scientific reports

OPEN

Check for updates

Magnetodynamic properties of ultrathin films of Fe₃Sn₂-a topological kagome ferromagnet

Kacho Imtiyaz Ali Khan¹, Akash Kumar^{2,3,4}, Pankhuri Gupta¹, Ram Singh Yadav¹, Johan Åkerman^{2,3,4} & Pranaba Kishor Muduli¹

Fe₃Sn₂ is a topological kagome ferromagnet that possesses numerous Weyl points close to the Fermi energy, which can manifest various unique transport phenomena such as chiral anomaly, anomalous Hall effect, and giant magnetoresistance. However, the magnetodynamic properties of Fe₃Sn₂ have not yet been explored. Here, we report, for the first time, the measurements of the intrinsic Gilbert damping constant (α_{int}), and the effective spin mixing conductance ($g_{eff}^{\uparrow\downarrow}$) of Pt/Fe₃Sn₂ bilayers for Fe₃Sn₂ thicknesses down to 2 nm, for which α_{int} is (3.8 ± 0.2) × 10⁻², and $g_{eff}^{\uparrow\downarrow}$ is (11.7 ± 0.6) nm⁻². The films have a high saturation magnetization, $M_S = 620$ emu cm⁻³, and large anomalous Hall coefficient, $R_S = 4.6 \times 10^{-10} \Omega$ cm G⁻¹. The large values of $g_{eff}^{\uparrow\downarrow}$, together with the topological properties of Fe₃Sn₂, make Fe₃Sn₂/Pt bilayers useful heterostructures for the study of topological spintronic devices.

The existence of strong electronic correlations, band topology, spin-orbit coupling, and magnetism in topological quantum materials holds great promise for future memory applications¹⁻⁷. Weyl semimetals belong to a class of topological materials distinguished by the absence of either the crystal's inversion symmetry or the timereversal symmetry⁸. In Weyl semimetals, the opposite chirality of Weyl nodes can result in a non-trivial Berry phase⁹⁻¹², which can influence the magneto-transport properties such as the anomalous Hall effect (AHE)¹³⁻¹⁸ and the anomalous Nernst effect $(ANE)^{19-21}$. Recently, the kagome ferromagnet Fe₃Sn₂, belonging to the Fe_m Sn_n -family (m : n = 1:1, 3:2, 5:3), has emerged as a novel topological quantum material for spintronic devices, thanks to its rich non-trivial magnetic and topological properties²²⁻²⁴. Fe₃Sn₂, with a high Curie temperature $T_{\rm C} = 657 \, {\rm K}^{25}$, which makes its Weyl nodes stable at room temperature²⁶, has significant potential for applications in spintronics²⁷, magnetic sensors²⁸, and other areas of advanced electronics^{29,30}. Fe₃Sn₂ possesses several other promising features, such as a large AHE¹⁷. It is also predicted that Fe₃Sn₂ can exhibit a fractional quantum Hall effect even at room temperature³¹. At temperature (~ 250 K), the Fe₃Sn₂ shows the transition of spin re-orientation from the *c*-axis to the *ab*-plane^{25,32,33}. Another interesting feature of Fe₃Sn₂ is the presence of a dispersionless flat band (~ 0.2 eV below fermi level), and it is formed due to the destructive interference of the electron wavefunctions³⁴. Furthermore, both numerical and experimental studies show the formation of magnetic skyrmions in Fe₃Sn₂, which is stabilized without requiring Dzyaloshinskii-Moriya interaction³⁰.

As shown in Fig. 1a, the Fe₃Sn₂ crystal structure consists of the repeated stacking of two Fe₃Sn kagome lattices and one Sn₂ stanene lattice. In our previous study³⁵, we investigated the impact of platinum (Pt) seed layer on the polycrystalline growth of ferromagnetic Fe₃Sn₂ thin films on complementary metal-oxide-semiconductor (CMOS)-compatible Si-based substrates, which are extremely useful for low-dissipation devices for industrial applications^{36,37}. Furthermore, Lyalin et al. showed efficient spin-orbit torque effects in an epitaxial Fe₃Sn₂(0001)/ Pt(111) bilayer system²⁷ deposited using molecular beam epitaxy. However, the sputtered growth of ultrathin Fe₃ Sn₂ films (< 10 nm) and the characterization of their magneto-transport and magneto-dynamic properties have not yet been investigated, which is essential for the generation of pure spin current in such quantum materialbased magnetic heterostructures.

