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Bifurcation to complex 
dynamics in largely modulated 
voltage‑controlled parametric 
oscillator
Tomohiro Taniguchi 

An experimental demonstration of a parametric oscillation of a magnetization in a ferromagnet 
was performed recently by applying a microwave voltage, indicating the potential to be applied in a 
switching method in non‑volatile memories. In the previous works, the modulation of a perpendicular 
magnetic anisotropy field produced by the microwave voltage was small compared with an external 
magnetic field pointing in an in‑plane direction. A recent trend is, however, opposite, where an 
efficiency of the voltage controlled magnetic anisotropy (VCMA) effect is increased significantly 
by material research and thus, the modulated magnetic anisotropy field can be larger than the 
external magnetic field. Here, we solved the Landau–Lifshitz–Gilbert equation numerically and 
investigated the magnetization dynamics driven under a wide range of the microwave VCMA effect. 
We evaluated bifurcation diagrams, which summarize local maxima of the magnetization dynamics. 
For low modulation amplitudes, the local maximum is a single point because the dynamics is the 
periodic parametric oscillation. The bifurcation diagrams show distributions of the local maxima 
when the microwave magnetic anisotropy field becomes larger than the external magnetic field. The 
appearance of this broadened distribution indicates complex dynamics such as chaotic and transient‑
chaotic behaviors, which were confirmed from an analysis of temporal dynamics.

Voltage controlled magnetic anisotropy (VCMA)  effect1 modulates a perpendicular magnetic anisotropy at a 
ferromagnetic metal/nonmagnetic insulating layer interface by modulating of electron states near the  interface2–4 
and/or inducing magnetic  moments5. It enables us to manipulate the direction of the magnetization in a fer-
romagnet electrically without the Joule heating, and thus, is expected to be a new writing method in magne-
toresistive random access memory (MRAM), whose writing scheme currently relies on spin-transfer  torque6,7. 
The material researches for highly efficient VCMA effect has been reported, where the perpendicular magnetic 
anisotropy is largely modulated by a small  voltage8–17. The efficiency recently achieved reaches to about 300 fJ/
(Vm)18, which corresponds to a magnetic anisotropy field on the order of kilo-Oersted for typical VCMA-based 
MRAM. At the same time, analyses on the magnetization dynamics driven by the VCMA effect have been 
investigated both experimentally and  numerically19–28. It has been revealed that the switching is unstable when 
the pulse width of the voltage is short because the dynamics becomes very sensitive to the pulse shape in such 
 condition24. For a long-pulse regime, however, the switching also becomes unstable due to  noise23.

To overcome the issue, a parametric oscillation of the magnetization by applying microwave voltage was 
proposed in Ref.29. For the magnetization switching in the VCMA-based MRAM using a perpendicularly mag-
netized free layer, an external magnetic field Happl pointing in an in-plane direction is applied and induces the 
magnetization precession around Happl , which eventually relaxes to the direction of Happl . When the microwave 
voltage with an oscillation frequency f = 2fL , where fL = γHappl/(2π) ( γ is the gyromagnetic ratio) is the Lar-
more frequency, is applied, however, a sustainable oscillation of the magnetization is excited. This oscillation is 
classified into the parametric oscillation, and for simplicity, we call the oscillator as voltage-controlled paramet-
ric oscillator. Since this oscillation is stable, it can be used to manipulate the magnetization direction even in a 
long-pulse regime, which results in a reliable magnetization switching. Note that the previous  work29 focuses 
on a parameter region of HKa/Happl ≪ 1 , where HKa is the amplitude of the modulated magnetic anisotropy 
field generated by the micowave VCMA effect. The recent progress of the VCMA efficiency, however, makes the 
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opposite limit, HKa/Happl ≫ 1 , available because the value of HKa is growing rapidly, as mentioned above. The 
dynamical behavior of the magnetization in this limit has not been investigated yet.

