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HIF‑2α‑dependent TGFBI promotes 
ovarian cancer chemoresistance 
by activating PI3K/Akt pathway 
to inhibit apoptosis and facilitate 
DNA repair process
Sijia Ma 1,2,3, Jia Wang 1, Zhiwei Cui 1, Xiling Yang 1,2,3, Xi Cui 1,2,3, Xu Li 1,2,3 & Le Zhao 1,2,3,4*

Hypoxia‑mediated chemoresistance plays a crucial role in the development of ovarian cancer (OC). 
However, the roles of hypoxia‑related genes (HRGs) in chemoresistance and prognosis prediction 
and theirs underlying mechanisms remain to be further elucidated. We intended to identify and 
validate classifiers of hub HRGs for chemoresistance, diagnosis, prognosis as well as immune 
microenvironment of OC, and to explore the function of the most crucial HRG in the development 
of the malignant phenotypes. The RNA expression and clinical data of HRGs were systematically 
evaluated in OC training group. Univariate and multivariate Cox regression analysis were applied to 
construct hub HRGs classifiers for prognosis and diagnosis assessment. The relationship between 
classifiers and chemotherapy response and underlying pathways were detected by GSEA, CellMiner 
and CIBERSORT algorithm, respectively. OC cells were cultured under hypoxia or transfected with 
HIF‑1α or HIF‑2α plasmids, and the transcription levels of TGFBI were assessed by quantitative PCR. 
TGFBI was knocked down by siRNAs in OC cells, CCK8 and in vitro migration and invasion assays were 
performed to examine the changes in cell proliferation, motility and metastasis. The difference in 
TGFBI expression was examined between cisplatin‑sensitive and ‑resistant cells, and the effects of 
TGFBI interference on cell apoptosis, DNA repair and key signaling molecules of cisplatin‑resistant 
OC cells were explored. A total of 179 candidate HRGs were extracted and enrolled into univariate 
and multivariate Cox regression analysis. Six hub genes (TGFBI, CDKN1B, AKAP12, GPC1, TGM2 
and ANGPTL4) were selected to create a HRGs prognosis classifier and four genes (TGFBI, AKAP12, 
GPC1 and TGM2) were selected to construct diagnosis classifiers. The HRGs prognosis classifier 
could precisely distinguish OC patients into high‑risk and low‑risk groups and estimate their clinical 
outcomes. Furthermore, the high‑risk group had higher percentage of Macrophages M2 and exhibited 
higher expression of immunecheckpoints such as PD‑L2. Additionally, the diagnosis classifiers 
could accurately distinguish OC from normal samples. TGFBI was further verified as a specific key 
target and demonstrated that its high expression was closely correlated with poor prognosis and 
chemoresistance of OC. Hypoxia upregulated the expression level of TGFBI. The hypoxia‑induced 
factor HIF‑2α but not HIF‑1α could directly bind to the promoter region of TGFBI, and facilitate 
its transcription level. TGFBI was upregulated in cisplatin‑sensitive and resistant ovarian cancer 
cells in a cisplatin time‑dependent manner. TGFBI interference downregulated DNA repair‑related 
markers (p‑p95/NBS1, RAD51, p‑DNA‑PKcs, DNA Ligase IV and Artemis), apoptosis‑related marker 
(BCL2) and PI3K/Akt pathway‑related markers (PI3K‑p110 and p‑Akt) in cisplatin‑resistant OC cells. 
In summary, the HRGs prognosis risk classifier could be served as a predictor for OC prognosis and 
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efficacy evaluation. TGFBI, upregulated by HIF‑2α as an HRG, promoted OC chemoresistance through 
activating PI3K/Akt pathway to reduce apoptosis and enhance DNA damage repair pathway.

Keywords Ovarian cancer, Hypoxia, Chemoresistance, Akt, DNA repair

Ovarian cancer (OC) remains one of the most lethal malignancies affected gynecologic reproductive systems, 
accounting for 5% estimated deaths in females. Despite the development of OC treatment strategies, the overall 
5-year survival rate for OC patients remains only 49% for all races and 24% for advanced  patients1. Establishing 
molecular models using effective biomarkers for diagnosis and survival prediction is vital in optimizing patient 
stratification and medical decision-making.