In this work, we demonstrate sputter growth of high-quality polycrystalline Fe₃Sn₂ ultrathin films with very low interfacial/surface roughness (< 0.6 nm), using a Ta/Pt seed layer on Si/SiO₂ substrates. Through magnetization and transport measurements, we show a large saturation magnetization, $M_{\rm S} = 620$ emu cm⁻³, and a large

¹Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. ²Applied Spintronics Group, Department of Physics, University of Gothenburg, Gothenburg 412 96, Sweden. ³Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan. ⁴Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan. [⊠]email: johan.akerman@physics.gu.se; muduli@physics.iitd.ac.in

Figure 1. (a) Schematic of the unit cell of ferromagnet Fe₃Sn₂, where grey and green symbols denoting the tin (Sn) and iron (Fe) atoms, respectively. (b) Glancing incidence (GI) X-ray diffraction (XRD) spectra were obtained for the various thicknesses ($t_{Fe_3Sn_2}$) of polycrystalline Fe₃Sn₂. The inset represents the schematic of Ta/Pt/Fe₃Sn₂/AlO_x thin film stack. (c) Atomic force microscopy surface morphology of 2 nm-thick-Fe₃Sn₂ for a scan area of 5 μ m × 5 μ m.

anomalous Hall coefficient, $R_{\rm S} = 4.6 \times 10^{-10} \Omega$ cm G⁻¹. Using broadband ferromagnetic resonance (FMR) measurements, we, for the first time, also extract the intrinsic Gilbert damping constant ($\alpha_{\rm int}$), and the effective spin mixing conductance ($g_{\rm eff}^{\uparrow\downarrow}$), for Fe₃Sn₂ thickness down to 2 nm, finding values of $\alpha_{\rm int} = (3.8 \pm 0.2) \times 10^{-2}$, and $g_{\rm eff}^{\uparrow\downarrow} = (11.7 \pm 0.6)$ nm⁻². The large values of $g_{\rm eff}^{\uparrow\downarrow}$ make Pt an excellent spin current source for using Fe₃Sn₂ thin films in topological materials-based spintronic applications.

Results and discussion Structural analysis

The inset of Fig. 1b shows a schematic of the Ta/Pt/Fe₃Sn₂(*t* nm)/AlO_x thin film stack. First, a 1.5 nm-thin Ta seed layer was used to increase the adhesion between the Pt and the Si-SiO₂ substrate. The 5 nm-thick Pt seed layer was used both to promote the growth of the ferromagnetic phase of Fe₃Sn₂^{27,35} and to act as a spin sink and future source of spin currents, which will be discussed later. Fig. 1b shows the grazing incidence X-ray diffraction (GI-XRD) measurements performed for Si-SiO₂/Ta(1.5 nm)/Pt(5 nm)/Fe₃Sn₂(*t* nm)/AlO_x(3 nm) with an incidence angle 1° to characterize the structural properties. We observed a strong Bragg peak at $2\theta = 40.6^{\circ}$, corresponding to the (002)-reflection of Fe₃Sn₂ for all thicknesses, indicating the formation of a [002]-oriented polycrystalline Fe₃Sn₂ ferromagnetic phase^{28,35}. The thickness, density, and roughness of these Fe₃Sn₂ thin films were obtained by fitting X-ray reflectivity (XRR) measurements [supplementary, Fig. S1d] with the recursive theory of Parratt³⁸. We found average interfacial roughness (< 0.6 nm) for all the films, which indicates a smooth interface between each layer. AFM measurements also confirmed these roughness numbers. Figure 1c shows a 5 μ m × 5 μ m AFM image of a 2 nm thick Fe₃Sn₂ film, yielding a root mean square roughness (R_{rms}) of about 0.3 nm, indicating a very smooth surface quality. The AFM R_{rms} is b e l o w 0.6 nm for all other thicknesses. The thickness dependence of surface/interfacial roughness in these films is plotted in supplementary Fig. S1 and summarized in Table S1.

It is noteworthy that the measured roughness is substantially lower than the best literature values of about 0.8 nm³⁹. The interfacial roughness plays a crucial role in the transfer of spin current in ferromagnet/heavy metal (FM/HM) heterostructures, where a large interfacial roughness or disorder can reduce the spin current via spin memory loss^{40,41}. Therefore, high-quality ultra-thin films with low roughness are highly desirable.

Magnetization and transport measurements

Figure 2a shows the magnetization (*M*) versus the in-plane external magnetic field (*H*) for a 5 nm Fe₃Sn₂ film. The high $M_{\rm S} = 620$ emu/cm³ and low $H_c < 20$ Oe confirm a soft ferromagnetic nature of the polycrystalline Fe₃ Sn₂ films. The $M_{\rm S}$ is comparable to that reported for epitaxial Fe₃Sn₂ films^{21,39} and bulk single crystals¹⁶.