In this work, we study the magnetization dynamics driven by the microwave VCMA effect by solving the 
Landau–Lifshitz–Gilbert (LLG) equation numerically. We change the value of HKa in a wide range including 
the limit of HKa/Happl ≫ 1 . To clarify the change of the dynamical behavior, bifurcation diagrams are evalu-
ated, which summarize local maxima of the oscillating magnetization. When the magnitude of HKa is small, the 
parametric oscillation is induced, and the bifurcation diagram becomes single points because the dynamics is 
periodic. When HKa becomes larger than Happl , however, the bifurcation diagrams show broad distributions. It 
is revealed that the appearance of these complex, broadened structures indicated chaotic or transient-chaotic 
behavior, which are confirmed from evaluations of the Lyapunov exponent and analyses on temporal dynamics.

System description
In Fig. 1a, we show a schematic illustration of a ferromagnetic/nonmagnetic/ferromagnetic trilayer. The top and 
bottom ferromagnets correspond to free and reference layer, respectively. We apply a macrospin assumption in 
the free layer, whose validity in dynamical state driven by the VCMA effect has been confirmed  experimentally29. 
Thus, the unit vector m pointing in the magnetization direction in the free layer conserves its magnitude, i.e., 
|m| = 1 and d|m|/dt = 0 . An external magnetic field Happl is applied to an in-plane direction. We assume that the 
shape of the free layer is a cylinder, and therefore, the free layer does not have an in-plane magnetic anisotropy. 
For convenience, we use a Cartesian coordinate, where the x axis is parallel to Happl while the z axis is normal to 
the film plane. The magnetic field in the free layer H , in the absence of an applied voltage, is given by

where ek ( k = x, y, z ) is the unit vector in the k direction. The perpendicular magnetic anisotropy field includes 
the contribution from the interfacial magnetic anisotropy field HK

30–32 and the shape magnetic anisotropy field 
4πM(Nz − Nx) with the demagnetization coefficients Nk ( Nx = Ny due to the cylindrical symmetry). The net 
perpendicular magnetic anisotropy field, HK − 4πM(Nz − Nx) , determines the retention time of MRAM. In the 
conventional scheme of the writing in the VCMA-based MRAM, the direct voltage modulates this net perpen-
dicular magnetic anisotropy close to zero to excite the magnetization precession around the external magnetic 
 field33. If the perpendicular component largely remains finite, the magnetization just moves its direction to the 
direction of the external field with the angle sin−1(Happl/H

′
K) and the precession cannot be excited, where H ′

K is 
the reduced perpendicular magnetic anisotropy field by the VCMA effect. In fact, the numerical simulation in 
Ref.33 assumes that the net perpendicular magnetic anisotropy field is completely canceled by the VCMA effect. 
Note that this assumption is important not only for making the simulation simple but also for experiments. If 
the direct (or intrinsic) component of the perpendicular magnetic anisotropy field remains finite during the 
precession, an instantaneous frequency becomes nonuniform. Such a nonuniform frequency will increase the 
switching error because the pulse width of the voltage for writing the bit is determined as a half of the Larmor 
precession period for VCMA-based MRAM. Therefore, it is preferable to make the direct component of the 
perpendicular magnetic anisotropy field zero during the switching for the conventional switching scheme. In the 
parametric oscillation state, both direct and microwave voltages are applied to the trilayer, and the direct voltage 
modulates the total perpendicular magnetic anisotropy so that it becomes close to  zero29, while the microwave 
voltage provides an oscillating magnetic anisotropy field. Accordingly, the magnetic field used in the following 
calculation becomes,

where HKa and f are the magnitude and frequency of the magnetic anisotropy field due to the microwave voltage. 
The magnetization dynamics driven by this magnetic field is described by the LLG equation,