Hypoxia is an inherent characteristic of solid malignancies as the vascular nutrient is  insufficient2. Emerging 
studies have demonstrated that the pivotal roles of hypoxia on tumor progression, metastasis, chemoresistance 
and  immunosuppression3,4. For ovarian cancer, the oxygen supply to ovarian cancer is severely impaired by 
ascites, which exacerbates hypoxia  dependency5. Therefore, investigating the physiological and pathological 
effects of hypoxia, understanding its molecular mechanisms sustaining cancer development and chemotherapy 
response and identifying effective targets are essential for early detection, diagnosis, and medical intervention 
of OC.

Currently, the analysis of molecular mechanisms based on comprehensive bioinformatics is becoming 
increasingly imperative in cancer  researches6,7. Recently, attentions have been focused on the identification 
of novel signatures in cancer early  diagnosis8, molecular  typing9, medical decision-making10 and prognosis 
 prediction11 with the application of comprehensive bioinformatics. Specifically, the comprehensive analysis of 
hypoxia-related signature for diagnosis prediction, immune microenvironment and prognosis assessment were 
explored in hepatocellular  carcinoma12, cervical  carcinoma13, gastric  carcinoma14 and ovarian  carcinoma15. 
However, there is still lacking in effective hypoxia-related diagnostic and therapeutic targets for OC.

In this report, an integrated evaluation of the expression profiles of hypoxia-related genes (HRGs) was 
conducted to assess the function of HRGs on OC progression, prognosis and chemoresistance. TGFBI, a key 
hub HRGs, was validated as a HIF-2α-responsive gene and promoted OC cisplatin resistance via activating 
PI3K/Akt pathway.

Results
Construction of hypoxia‑related prognostic model in OC
To better understand the imperative function of HRGs in oncogenesis of OC, 200 genes associated with the 
hallmark gene sets of hypoxias were retrieved from Molecular Signatures Database. The prognostic function 
of 179 hub HRGs in OC patients was explored (Supplementary Fig. 1). Based on the univariate Cox regression 
analysis, 12 hub HRGs were found to be significantly correlated with patients’ overall survival (OS), including 
FOS like 2, AP-1 transcription factor subunit (FOSL2), epidermal growth factor receptor (EGFR), collagen type 
V alpha 1 chain (COL5A1), biglycan (BGN), Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-
terminal domain 2 (CITED2), transforming growth factor beta-induced protein (TGFBI), cyclin-dependent 
kinase inhibitor 1B (CDKN1B), serpin family E member 1 (SERPINE1), A-kinase anchoring protein 12 
(AKAP12), glypican 1 (GPC1), transglutaminase 2 (TGM2) , and angiopoietin-like 4 (ANGPTL4) (Fig. 1a). 
In the multivariate Cox regression analyses, 6 hypoxia-related genes including TGFBI, AKAP12, CDKN1B, 
GPC1, TGM2 and ANGPTL4 were chosen to build the predictive model (Fig. 1b). Based on the coefficients 
obtained from the Cox regression algorithm, the risk scores of the training and validation cohorts were calculated, 
respectively. Patients were divided into high-risk and low-risk groups based on median of the risk score. The 
prognosis Index of prognosis model was showed in Supplementary Table 1.

The OS of the high-risk group was shorter in the training cohorts (Fig. 1c). The AUC was 0.562 at 1 year, 
0.660 at 3 years, and 0.677 at 5 years in the training cohort, respectively, indicating a higher predictive value 
with longer follow-up (Fig. 1d).

The distribution of status, gene correlation, risk scores and survival time of the 6 hub HRGs in the training 
cohort was displayed in Fig. 1e. The high-risk group had higher mortality compared with low-risk group. And 
the 6 HRGs were highly expressed in the high-risk group as showed in heatmap (Fig. 1f), indicating that patients 
in the high-risk group tended to develop hypoxic microenvironments.

Identification of hypoxia‑related signaling pathways in OC
GSEA results (Hallmarks analysis, KEGG analysis and GO analysis) showed that signaling pathways correlated 
with oncogenesis and chemoresistance were significantly enriched in the high hypoxia risk group (Supplementary 
Fig. 2), including UV response, apical junction, focal adhesion, receptor interaction, epithelial mesenchymal 
transition signaling pathway, hypoxia, DNA repair and homologous recombination, indicating that the hub HRGs 
may contribute to chemoresistance in OC via activating DNA damage and repair pathway.