In contrast to our earlier work on thicker Fe₃Sn₂ films³⁵, additional care must be taken when extracting the longitudinal (ρ_{xx}) and transverse (ρ_{xy}) resistivities as the current distribution through the Ta/Pt seed layer must be considered. The total longitudinal resistivity of the entire film stack is found to be 113 $\mu\Omega$ cm. We also measured ρ_{xx}^{SL} of only the seed layer Ta/Pt, in control samples without Fe₃Sn₂, and found it to be 83 $\mu\Omega$ cm, which corresponds to the longitudinal conductivity, $\sigma_{xx}^{SL} \sim 1.2 \times 10^4 \ \Omega^{-1} \text{ cm}^{-1}$. Using the parallel resistance model, the value $\rho_{xx}^{Fe_3Sn_2}$ for only the Fe₃Sn₂ layer can be obtained using the following expression²¹:

$$\rho_{xx}^{\text{Fe}_3\text{Sn}_2} = \frac{\rho_{xx}^{\text{SL}} \rho_{xx} t_{\text{Fe}_3\text{Sn}_2}}{(t \cdot \rho_{xx}^{\text{SL}}) - (t_{\text{SL}} \cdot \rho_{xx})},\tag{1}$$

Figure 2. (a) In-plane magnetic hysteresis measurements (*M*-*H*) for 5 nm ultra-thin Fe₃Sn₂ film, inset represents the corresponding zoom scan. (b) The transverse Hall resistivity (ρ_{xy}) versus magnetic field for 5 nm ultra-thin Fe₃Sn₂ film when the external field is swept perpendicular to the film plane. The data in the inset with the open symbols indicates the measured ρ_{xy} , which includes the resistivity contribution from the seed layer, while the data in the main panel with the closed symbol indicates the $\rho_x^{\text{Fe}_3\text{Sn}_2}$ after correction for the resistivity of the seed layer in the Ta/Pt/Fe₃Sn₂/AlO_x film stack. The black dashed arrow indicates the anomalous Hall resistivity ($\rho_{xy}^{\text{Fe}_3\text{Sn}_2}$) for only Fe₃Sn₂. (c) The variation of longitudinal resistivity ρ_{xx} for 5 nm ultra-thin Fe₃Sn₂ film when the external field is applied perpendicular to the film plane, inset represents the magnetoresistance (MR) calculated using $\Delta \rho_{xx}/\rho_{xx}$ (0). All measurements are performed at room temperature.

Here, $t_{\text{Fe}_3\text{Sn}_2}$, t_{SL} and t represent the thickness of the Fe₃Sn₂ layer, seed (Ta/Pt) layer, and Ta/Pt/Fe₃Sn₂ layer, respectively. Using Eq. (1), $\rho_{xx}^{\text{Fe}_3\text{Sn}_2}$ is found to be 211 $\mu\Omega$ cm , which is comparable to that of epitaxial thin films (202 $\mu\Omega$ cm)²¹ and slightly higher than the bulk value of single crystals (190 $\mu\Omega$ cm)¹⁶.

In Fig. 2b and c, room temperature Hall and longitudinal measurements were performed using a direct current (I = 5 mA) flowing parallel to the film plane while sweeping the external magnetic field ($H = \pm 40 \text{ kOe}$) perpendicular to the film plane. To avoid voltage probe misalignment, we use the formulae ρ_{xx} (H) = [ρ_{xx} (+H) + ρ_{xx} (-H)]/2 and ρ_{xy} (H) = [ρ_{xy} (+H) – ρ_{xy} (-H)]/2, to extract the longitudinal resistivity (ρ_{xx}) and Hall resistivity (ρ_{xy}), respectively. To determine the ρ_{xy} , we use $\rho_{xy} = \rho_{OHE} + \rho_{AHE}$, where the first term represents the ordinary Hall resistivity ($\rho_{OHE} = R_0H$), and the second term represents the anomalous Hall resistivity, respectively⁴². R_0 is found to be 8.38 × 10⁻¹² Ω cm/G, from which we determine the value of the charge carrier density $n = 0.74 \times 10^{22} \text{ cm}^{-3}$ at 300 K in Ta/Pt/Fe₃Sn₂(5 nm)/AlO_x. The positive sign of R_0 indicates that hole-like charge carriers dominate in Ta/Pt/Fe₃Sn₂(5 nm)/AlO_x films, which is in agreement with previous reports³⁹. Furthermore, we determine the carrier mobility $\mu = R_0/\rho_{xx}^{Fe_3Sn_2} = 39.7 \text{ cm}^2/\text{V} \cdot \text{s}$ at 300 K, which is two orders of magnitude larger than earlier reported values [$\approx 0.08 \text{ cm}^2/\text{V} \cdot \text{s}$ for Fe₃Sn₂(10 nm)]³⁹. The large μ might be due to the low effective mass of the hole carriers in the Fe₃Sn₂(5 nm) film, similar to the reported mobility for Weyl semimetal NbP ($\approx 160 \text{ cm}^2/\text{V} \cdot \text{s}$ at 300 K)⁴³. In the inset of Fig. 2b, the measured transverse resistivity ρ_{xy} of the complete film stack Ta/Pt/Fe₃Sn₂(5 nm)/AlO_x is shown. Using a linear fit (black line) to ρ_{xy} in the saturation region (10 kOe < H < 40 kOe), and extrapolating to the y-axis, ρ_{AHE} for the Ta/Pt/Fe₃Sn₂(5 nm)/AlO_x films stack is found to be 0.5 $\mu\Omega$ cm. To determine the value of $\rho_{xy}^{Fe_3Sn_2}$ for the Fe₃Sn₂ layer from the measured data for the complete film stack of Ta/Pt/Fe₃Sn₂/A