(1)H = Happlex + [HK − 4πM(Nz − Nx)]mxez ,

(2)H = Happlex +HKa sin(2π ft)mzez ,

Figure 1.  (a) Schematic illustration of magnetization oscillation in a ferromagnetic/nonmagnetic trilayer. 
The unit vector m pointing in the magnetization direction in free layer shows a sustainable oscillation around 
an external magnetic field Happl in the in-plane direction when the frequency of a microwave voltage is 
twice the Larmor frequency fL . (b) Dynamical trajectory of the magnetization in a parametric oscillation 
state. Parameters are Happl = 300 Oe and HKa = 100 Oe. The black triangle indicates the direction of the 
magnetization motion. (c) Time evolution of mz in the parametric oscillation state. (d) Fourier spectrum of mz . 
The inset shows the spectrum around the main peak in a linear scale.
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where α is the damping constant. Throughout this paper, we use the values of γ = 1.764× 107 rad/(Oe s) and 
α = 0.005 . The preparation of the initial state of m by investigating thermal equilibrium is explained in “Meth-
ods”34,35. Recall that the LLG equation conserves the norm of m as |m| = 1 . Therefore, although m is a three-
dimensional vector, its dynamical degree of freedom is two due to this constraint. In fact, if we use a spherical 
coordinate, for example, the dynamics of m is described by two variables (zenith and azimuth angles). It should 
be noted that dynamical systems described by differential equations cannot show chaotic behavior when the 
dynamical degree of freedom is less than or equal to two, according to the Poincaré–Bendixson  theorem36. The 
presence of the microwave voltage, however, makes the present system non-autonomous and provides a pos-
sibility to excite chaotic behavior, as shown below.

Results
Here, we study the change of the magnetization dynamics for various magnitude of HKa.

Parametric oscillation
Let us first start by confirming the parametric oscillation studied  previously29. It was shown in Ref.29 that a sus-
tainable oscillation of the magnetization is excited when the frequency of the microwave voltage, f, is twice the 
Larmor frequency, fL = γHappl/(2π) . Therefore, in the following, we fix the value of f to be f = 2fL . Figure 1b 
shows the dynamical trajectory of the magnetization in a steady state, where Happl = 300 Oe while HKa = 100 
Oe, i.e., HKa/Happl ≪ 1 , as in the case of the previous  work29. Since |m| = 1 is satisfied in the LLG equation, it is 
useful to draw the dynamical trajectory on a unit sphere, as shown in this figure. Time evolution of mz in a steady 
state is also shown in Fig. 1c. These results indicate an appearance of the sustainable oscillation of the magneti-
zation mentioned above. In Fig. 1d, the Fourier spectrum of mz is shown, where the inset shows it around the 
main peak in a linear scale. Its main peak appears at 0.84 GHz, which is the same with fL with Happl = 300 Oe. 
These results are consistent with the previous  works29. Since the magnetization switches its direction between 
mz ≃ +1 and mz ≃ −1 periodically with the period 1/(2fL) , this parametric oscillation can be used as a switching 
scheme in VCMA-based  MRAM29. Recall that this oscillation is sustained by the microwave modulation of the 
magnetic anisotropy; if this time-dependent modulation is absent, the magnetization monotonically relaxes to 
the direction of the external magnetic field. Spin-wave propagation through a parametric excitation is another 
example of the magnetization dynamics caused by microwave voltage, which has been studied  previously37–40.

Appearance of complex dynamics and bifurcation diagram
When the value of HKa further increases, the magnetization dynamics becomes complex. In Fig. 2a, we show the 
dynamical trajectory of the magnetization for HKa = 620 Oe, while Happl = 300 Oe is the same with that used in 
Fig. 1b. We observe a clear change of the magnetization dynamics by comparing Figs. 1b and 2a. The trajectory 
is not a simple circle in Fig. 2a. The time evolution of mz and its Fourier transformation are shown in Fig. 2b,c, 
respectively. Figure 2b indicates that the magnetization dynamics is still periodic, while Fig. 2c indicates the 
appearance of multipeak structure. These results indicate that the application of the microwave voltage is no 
longer applicable to the switching method for the VCMA-based MRAM when the modulation of the magnetic 
anisotropy field becomes larger than the external magnetic field due to the breakdown of the simple parametric 
oscillation.