Prognosis Index =
(

0.005*expression level of TGFBI
)

+
(

0.020∗ expression level of CDKN1B
)

+
(

0.023*expression level of AKAP12
)

+
(

0.010*expression level of GPC1
)

+
(

0.005*expression level of TGM2
)

+
(

0.017*expression level of ANGPTL4
)
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Immunity analysis between high and low hypoxia risk groups in OC
The assessment of hypoxia-related risk signals in the immune microenvironment was explored through 
CIBERSORT. The heatmap of all immune cells showed that patients with higher hypoxia risk score had 
significantly lower percentages of B cells memory and higher fractions of Microphages M2 in the training 
cohort (Supplementary Fig. 3a) and significantly higher percentages of B cells memory and lower fractions of 
Mast cells resting (Supplementary Fig. 3b). Immune checkpoints such as PD-L2, immune-related genes, such as 
CXCR3, CCL20, CCL19, CXCL16, CCR5, CXCL11, CX3CL1, CXCL9 and CXCL10 were upregulated in the high-
risk group (Supplementary Fig. 4a), which was also validated in the validation cohort (Supplementary Fig. 4b).

Construction of hypoxia‑related diagnosis model in OC
The diagnostic prediction model was established to effectively predict OC based on the six-hub hypoxia-related 
genes (TGFBI, AKAP12, GPC1, TGM2 and ANGPTL4). The binary FR models were as follows:

The AUCs of the predicted probability 1, 2, 3 and 4 were 0.645, 0.826, 0.875 and 0.893, respectively 
(Supplementary Table  2). The Variables in the equation of the four diagnostic models were shown in 
Supplementary Table 3. Figure 2a showed the AUC of the four predicted models.

The validation of hub HRGs in hypoxia condition
To validate hub HRGs in hypoxia condition, the hypoxia-sensitive human ovarian cancer cell, SKOV3, was 
cultured under normoxia and consistent 1%  O2 hypoxia condition for 24 h, respectively. The qRT-PCR result 
showed that the mRNA levels of four hub HRGs (TGFBI, AKAP12, GPC1 and TGM2) were significantly higher 
in hypoxia condition than normoxia condition, validating these four genes were hypoxia-responsive genes 
(Fig. 2b). In order to determine which hypoxia factor contributed to their expression, HIF-1α and HIF-2α were 
overexpressed separately. After transfected with HIF-1α, the mRNA levels of the four genes were insignificantly 
changed, indicating that the four genes were not HIF-1α-responsive (Fig. 2c). But TGFBI was significantly 
higher in HIF-2α-overexpressed cells (Fig. 2d). And in HIF-2α-knocked down cells, the protein levels of 
TGFBI were subsequently reduced (Fig. 2e), indicating that TGFBI was transcriptionally regulated by HIF-2α. 

log it(P1) = 4.680− 0.002*expression level of TGFBI

log it(P2) = 4.138− 0.003*expression level of TGFBI+ 0.021 ∗ expression level of GPC1

log it(P3) = 4.879− 0.003*expression level of TGFBI− 0.006

*expression level of AKAP12+ 0.022 ∗ expression level of GPC1

log it(P4) = 4.699− 0.005*expression level of TGFBI− 0.007*expression level of AKAP12+ 0.022

∗ expression level of GPC1+ 0.022 ∗ expression level of TGM2

Figure 1.  Prognostic value of the hypoxia risk signature in OC. (a) The univariate Cox regression analysis of 
12 hypoxia-related genes. (b) The univariate Cox regression analysis of 6 hypoxia-related genes. (c) The survival 
probability of prognosis model based on the risk score in training cohort. (d) The area under the curve of 
prognosis model based on the risk score in training cohort. (e) Distribution of risk score, OS, and OS status of 
the 6 prognostic hypoxia risk gene signatures in the training cohort. (f) The heatmap of the 6 prognostic hypoxia 
risk gene signatures in the training cohort.
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Additionally, the correlation analysis of HIF-2α and TGFBI demonstrated that the mRNA levels of HIF2α and 
TGFBI were positively correlated with Spearman 0.39, Pearson 0.44, P < 0.05 (Fig. 2f). The promoter region of 
TGFBI (specifically -155- -145 “GCA CGG GCCG”) was predicted as the binding motif of HIF-2α, indicating that 
HIF-2α may directly contribute to the high expression of TGFBI (Fig. 2g). Moreover, the mRNA level of TGFBI 
was significantly higher in ovarian cancer tissues than in normal tissues (Fig. 2h), and the higher level of TGFBI, 
the poorer prognosis of ovarian cancer patients (Fig. 2i). Furthermore, the protein level of TGFBI was strongly 
expressed in OC tissues using standard IHC labeling collected from HPA (Figs. 2j–m).