$$\rho_{xy}^{\text{Fe}_3\text{Sn}_2} = \rho_{xy} \times \frac{\rho_{xx}^{\text{Fe}_3\text{Sn}_2}}{\rho_{xx}} \left(1 + \frac{\rho_{xx}^{\text{Fe}_3\text{Sn}_2} \times t_{\text{SL}}}{\rho_{xx}^{\text{SL}} \times t_{\text{Fe}_3\text{Sn}_2}} \right).$$
(2)

As shown in Fig. 2b, the value of $\rho_{Xy}^{\text{Fe}_3\text{Sn}_2}$ of only the Fe}_3\text{Sn}_2 layer (denoted by a black dashed arrow) is extracted from the saturation region of $\rho_{Xy}^{\text{Fe}_3\text{Sn}_2}$ and found to be 3.56 $\mu\Omega$ cm. This value for polycrystalline Fe}_3\text{Sn}_2 ultrathin film is comparable to the *epitaxial* Fe}_3\text{Sn}_2 thin film reported by D. Khadka et al.²¹. Using $M_S \approx 620$ emu cm⁻³ from SQUID measurements, we also determine the coefficient (R_S) of the anomalous Hall resistivity for Ta/Pt/ Fe}_3\text{Sn}_2(5 nm)/AlO_x film. The value of R_S for Ta/Pt/Fe}_3\text{Sn}_2(5 nm)/AlO_x film is found to be 4.6 × 10⁻¹⁰ Ω cm G⁻¹ at 300 K, which is comparable to our previous report on polycrystalline Fe}_3\text{Sn}_2 thin films³⁵ and two orders higher than conventional ferromagnets (Ni & Fe)^{44,45}. Moreover, we determine the value of the anomalous Hall conductivity ($|\sigma_{AHE}^{\text{Fe}_3\text{Sn}_2}|$) using the equation: $|\sigma_{AHE}^{\text{Fe}_3\text{Sn}_2}| \approx (\rho_{AHE}^{\text{Fe}_3\text{Sn}_2})^2$. The value of $|\sigma_{AHE}^{\text{Fe}_3\text{Sn}_2}|$ is found to be $\approx 82 \ \Omega^{-1}$ cm⁻¹ at 300 K. A large value of R_S and $|\sigma_{AHE}^{\text{Fe}_3\text{Sn}_2}|$ in Fe}_3\text{Sn}_2 film indicates an intrinsic band structure (Berry curvature) origin of the AHE^{16,17,35}. These results indicate that the intrinsic transport properties, such as a large value of R_S and a significant $|\sigma_{AHE}^{\text{Fe}_3\text{Sn}_2}|$, remain intact even for ultra-low thicknesses of Fe}_3\text{Sn}_2 films. In Fig. 2c, we have also plotted the variation of longitudinal resistivity (ρ_{xx}) versus external magnetic field for 5 nm ultra-thin Fe}_3\text{Sn}_2(5 nm)/AlO_x film. A negative change in MR in our thin films is caused due to the suppression of magnon at room temperature (300 K), consistent with the previous report on single crystal Fe}_3\text{Sn}_2^{16,22}.

Ferromagnetic resonance measurement

Figure 3a represents the schematic of a co-planar waveguide (CPW) based FMR setup with the film placed on top of it. Here, *H* is the external magnetic field swept parallel to the film plane and perpendicular to the rf excitation field ($h_{\rm rf}$). The FMR setup details can be found in the Methods section. Fig. 3b shows FMR measurements for a Ta/Pt/Fe₃Sn₂(5 nm)/AlO_x thin film. The frequency (*f*) dependent FMR spectra are shown at an interval of 2 GHz. The solid black lines are fits to derivatives of symmetric and asymmetric Lorentzian functions^{46–49}. From these fits, we extract the resonance field (H_R) and linewidth (ΔH) in the frequency range 4 – 20 GHz. The variation of *f* is plotted as a function of H_R in Fig. 4a for all Fe₃Sn₂ thicknesses, and then fitted to the Kittel formula⁵⁰:

$$f = \frac{\gamma}{2\pi} \sqrt{(H_{\rm R} + H_{\rm K})(H_{\rm R} + H_{\rm K} + 4\pi M_{\rm eff})},\tag{3}$$

Figure 4. (a) Frequency (f) plotted as a function of resonance field (H_R) and fitted with Kittel Eq. (3). (b) The dependence of uniaxial anisotropy field H_K over the thickness of Fe₃Sn₂ film, the dotted line represents the average value of H_K . (c) The extracted value of M_{eff} is plotted over the inverse thickness ($t_{\text{Fe}_3\text{Sn}_2}^{-1}$) of the ferromagnet and fitted with Eq. (4). (d) The variation of linewidth (ΔH) with frequency (f) and fitted with linewidth Eq. (5). (e) The variation of inhomogeneous linewidth ΔH_0 plotted over the thickness of Fe₃Sn₂ film. (f) Effective damping constant (α_{eff}) as a function of inverse thickness ($t_{\text{Fe}_3\text{Sn}_2}^{-1}$) of ferromagnet together with the fit using Eq. (6). Here, the solid symbols and solid lines represent the experimental data and fit, respectively.