A way to distinguish these dynamics, such as the difference between Figs. 1b and 2a, qualitatively is to draw 
a bifurcation  diagram36. In Fig. 3a, we summarize local maxima of mz for various HKa , where Happl = 300 Oe. 
Recall that the parametric oscillation is excited when HKa is small. In this case, the dynamics is periodic and 
mz is similar to a simple trigonometric function, as shown in Fig. 1c. The local maxima of mz for this case, thus, 
saturate to a single point. When the dynamics become complex, the bifurcation diagram shows broadened 
structure. For example, there are three points at HKa = 620 Oe in Fig. 3a, the validity of which is confirmed from 

(3)
dm

dt
= −γm×H+ αm×

dm

dt
,

Figure 2.  (a) Dynamical trajectory of the magnetization in a parametric oscillation state. Parameters are 
Happl = 300 Oe and HKa = 620 Oe. The black triangle indicates the direction of the magnetization motion. (b) 
Time evolution of mz in the parametric oscillation state. (c) Fourier spectrum of mz.
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Fig. 2b. When the value of HKa further increases, the bifurcation diagram shows largely broadened structure and 
finally shows simplified structure again. As discussed below, these correspond to chaotic and transient-chaotic 
 behaviors41–43. Note that the appearance of complex but still periodic structure might weakly depend on the 
initial state (see “Methods”) while the region of the broadened structure might depend on the measurement 
time, as will be mentioned below. It is difficult to analytically estimate the value of HKa at which the bifurcation 
from a simple parametric oscillation to a complex oscillation occurs; see “Methods”. However, the numerical 
simulations for various parameters imply that the complex oscillation appears when HKa becomes larger than 
Happl , as discussed below. We also evaluated Lyapunov  exponent36 by Shimada–Nagashima  method44, as shown in 
Fig. 3b. The Lyapunov exponent is an inverse of a time scale characterizing an expansion of a difference between 
two solutions of the LLG equation with an infinitesimally different initial conditions; see “Methods” explaining 
the evaluation method of the Lyapunov exponent. A negative Lyapunov exponent means that the magnetization 
saturates to a fixed point. The Lyapunov exponent is zero when the magnetization dynamics are periodic, while 
it becomes positive when the dynamics are chaotic. We notice that the Lyapunov exponent in the present system 
is zero or positive, depending on the value of HKa . Thus, the Lyapunov exponent can be used as an indicator to 
distinguish between periodic oscillation and chaotic dynamics. For example, we can conclude that the dynam-
ics in Fig. 2a is periodic not only from the temporal dynamics shown in Fig. 2b but also from the fact that the 
Lyapunov exponent for HKa = 620 Oe is zero.

Chaotic dynamics
In Fig. 4a, we show the dynamical trajectory of the magnetization for HKa = 1200 Oe. The dynamical trajectory 
covers almost the whole region of the unit sphere. The time evolution of mz becomes non-periodic, as shown 
in Fig. 4b, and the Fourier spectrum shows a broad structure having several peaks. These results imply chaotic 
dynamics of the  magnetization41,42. The appearance of chaos for this parameter can also be concluded from the 
fact that the Lyapunov exponent shown in Fig. 3b is positive.

As mentioned above, chaotic dynamics in the present system are excited because of the presence of the 
microwave voltage. Similar examples in spintronics devices have been found in spin-torque oscillators with time-
dependent  inputs45–47. The differences of the phenomena observed between the voltage-controlled parametric 

L
o
ca

l 
m

ax
im

a 
o
f 
m
z

HKa (Oe)

1

0

-1

0 500 1000 1500 2000

(a)

L
y
ap

u
n
o
v
 e

x
p
o
n
en

t 
(1

/n
s)

HKa (Oe)

3.0

2.0

2.5

1.5

0.5

1.0

0

-0.5
0 500 1000 1500 2000

(b)
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oscillator studied here and spin-torque oscillator are as follows. In the spin-torque oscillators, a sustainable 
oscillation of the magnetization is driven by direct currents, and an injection of time-dependent inputs is not 
a necessary condition for the oscillation. Spin-torque oscillator cannot show chaotic behavior when only the 
direct current is injected due to the constraint by the Poincaré–Bendixson theorem. A way to excite chaos in 
spin-torque oscillator is to inject time-dependent inputs such as alternating current and/or magnetic  field45–47. 
When the magnitudes of these time-dependent inputs are relatively small, synchronization may occur. When 
their magnitudes are further increased, chaos might be induced. On the other hand, the sustainable oscillation 
of the magnetization in the present voltage-controlled parametric oscillator is driven by microwave voltage. In 
other words, this time-dependent input is a necessary condition for the oscillation. Chaotic dynamics appear 
when the magnitude of the microwave voltage becomes relatively large, as shown in Fig. 4.