The role of TGFBI in the regulation of OC progression and chemotherapy in vitro
In order to explore the role of TGFBI in the regulation of OC, several experiments in vitro were conducted. First 
of all, as shown in Fig. 3a, the protein level of TGFBI was higher in 3AO than in normal human ovarian epithelial 
cell line IOSE80 and four other OC cell lines (A2780, Caov3, OVCAR3 and SKOV3). TGFBI interference by 
siRNAs in 3AO brought about no significant changes in cell viability, migration and invasion (Fig. 3b–e).

In view of a potential role of TGFBI in platinum-based therapy revealed by the Evaluation of drug sensitivity 
(Fig. 4a), TGFBI expression level was examined in cisplatin-resistant ovarian cancer cell line A2780/CDDP and 
cisplatin-sensitive ovarian cancer cell line A2780 (as showed in Fig. 4b,  IC50 for A2780 was 119.2 μM,  IC50 for 
A2780/CDDP was 258.8 μM), the results showed that TGFBI was elevated at both mRNA and protein levels in 
A2780/CDDP cells (Fig. 4c). And with the time gradient stimulation of cisplatin, the protein expression levels 
of TGFBI were elevated in A2780 and A2780/CDDP cells (Fig. 4d and e). Therefore, TGFBI was interfered by 
siRNAs in A2780/CDDP (Fig. 4f) and the  IC50 values for A2780/CDDP cells transfected with siNC and siTGFBIs 
were 194.5 μM, 154.5 μM and 175.6 μM, respectively, indicating that TGFBI contributed to cisplatin-resistance 
in OC (Fig. 4g).

TGFBI promoted chemoresistance through inhibiting apoptosis and facilitating DNA damage 
repair via activating PI3K/Akt signaling pathway
In order to explore the underlying mechanism by which TGFBI promoted chemoresistance in OC, we further 
investigated the effect of TGFBI on the expression of multidrug resistant-related markers and DNA damage repair 
pathway in A2780/CDDP cells. The Western blot results showed that suppression of TGFBI downregulated MRP1 
and MDR1 (Fig. 5a). TGFBI knockdown reduced the protein levels of BRAC2, p-p95, RAD51, p-DNA-PKcs, 
DNA Ligase IV and Artmis, proving that TGFBI promoted chemoresistance via the combination of Homologous 
Recommendation DNA repair (Fig. 5b) and Non-Homologous End Joining (NHEJ) DNA repair (Fig. 5c). KEGG 

Figure 2.  The role of hypoxia-related genes in hypoxic condition. (a) The area under the curve for four 
diagnostic models. (b) The mRNA expression level of TGFBI, AKAP12, GPC1 and TGM2 in normoxia and 
hypoxia condition. (c) The mRNA expression level of TGFBI, AKAP12, GPC1 and TGM2 after transfected with 
HIF1a-plasmid. (d) The mRNA expression level of TGFBI, AKAP12, GPC1 and TGM2 after transfected with 
HIF2a-lentivirus. (e) The protein expression level of TGFBI after transfected with siHIF2a. (f) The Pearson and 
Spearman correlation analysis of TGFBI and EPAS1. (g) The promotor region of TGFBI and binding motif of 
HIF2a. (h) Expression level of TGFBI in ovarian cancer and normal tissues. (i) K–M survival curves of TGFBI 
in ovarian cancer. (j–m) Validation of TGFBI at the translational level using the Human Protein Atlas (HPA) 
database (IHC).
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Figure 3.  The role of TGFBI in ovarian cancer proliferation, migration and invasion. (a) The protein expression 
level of TGFBI in normal ovarian cell line and 5 ovarian cancer cell lines. (b) The mRNA and protein expression 
level of TGFBI after knocking down by siRNA. The cell proliferation (c), migration (d) and invasion (e) after 
knocking down TGFBI in 3AO cell line. The blots have been cropped to improve the conciseness and clarity of 
the display.