Here, γ is the gyromagnetic ratio. $H_{\rm R}$, $H_{\rm K}$, and $M_{\rm eff}$ are the resonance field, uniaxial anisotropy field, and the effective saturation magnetization of the ferromagnet. Using the value of $\gamma = 185 \,{\rm GHz/T^{27}}$ and fitting with Eq. (3) we extracted $H_{\rm K}$ and $M_{\rm eff}$ for different thickness of Fe₃Sn₂ [Fig. 4b and c]. In Fig. 4b, the average value of $|H_{\rm K}|$ for Fe₃Sn₂(2-7 nm) films is found to be around 130 Oe. Furthermore, the uniaxial anisotropy constant (K_u) of Fe₃Sn₂ film is determine by: $K_u = H_{\rm K}M_{\rm S}/2$. The value of K_u is found to be 9.3 × 10⁴ erg cm⁻³, which is one order lower than bulk single crystal⁵¹. In Fig. 4c, the behavior of $M_{\rm eff}$ over the thickness of Fe₃Sn₂ is plotted and fitted with the equation;

$$M_{\rm eff} = M_{\rm S} - \frac{2K_{\rm S}}{\mu_0 M_{\rm S}} \times t_{\rm Fe_3 Sn_2}^{-1}, \tag{4}$$

Here, μ_0 is the permeability constant of free space. M_S and K_S are the saturation magnetization and surface anisotropy constant, respectively. From the fitting, the values of M_S and K_S are found to be (599 ± 29) emu cm⁻³ and (0.29 ± 0.02) erg cm⁻², respectively. It is noteworthy that we found a good agreement between the values of M_S obtained from the FMR technique and the SQUID data.

The ΔH versus f for all the thicknesses is plotted (solid open symbol) in Fig. 4(d) and fitted with the expression⁵²⁻⁵⁵:

$$\Delta H = \Delta H_0 + \frac{2\pi\alpha_{\rm eff}}{\gamma} f,\tag{5}$$

Here, the first term, ΔH_0 denotes the inhomogeneous broadening, which largely depends on the quality of the sample. The second term indicates the effective damping (α_{eff}). In Fig. 4d, from fits of ΔH versus *f* with the Eq. (5) for various thicknesses, we extracted ΔH_0 and α_{eff} . The value of the inhomogeneous broadening, ΔH_0 is found to be less than 40 Oe for all films [as shown in Fig. 4e]. Here, we found a monotonic increase in α_{eff} for the thickness of ferromagnet Fe₃Sn₂. Figure 4f shows the value of α_{eff} with the inverse of ferromagnetic thickness ($t_{\text{Fe}_3\text{Sn}_2}^{-1}$). The behavior was fitted with^{56,57}:

$$\alpha_{\rm eff} = \alpha_{\rm int} + g_{\rm eff}^{\uparrow\downarrow} \frac{\gamma\hbar}{4\pi M_{\rm S}} \times t_{\rm Fe_3Sn_2}^{-1},\tag{6}$$

where α_{int} represent the intrinsic Gilbert damping constant of the ferromagnet Fe₃Sn₂, while and $g_{eff}^{\uparrow\downarrow}$ represent the effective spin mixing conductance of Pt/Fe₃Sn₂ system. From the fitting, we found α_{int} to be around $(3.8 \pm 0.2) \times 10^{-2}$ and $g_{eff}^{\uparrow\downarrow}$ to be (11.7 ± 0.6) nm⁻². The α_{int} depends on both spin-orbit coupling as well as the phase lag between the distortions of the Fermi surface and the precessing magnetization. The intrinsic mechanism of Gilbert damping is commonly ascribed to spin-orbit coupling through two potential mechanisms: interband and intraband scattering^{58,59}. In the interband scattering mechanism, the magnetization dynamics can generate electron-hole pairs across different bands. This leads to a Gilbert damping effect that scales with the resistivity^{60,61}. Conversely, in the intraband scattering scenario, electron-hole pairs are generated within the same electronic band, resulting in a Gilbert damping effect that scales with the conductivity^{62,63}. Our value of α_{int} is relatively larger compared to transition metal thin films, and since the resistivity of Fe₃Sn₂ films is "resistivity-like". However, more studies (e.g., temperature dependence) are needed to determine the mechanism of intrinsic damping in SFa₃Sn₂. The order of $g_{eff}^{\uparrow\downarrow}$ for Fe₃Sn₂/Pt is almost comparable to other Pt-based FM heterostructures^{48,64,65}, indicating that ferromagnet Fe₃Sn₂/Pt bilayer system, together with its exotic magneto-transport properties, can be beneficial for memory-based device applications.

