses carrying EPAS1 or control,
purchased from Genechem Co., Ltd. (Shanghai, China).

Real-time PCR analysis

Total RNA was isolated using Trizol reagent (Invitrogen, Eugene, OR, USA) and following qRT-PCR (Takara)
were performed according to the manufacturer’s instruction. The results were normalized to B-actin gene. The
following primers were used: H19 F: 5-TGCTGCACTTTACAACCACTG-3' and R: 5'-ATGGTGTCTTTGATG
TTGGGC-3'; HIF-1a F: 5'-ATCCATGTGACCATGAGGAAATG-3' and R: 5'-TCGGCTAGTTAGGGTACA
CTTC-3'; HIF-2a F: 5'-GCGACCATGAGGAGATTCGT-3' and 5-GACCGTGCACTTCATCCTCA-3'; TGFBI
F: 5'-CTTCGCCCCTAGCAACGAG-3"and R: 5-TGAGGGTCATGCCGTGTTTC -3'; AKAP12 F: 5-ATCTAC
AGAGAAACCCGAAGAGA-3"and R: 5'-TGCAGACTTGCTAGGTTCTTTTT-3"; GPCI1 F: 5-TGAAGCTGG
TCTACTGTGCTC -3’ and R: 5'-CCCAGAACTTGTCGGTGATGA-3'; and TGM2 F: 5'-CAAGGCCCGTTT
TCCACTAAG -3’ and R: 5-GAGGCGATACAGGCCGATG-3'".
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Western blot analysis

Human ovarian cancer cells with implementations were lysed in RIPA (Beyotime) on ice. Primary antibodies
specific to TGFBI (1:1,000, Proteintech), MRP1 (1:100, Santa Cruz Biotechnology), MDR1 (1:100, Santa Cruz
Biotechnology), BRAC2 (1:1,000, Cell Signaling Technology), BRCA1 (1:1,000, Cell Signaling Technology), CtIP
(1:1,000, Cell Signaling Technology), p-p95 (1:1,000, Cell Signaling Technology), p95 (1:1,000, Cell Signaling
Technology), RAD54 (1:1,000, Cell Signaling Technology), RAD51 (1:1,000, Cell Signaling Technology), p-DNA-
PKcs (1:1,000, Cell Signaling Technology), DNA-PKcs (1:1,000, Cell Signaling Technology), DNA Ligase IV
(1:1,000, Cell Signaling Technology), Artmis (1:1,000, Cell Signaling Technology), Ku80 (1:1,000, Cell Signaling
Technology), Ku70 (1:1,000, Cell Signaling Technology), XLF (1:1,000, Cell Signaling Technology), PTEN
(1:1,000, Cell Signaling Technology), PI3K-p110 (1:1,000, Cell Signaling Technology), PI3K-p85 (1:1,000, Cell
Signaling Technology), p-Akt (1:1,000, Cell Signaling Technology), Akt (1:1,000, Cell Signaling Technology),
BCL2 (1:1,000, Cell Signaling Technology), Bax (1:1,000, Cell Signaling Technology), Beclin1 (1:1,000, Cell
Signaling Technology) and B-actin (1:2,000, Cell Signaling Technology) were used at 4 °C overnight. After
incubation with secondary antibodies (1:1,000, Cell Signaling Technology), immune complexes were detected
on Image Lab Software in Molecular Imager ChemiDoc XRS (Bio-Rad).

Cell adhesion, migration and invasion assays

Cell adhesion assay was measured according to the manufacturers protocol. Transwell assays were performed
using a 24-well plate (BD, Corning, NY, USA). Cells (3-5 x 10°/well) were seeded in RPMI-1640 without FBS in
the top chamber, and were allowed to migrate for 24 to 48 h. The membrane was then washed by PBS for three
times and fixed in methyl alcohol for 30 min and stained with crystal violet. Cells were then imaged and counted
in five independent fields. Additionally, Matrigel (BD Biosciences) was performed for invasion assay.

CCKS8 assays

Cells (1x10? cells/well) were seeded into a 96-well plate and transfected with specific siRNAs against TGFBI
or siNC. Cell Counting Kit-8 was applied to measure the optical density (OD) value at 450 nm based on the
manufacturer’s protocol.

Evaluation of drug sensitivity

Drug sensitivity data of 60 different human cancer cell lines was downloaded from the CellMiner
database*(https://discover.nci.nih.gov/cellminer/), which including drug sensitivity data (IC,, Values). CellMiner
contains ICs, data for 860 drugs totally. Pearson test was performed to compare the correlation between the
TGFBI expression levels and ICs, of totally 860 drugs.

1C5, assay

After transfected with specific siTGFBI or siNC, A2780/CDDP cells were seeded on a 96-well plate and cultivated
for 24 h for the ICy, assay of cisplatin treatment (0, 2.5, 5, 10, 20, 40, 80, 160, 320, 640 uM/L). Cell Counting Kit-8
was applied to measure the OD according to the manufacturer’s protocol.

Statistical analysis
Continuous variables were performed as the mean + standard deviation (SD). Differences between groups were
measured by two-tailed t-test. P-value < 0.05 was considered statistically significant.

Data availability

The data sets analyzed during the current study are available in the TCGA (https://portal.gdc.cancer.gov/),
accession numbers TCGA-OV, OV-FPKM. The data used to support the findings of this study are available from
the corresponding author upon request.
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