Figure 4.  The role of TGFBI in ovarian cancer chemoresistance. (a) Evaluation of TGFBI sensitivity 
to chemotherapy drugs on tumor. (b) Cell survival between A2780 and A2780/CDDP followed by the 
concentration gradient stimulation of cisplatin. (c) The mRNA and protein expression level of TGFBI in 
cisplatin-sensitive ovarian cancer cell line-A2780 and cisplatin-resistant ovarian cancer cell line-A2780/CDDP. 
(d) The protein expression level of TGFBI after time gradient of cisplatin in A2780  (IC50 as 119.2 μM). (e) 
The protein expression level of TGFBI after time gradient of cisplatin in A2780/CDDP  (IC50 as 258.8 μM). (f) 
The protein expression level of TGFBI after knocking down by siRNA in A2780/CDDP. (g) Cell survival after 
A2780/CDDP were transfected with siRNA, followed by the concentration gradient stimulation of cisplatin (0, 
2.5, 5, 10, 20, 40, 80, 160, 320 and 640 μM).
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analysis indicated the involvement of TGFBI in PI3K/Akt pathway (Fig. 5d). In siTGFBIs-transfected A2780/
CDDP cells, PI3K-p110 and p-Akt were reduced while Akt negative regulator PTEN was increased. Additionally, 
the anti-apoptotic protein Bcl-2 was decreased while pro-apoptotic protein Bax remained unchanged with TGFBI 
inhibition (Fig. 5e). Taken together, TGFBI activated PI3K/Akt pathway to inhibit apoptosis and facilitate DNA 
repair to promote chemoresistance in OC.

Discussion
Ovarian cancer (OC) is one of the deadly gynecological malignancies in the worldwide, and the progression 
of OC is a complicated process regulated by various  factors16. The prognosis of OC patients remains poor in 
spite of the development of emerging therapeutic options for  OC17. Currently, high-throughput sequencing 
complimented with integrated big-data analysis have gradually become more and more important applications 
for medical research, which can effectively identify biomarkers for diagnosis, clinical stratification, prognosis 
and recurrence monitoring et al.18. Bioinformatic analysis focusing on one biophysical, biochemical or biologic 
feature of OC will help to explore key targets in OC progression.

Hypoxia is a prominent characteristic of malignant tumors, especially in  OC19. It was found that hypoxic 
environment was involved in the aggressive progression of OC with significantly poor  prognosis20. Nevertheless, 
the detailed mechanism of hypoxia in OC remains  unclear15. Hence, exploring the role and underlying mechanism 
of hypoxia in OC may offer opportunities for potential therapeutic purposes. In this study, six hypoxia-related 
genes (TGFBI, AKAP12, CDKN1B, GPC1, TGM2 and ANGPTL4) were identified for their correlations with 
the prognosis of OC and four of them (TGFBI, AKAP12, GPC1 and TGM2) were chosen for prediction model 
of OC. TGFBI, also known as βIGH3, has been demonstrated to play roles in regulating cell adhesion and the 
pathogenesis of human  disease21,22. AKAP12 is involved in promoting colon cancer metastasis via HDAC6-
dependent AKAP12 deacetylation and ubiquitination mediated  degradation23. CDKN1B, encoding for the CDK 
inhibitor  p27kip1, has been confirmed mutant in various cancers including  breast24, prostate  cancer25 and small 
intestine neuroendocrine  tumors26, of which the mutation and copy number variation are associated with tumor 
 aggressiveness27. GPC1, as well as glypican-1, is specifically enriched on cancer-cell-derived exosomes and may 
serve as a potential non-invasive diagnostic and screening tool to detect early stages of pancreatic  cancer28. TGM2 
transcriptionally activates FN1 by promoting nuclear factor kappa B (NFκB) p65 nuclear translocation, ultimately 