Conclusion

In summary, we demonstrate the growth of ultra-thin polycrystalline phase of Fe_3Sn_2 films with varying thicknesses (2-7 nm). The XRD, XRR, and AFM results show high-quality films with low surface/interfacial roughness. The magneto-static and magneto-transport results suggest the formation of the ferromagnetic phase and the intrinsic AHE nature of Fe_3Sn_2 films, respectively. Here, we report the first measurements of the intrinsic Gilbert damping constant (α_{int}), and effective spin mixing conductance ($g_{eff}^{\uparrow\downarrow}$) in Fe_3Sn_2 films. The extracted value of α_{int} , and $g_{eff}^{\uparrow\downarrow}$ is found to be (3.8 ± 0.2) $\times 10^{-2}$, and (11.7 ± 0.6) nm⁻², respectively. A large value of $g_{eff}^{\uparrow\downarrow}$ obtained from FMR measurements suggest ferromagnet Fe_3Sn_2 can also be a potential material to generate pure spin current. These results promote the inexpensive and widely used sputter material growth of such quantum materials.

Methods

Sample preparation

The ultrathin films of Fe₃Sn₂(t nm) with varying thicknesses (t = 2, 3, 5, and 7) on Si-SiO₂ substrate were deposited using RF magnetron sputtering³⁵ at room temperature. An optimized low growth rate of ≈ 0.2 Å s⁻¹ was used for better control over the ultra-low thickness of Fe₃Sn₂ films. The base pressure of the sputtering chamber was better than 6.7×10^{-8} mbar, while the working pressure was maintained at 2.7×10^{-3} mbar. These thin films were post-annealed *in-situ* at 500 °C for 1 hour to improve the crystallinity. A 3 nm aluminum (Al) layer was capped on all films to protect these samples from oxidation.

Sample characterization

The structural properties of these films were analyzed with the help of the X-ray diffraction (XRD) technique using a PANalytical X'Pert diffractometer with Cu- K_{α} radiation ($\lambda = 1.5418$ Å). The elemental and compositional analyses of these films were determined with the help of the electronic probe microscopy analysis (EPMA) technique. We determine the composition of Fe and Sn to be 61 at.% and 39 at.% in all the samples. The average surface roughness and topography of these films were obtained using the atomic force microscopy (AFM) technique in tapping mode (Asylum Research, MFP-3D system). The thickness, roughness, and density of these Fe₃Sn₂ films were measured using the X-ray reflectivity (XRR) measurement technique. The static magnetization measurements were carried out using the magnetic property magnetic system (MPMS) with a superconducting quantum interference device (SQUID) using Quantum Design Inc. The magneto-transport properties were measured using the physical property measurement system (PPMS) technique from Quantum Design Inc. (Evercool-II). We employed four-terminal sensing techniques: linear contact geometry for determining longitudinal resistivity and Hall contact geometry for the transverse resistivity. One pair of contact electrodes is used to supply the DC current in the sample, while the other pair of contact electrodes perpendicular (parallel) to the current direction is used for sensing the transverse (longitudinal) voltage. The magneto-dynamic measurements are performed using NanOsc PhaseFMR-40 FMR setup in the 4-20 GHz frequency range. The instrument used field modulation (AC field of 1 Oe peak to peak) for a higher signal-to-noise ratio (using Helmholtz coils with 490 Hz reference frequency). The measurements are performed with an RF power of 12.5-17.6 dBm (varying for different frequency ranges).

Data availability

The datasets used and analysed during the current study available from the corresponding author on reasonable request.

Received: 18 October 2023; Accepted: 2 February 2024 Published online: 12 February 2024