Figure 5.  TGFBI promoted chemoresistance through inhibiting apoptosis and facilitating DNA damage repair 
via activating PI3K/Akt signaling pathway. (a) The protein expression level of MRP1 and MDR1 in A2780/
CDDP after TGFBI knockdown. (b) The protein expression level of Homologous Recommendation DNA repair 
related markers in A2780/CDDP after TGFBI knockdown. (c) The protein expression level of Non-Homologous 
End Joining (NHEJ) DNA repair related markers in A2780/CDDP after TGFBI knockdown. (d) The KEGG 
enrichment pathway analysis of TGFBI-related differentially expressed genes in OC. (e) The protein expression 
level of PTEN, PI3K/p110, PI3K/p85, p-Akt, Akt, BCL2, Bax and Beclin1 in A2780/CDDP after TGFBI 
knockdown.
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promoting PTC invasion/metastasis29. ANGPTL4, plays a critical role in regulating reactive oxygen species 
(ROS) production, which might provide new targets for improving outcomes in patients with hyperlipidemia-
associated CRC  metastasis30. Our results showed that these six hub HRGs were independent factors for evaluating 
the prognosis of OC with great predictive performance. According to the prognosis Index, we divided the OC 
patients into two clusters (high- and low-risk groups) and compared the differences between the two groups. It 
should be pointed out that the high-risk group had a higher PD-L2 expression, indicating that high-risk patients 
were more likely to benefit from immunocheckpoint inhibitor therapy. More importantly, the diagnostic model 
based on the four HRGs (TGFBI, AKAP12, GPC1 and TGM2) presented a higher accuracy and sensitivity and 
could accurately and effectively distinguish OC from normal ovary.

Much attention has been paid on the role of hypoxia in regulating the immune microenvironment in tumor 
progression and  metastasis12. Several studies have demonstrated that hypoxia can interfere with tumor-associated 
immune cells to enhancing proliferation, differentiation, vessel growth and distant metastasis of  tumors31–33. 
However, a number of inhibitory pathways, known as immunocheckpoints, were responsible for suppressing this 
anti-tumor response in the tumor  microenvironment34. Our results demonstrated that the high-risk group had 
a higher fractions of B memory cells and M2 macrophages and higher expression levels of immune checkpoints 
like PD-L2 and immune-related genes including CCL19, CCR5, CX3CL1 and CXCL9. These results highlighted 
the pivotal role of immunotherapy for high-risk OC patients based on the expression levels of HRGs.

Moreover, TGFBI was selected to further explore its specific mechanism in hypoxia and ovarian cancer 
progression and chemotherapy. Our results showed that TGFBI was up-expressed under hypoxic condition and 
HIF-2α overexpression, but remained unchanged when HIF-1α was overexpressed. And HIF-2α binding site 
was found in the promoter region of TGFBI, indicating HIF-2α could directly promote TGFBI transcription. 
Additionally, we found that the expression level of TGFBI may be positively related with the  IC50 of platinum 
including oxaliplatin. Moreover, TGFBI was highly expressed in cisplatin-resistant ovarian cancer cells than 
sensitive ovarian cancer cells. The TGFBI expression was increased with the increase of cisplatin concentration 
gradient, and downregulation of TGFBI could impair the chemoresistance of cisplatin-resistant ovarian cancer 
cells. Furthermore, we found that TGFBI may function as a key regulator in chemoresistance of ovarian cancer 
mainly through activating HR DNA repair and NHEJ DNA repair; also, TGFBI activate PI3K/Akt pathway to 
inhibit cell apoptosis and facilitate chemoresistance (Fig. 6). All in all, TGFBI could serve as a potential target 
for chemoresistance and its inhibitor may be auxiliary complemented with chemotherapy.

In summary, the hub HRGs were identified and used to establish effective prognosis and diagnosis models for 
OC diagnosis and prediction. One of the HRGs, TGFBI, was found upregulated by HIF-2α and promoted OC 
chemoresistance via interfering apoptosis and facilitating DNA damage repair through the activation of PI3K/
Akt pathway, further verifying the effectiveness of the bioinformatic strategy utilized here.

Methods and materials
Data acquisition of HRGs related with OC
The mRNA expression and corresponding clinicopathologic data associated with OC were retrieved from The 
Cancer Genome Atlas (https:// portal. gdc. cancer. gov/)- Ovarian Serous Cystadenocarcinoma- (TCGA‐OV)35,36 
(including 379 OV tissue samples and 587 clinical information) as training set. The mRNA expression data of 
OC tissue samples and related clinical information were retrieved from the Gene Expression Omnibus database 
(GEO) (https:// www. ncbi. nlm. nih. gov/ geo/)-  GSE6388537 (including 70 OV tissues samples and corresponding 

Figure 6.  A model of the role of TGFBI in chemoresistance.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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clinical information) as validation set. A list of HRGs was retrieved from Hallmark gene sets of the Molecular 
Signatures  Database38.

Protein–protein interaction (PPI) network and acquisition of hub HRGs
After PPI analysis by STRING database (https:// cn. string- db. org/)39, we obtained totally 172 hub HRGs with 
OV-related clinical characteristics from TCGA.

Establishment and validation of prognostic predictive models based on hub HRGs
The univariate Cox regression was performed to assess the prognostic value of hub HRGs. Subsequently, 
the multivariate Cox regression was conducted to identify hub HRGs and the prognostic HRGs classifier 
was constructed. The regression coefficient (β) was derived from multivariate Cox regression  analysis40. The 
composition of the final HRGs classifier was selected to generate the risk score based on the following formula:

All patients were divided into two groups (high-risk and low-risk group) based on the median value of the 
risk score. The risk score of the validation cohort was also calculated using the same formula.

Survival analysis
Based on Kaplan–Meier analysis, overall survival (OS) was compared between groups with high- and low-risk. To 
validate the predictive accuracy of the risk models, receiver operating characteristic (ROC) curve was generated 
by using the R language package “timeROC”41.

Gene set enrichment analysis (GSEA)
Gene set enrichment analysis (GSEA)42 was conducted to determine underlying mechanisms of hub HRGs 
classifier on OC with “Clusterprofiler”  package43.

Estimation of immune cell type fractions and immune‑related genes
CIBERSORT44 was performed to characterize the cell composition and immune cells infiltration. The fractions 
of immune cell types between high-risk and low-risk groups were assessed by using CIBERSORT.

Establishment of a diagnostic predictive signature based on hub HRGs
The diagnostic prediction model was constructed to predict OC based on hub HRGs effectively. Sensitivity, 
specificity, AUC, and 95% CI were calculated to assess the accuracy of the prediction model. The model is as 
follows:

Cell culture
Normal human ovarian epithelial cell line IOSE80 and five human ovarian cancer cell lines (3AO, A2780, Caov3, 
OVCAR3 and SKOV3) were from ATCC, Shanghai Cell Bank of Chinese Academy of Sciences and Shandong 
Academy of Medical Sciences. The cisplatin-resistant derivate ovarian cancer cell line A2780/CDDP was cultured 
in intermittent incremental exposure to cisplatin. The cells were cultivated in 1640 supplemented with 10% fetal 
bovine serum (FBS) at 37 °C with 5%  CO2. Hypoxia was evaluated by treating OC cells with 1% oxygen for 24 h 
after being cultured under normoxia conditions to 70% confluence.

Cell transfections
siRNA against TGFBI and negative control siRNA were purchased from RiboBio Co., Ltd (Guangzhou, China). 
The overexpression of HIF-1α in OC cells was performed using Flag-tagged HIF-1α plasmid and negative control 
plasmid. The overexpression of HIF-2α in OC cells was performed with lentiviruses carrying EPAS1 or control, 
purchased from Genechem Co., Ltd. (Shanghai, China).

Real‑time PCR analysis
Total RNA was isolated using Trizol reagent (Invitrogen, Eugene, OR, USA) and following qRT-PCR (Takara) 
were performed according to the manufacturer’s instruction. The results were normalized to β-actin gene. The 
following primers were used: H19 F: 5′-TGC TGC ACT TTA CAA CCA CTG-3′ and R: 5′-ATG GTG TCT TTG ATG 
TTG GGC-3′; HIF-1α F: 5′-ATC CAT GTG ACC ATG AGG AAATG-3′ and R: 5′-TCG GCT AGT TAG GGT ACA 
CTTC-3′; HIF-2α F: 5′-GCG ACC ATG AGG AGA TTC GT-3′ and 5′-GAC CGT GCA CTT CAT CCT CA-3′; TGFBI 
F: 5′-CTT CGC CCC TAG CAA CGA G-3′ and R: 5′-TGA GGG TCA TGC CGT GTT TC -3′; AKAP12 F: 5′-ATC TAC 
AGA GAA ACC CGA AGAGA-3′ and R: 5′-TGC AGA CTT GCT AGG TTC TTTTT-3′; GPC1 F: 5′-TGA AGC TGG 
TCT ACT GTG CTC -3′ and R: 5′-CCC AGA ACT TGT CGG TGA TGA-3′; and TGM2 F: 5′-CAA GGC CCG TTT 
TCC ACT AAG -3′ and R: 5′-GAG GCG ATA CAG GCC GAT G-3′.