References

- 1. Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).
- 2. Han, W., Otani, Y. & Maekawa, S. Quantum materials for spin and charge conversion. npj Quantum Mater. 3, 27 (2018).
- 3. Shao, Q. et al. Roadmap of spin-orbit torques. IEEE Trans. Magn. 57, 1-39 (2021).
- 4. Wang, Y. & Yang, H. Spin-orbit torques based on topological materials. Acc. Mater. Res. 3, 1061–1072 (2022).
- 5. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
- 6. Chowdhury, N. et al. Kagome magnets: The emerging materials for spintronic memories. Proc. Natl. Acad. Sci. India Sect. A 93, 477-495 (2023).
- 7. Kumar, A. et al. Interfacial Origin of Unconventional Spin-Orbit Torque in Py/γ-IrMn₃. Adv. Quantum Technol. 2300092 (2023).
- 8. Armitage, N., Mele, E. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. *Rev. Mod. Phys.* **90**, 015001 (2018).
- 9. Lv, B. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724-727 (2015).
- 10. Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748-754 (2015).
- 11. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. *Phys. Rev. X* 5, 011029 (2015).
- 12. Soluyanov, A. A. et al. Type-II weyl semimetals. Nature 527, 495-498 (2015).
- Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. *Science* 291, 2573–2576 (2001).
- 14. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).
- Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn₃ Ge. Sci. Adv. 2, e1501870 (2016).
- 16. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).
- 17. Kida, T. et al. The giant anomalous Hall effect in the ferromagnet Fe₃Sn₂-a frustrated kagome metal. J. Phys.: Condens. Matter 23, 112205 (2011).
- Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co₃Sn₂S₂ with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).
- Chen, T. *et al.* Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. *Sci. Adv.* 8, eabk1480 (2022).
 Miyasato, T. *et al.* Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. *Phys. Rev. Lett.* 99, 086602 (2007).
- 21. Khadka, D. et al. Anomalous Hall and Nernst effects in epitaxial films of topological kagome magnet Fe₃Sn₂. Phys. Rev. Mater. 4, 084203 (2020).
- 22. Li, H. et al. Large topological Hall effect in a geometrically frustrated kagome magnet Fe₃Sn₂. Appl. Phys. Lett. 114, 192408 (2019).
- Le Caer, G., Malaman, B., Haggstrom, L. & Ericsson, T. Magnetic properties of Fe₃Sn₂. III. A ¹¹⁹Sn Mossbauer study. J. Phys. Condens. Matter. 9, 1905 (1979).
- 24. Ren, Z. et al. Plethora of tunable Weyl fermions in kagome magnet Fe₃Sn₂ thin films. npj Quantum Mater. 7, 109 (2022).
- 25. Le Caër, G., Malaman, B. & Roques, B. Mossbauer effect study of Fe₃Sn₂. J. Phys. F Met. Phys. 8, 323 (1978).
- 26. Yao, M. et al. Switchable Weyl nodes in topological Kagome ferromagnet Fe₃Sn₂. Preprint at arXiv:1810.01514 (2018).
- 27. Lyalin, I., Cheng, S. & Kawakami, R. K. Spin-orbit torque in bilayers of kagome ferromagnet Fe₃Sn₂ and Pt. Nano Lett. 21, 6975–6982 (2021).
- Satake, Y., Fujiwara, K., Shiogai, J., Seki, T. & Tsukazaki, A. Fe-Sn nanocrystalline films for flexible magnetic sensors with high thermal stability. Sci. Rep. 9, 1–7 (2019).
- 29. Du, Q. et al. Room-Temperature Skyrmion Thermopower in Fe₃Sn₂. Adv. Quantum Technol. 3, 2000058 (2020).
- Hou, Z. *et al.* Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy. *Adv. Mater.* 29, 1701144 (2017).
- 31. Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).
- Fenner, L., Dee, A. & Wills, A. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe₃Sn₂. J. Phys. Condens. Matter 21, 452202 (2009).