Prognosis Index =
(

βgene1*expression level of gene1
)

+
(

βgene2*expression level of gene2
)

+ . . .

+
(

βgeneN*expression level of geneN
)

log it(P) = β0+ β1x1+ β2x2+ . . .+ βMxM

https://cn.string-db.org/)
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Western blot analysis
Human ovarian cancer cells with implementations were lysed in RIPA (Beyotime) on ice. Primary antibodies 
specific to TGFBI (1:1,000, Proteintech), MRP1 (1:100, Santa Cruz Biotechnology), MDR1 (1:100, Santa Cruz 
Biotechnology), BRAC2 (1:1,000, Cell Signaling Technology), BRCA1 (1:1,000, Cell Signaling Technology), CtIP 
(1:1,000, Cell Signaling Technology), p-p95 (1:1,000, Cell Signaling Technology), p95 (1:1,000, Cell Signaling 
Technology), RAD54 (1:1,000, Cell Signaling Technology), RAD51 (1:1,000, Cell Signaling Technology), p-DNA-
PKcs (1:1,000, Cell Signaling Technology), DNA-PKcs (1:1,000, Cell Signaling Technology), DNA Ligase IV 
(1:1,000, Cell Signaling Technology), Artmis (1:1,000, Cell Signaling Technology), Ku80 (1:1,000, Cell Signaling 
Technology), Ku70 (1:1,000, Cell Signaling Technology), XLF (1:1,000, Cell Signaling Technology), PTEN 
(1:1,000, Cell Signaling Technology), PI3K-p110 (1:1,000, Cell Signaling Technology), PI3K-p85 (1:1,000, Cell 
Signaling Technology), p-Akt (1:1,000, Cell Signaling Technology), Akt (1:1,000, Cell Signaling Technology), 
BCL2 (1:1,000, Cell Signaling Technology), Bax (1:1,000, Cell Signaling Technology), Beclin1 (1:1,000, Cell 
Signaling Technology) and β-actin (1:2,000, Cell Signaling Technology) were used at 4 °C overnight. After 
incubation with secondary antibodies (1:1,000, Cell Signaling Technology), immune complexes were detected 
on Image Lab Software in Molecular Imager ChemiDoc XRS (Bio-Rad).

Cell adhesion, migration and invasion assays
Cell adhesion assay was measured according to the manufacturers protocol. Transwell assays were performed 
using a 24-well plate (BD, Corning, NY, USA). Cells (3-5 ×  105/well) were seeded in RPMI-1640 without FBS in 
the top chamber, and were allowed to migrate for 24 to 48 h. The membrane was then washed by PBS for three 
times and fixed in methyl alcohol for 30 min and stained with crystal violet. Cells were then imaged and counted 
in five independent fields. Additionally, Matrigel (BD Biosciences) was performed for invasion assay.

CCK8 assays
Cells (1×103 cells/well) were seeded into a 96-well plate and transfected with specific siRNAs against TGFBI 
or siNC. Cell Counting Kit-8 was applied to measure the optical density (OD) value at 450 nm based on the 
manufacturer’s protocol.

Evaluation of drug sensitivity
Drug sensitivity data of 60 different human cancer cell lines was downloaded from the CellMiner 
 database45(https:// disco ver. nci. nih. gov/ cellm iner/), which including drug sensitivity data  (IC50 Values). CellMiner 
contains  IC50 data for 860 drugs totally. Pearson test was performed to compare the correlation between the 
TGFBI expression levels and  IC50 of totally 860 drugs.

IC50 assay
After transfected with specific siTGFBI or siNC, A2780/CDDP cells were seeded on a 96-well plate and cultivated 
for 24 h for the  IC50 assay of cisplatin treatment (0, 2.5, 5, 10, 20, 40, 80, 160, 320, 640 µM/L). Cell Counting Kit-8 
was applied to measure the OD according to the manufacturer’s protocol.

Statistical analysis
Continuous variables were performed as the mean ± standard deviation (SD). Differences between groups were 
measured by two-tailed t-test. P-value < 0.05 was considered statistically significant.

Data availability
The data sets analyzed during the current study are available in the TCGA (https:// portal. gdc. cancer. gov/), 
accession numbers TCGA-OV, OV-FPKM. The data used to support the findings of this study are available from 
the corresponding author upon request.
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