- 33. Heritage, K. *et al.* Images of a first-order spin-reorientation phase transition in a metallic kagome ferromagnet. *Adv. Funct. Mater.* **30**, 1909163 (2020).
- 34. Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe₃Sn₂ kagome lattices. Phys. Rev. Lett. 121, 096401 (2018).
- 35. Khan, K. I. A. *et al.* Intrinsic anomalous Hall effect in thin films of topological kagome ferromagnet Fe₃Sn₂. *Nanoscale* 14, 8484–8492 (2022).
- 36. Feng, Y. P. et al. Prospects of spintronics based on 2D materials. Wiley Interdiscip. Rev. Comput. Mol. Sci. 7, e1313 (2017).
- Barla, P., Joshi, V. K. & Bhat, S. Spintronic devices: A promising alternative to CMOS devices. J. Comput. Electron. 20, 805–837 (2021).
- 38. Parratt, L. G. Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359 (1954).
- Zhang, D., Hou, Z. & Mi, W. Anomalous and topological Hall effects of ferromagnetic Fe₃Sn₂ epitaxial films with kagome lattice. *Appl. Phys. Lett.* **120**, 232401 (2022).
- 40. Gupta, K., Wesselink, R. J., Liu, R., Yuan, Z. & Kelly, P. J. Disorder dependence of interface spin memory loss. *Phys. Rev. Lett.* **124**, 087702 (2020).
- Belashchenko, K. D., Kovalev, A. A. & van Schilfgaarde, M. Theory of spin loss at metallic interfaces. *Phys. Rev. Lett.* 117, 207204 (2016).
- 42. Hurd, C. M. Hall Effect in Metals and Alloys (Plenum Press, 1972).
- Shekhar, C. *et al.* Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. *Nat. Phys.* 11, 645–649 (2015).
- 44. Volkenshtein, N. & Fedorov, G. Temperature dependence of the Hall effect of pure ferromagnets. Sov. Phys. JETP 11, 48-50 (1960).
- 45. Kaul, S. N. Anomalous Hall effect in nickel and nickel-rich nickel-copper alloys. *Phys. Rev. B* **20**, 5122 (1979).
- 46. Woltersdorf, G. Spin-Pumping and Two-Magnon Scattering in Magnetic Multilayers (Simon Fraser University, 2004).
- Zhang, W., Han, W., Jiang, X., Yang, S.-H. & SP Parkin, S. Role of transparency of platinum-ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect. *Nat. Phys.* 11, 496–502 (2015).
- 48. Kumar, A. *et al.* Influence of annealing on spin pumping in sputtered deposited Co/Pt bilayer thin films. *Phys. B Cond. Matt.* **570**, 254–258 (2019).
- 49. Kumar, A., Bansal, R., Chaudhary, S. & Muduli, P. K. Large spin current generation by the spin hall effect in mixed crystalline phase Ta thin films. *Phys. Rev. B* **98**, 104403 (2018).
- 50. Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155 (1948).
- 51. Tang, J. et al. Target bubbles in Fe₃Sn₂ nanodisks at zero magnetic field. ACS Nano 14, 10986–10992 (2020).
- 52. Rossing, T. D. Resonance linewidth and anisotropy variation in thin films. J. Appl. Phys. 34, 995–995 (1963).
- 53. Heinrich, B., Cochran, J. & Hasegawa, R. FMR linebroadening in metals due to two-magnon scattering. J. Appl. Phys. 57, 3690–3692 (1985).
- 54. Celinski, Z. & Heinrich, B. Ferromagnetic resonance linewidth of Fe ultrathin films grown on a bcc Cu substrate. J. Appl. Phys. 70, 5935–5937 (1991).
- McMichael, R. D., Twisselmann, D. & Kunz, A. Localized ferromagnetic resonance in inhomogeneous thin films. *Phys. Rev. Lett.* 90, 227601 (2003).
- 56. Bangar, H. *et al.* Large spin hall conductivity in epitaxial thin films of kagome antiferromagnet Mn₃Sn at room temperature. *Adv. Quant. Tech.* **6**(1), 2200115 (2022).
- 57. Khan, K. I. A., Gupta, P., Agarwal, R., Chowdhury, N. & Muduli, P. K. Comparative study of spin pumping in epitaxial-and polycrystalline-NiO/Ni₈₀Fe₂₀. *SPIN* (2023).
- Heinrich, B. Ultrathin Magnetic Structures I: An Introduction to the Electronic, Magnetic and Structural Properties (Springer-Verlag, Springer Science & Business Media, 2005).
- 59. Mewes, C. K. & Mewes, T. Relaxation in Magnetic Materials for Spintronics (Pan Stanford, 2015).
- 60. Ma, X. et al. Role of antisite disorder on intrinsic Gilbert damping in L1₀ FePt films. Phys. Rev. B 91, 014438 (2015).
- 61. Heinrich, B. & Frait, Z. Temperature dependence of the FMR linewidth of iron single-crystal platelets. *Phys. Stat. Solidi (b)* 16, K11–K14 (1966).
- 62. Kamberský, V. On the Landau-Lifshitz relaxation in ferromagnetic metals. Can. J. Phys. 48, 2906–2911 (1970).
- 63. Khodadadi, B. *et al.* Conductivitylike Gilbert damping due to intraband scattering in epitaxial iron. *Phys. Rev. Lett.* **124**, 157201 (2020).
- 64. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).
- 65. Ando, K. et al. Inverse spin-Hall effect induced by spin pumping in metallic system. J. Appl. Phys. 109, 10 (2011).

Acknowledgements

The partial support from the Science & Engineering Research Board [SERB File no. CRG/2022/002821], the Ministry of Human Resource Development under the IMPRINT program [Grant no: 7519 and 7058], the Department of Science and Technology under the Nanomission program [Grant no: SR/NM/NT - 1041/2016(G)], the Department of Electronics and Information Technology (DeitY), Joint Advanced Technology Centre at IIT Delhi, and the Grand Challenge project supported by IIT Delhi are gratefully acknowledged. KIAK acknowledges support from the University Grants Commission (UGC), India. This work was also partially supported by the Horizon 2020 research and innovation program No. 835068 "TOPSPIN" and the Swedish Research Council (VR Grant No. 2016-05980).

Author contributions

P.K.M. and J.Å. proposed the experiment and provided the experiment facilities. K.I.A.K. executed the project and grew the samples. K.I.A.K. and R.S.Y. performed the structural, magnetization, and magneto-transport measurements. A.K. and P.G. performed the spin-dynamic measurement. All authors helped in data analysis, co-wrote, and revised the manuscript.

Funding

Open access funding provided by University of Gothenburg.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-024-53621-z.

Correspondence and requests for materials should be addressed to J.Å. or P.K.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024