Let us briefly mention applicability of the chaotic dynamics for practical devices. Chaos in spintronics devices 
has been studied both experimentally and theoretically using various  methods48–57. An excitation of chaos in 
spintronics devices may evoke interest from a viewpoint of brain-inspired  computing58,59. For example, it was 
found that a computational capability of physical reservoir computing is enhanced when spin-torque oscilla-
tors are near the edge of  chaos58, where chaos was excited by adding another ferromagnet to the oscillator. An 
excitation of chaos in spin-torque oscillator by time-dependent inputs, however, seems to require large power 
consumption. For example, the amplitude of the alternating current density assumed in the numerical simula-
tions in Refs.45–47 is on the order of 107–108 A/cm2 . The value is larger than the switching current density of the 
state of the art spin-transfer torque driven  MRAM60, and thus, is hardly desirable. The large current also causes 
large power consumption, which is also unsuitable for practical applications. The voltage-controlled parametric 
oscillator, on the other hand, ideally reduces the power consumption significantly. In fact, this point has been a 
motivation for developing VCMA-based MRAM. However, these VCMA-based devices often require an external 
magnetic field for both the switching and parametric oscillation, which is not preferable in practical applications. 
A way to solve the issue might be to use an effective field, instead of applying external magnetic field, such as an 
interlayer exchange coupling field, as investigated in the study of spin-orbit torque driven  MRAM61. Physical 
reservoir computing by the VCMA-based MRAM without an external magnetic field was investigated  recently62, 
however, switching nor parametric oscillation was used there. A development of the voltage-controlled para-
metric oscillator without requiring an external magnetic field will be of interest as a future work for applying it 
to practical applications.

Transient chaos
In Fig. 5a, we show the dynamical trajectory of the magnetization for HKa = 1600 Oe. The time evolution of 
mz and its Fourier transformation are also shown in Fig. 5b,c, respectively. We note that the dynamics shown 
here corresponds to mz(t) in a long-time limit, i.e., a steady state. The results look similar to those shown in 
Figs. 1 and 2. Also, the local maxima of mz in the bifurcation diagram in Fig. 3a concentrates on a single point. 
However, there is a critical difference between the magnetization dynamics shown in Fig. 5 and those shown 
in Figs. 1 and 2.

To clarify their differences, it is necessary to focus on a process to reach the steady state. In Fig. 6a,b, we show 
the time evolution of mz(t) from t = 0 to the steady states for HKa = 620 Oe and 1600 Oe, respectively. When HKa 
is relatively small (see Fig. 6a), the magnetization immediately reaches to the steady state shown in Fig. 2b. When 
HKa is relatively large (see Fig. 6b), on the other hand, chaotic behavior appears initially, and it suddenly changes 
to the steady state shown in Fig. 5b. The phenomenon shown in Fig. 5b corresponds to a transient  chaos43, where 
dynamical systems initially show chaotic behavior but it suddenly disappears. Time necessary to move from chaos 
to a steady state is sensitive to various parameters and initial conditions of  systems43. For example, in Fig. 7a–c, we 
show time evolution of mz for HKa = 1900 Oe, 1980 Oe, and 2000 Oe, respectively, where the initial conditions 
are common. The results indicate that the time necessary to realize the steady state depends on the parameter 
HKa and it does not show, for example, a monotonic change with respect to the change of the parameter. The 
transient chaos in spintronics devices was predicted in a spin-torque oscillator with a delayed-feedback  circuit54. 
The phenomenon has not been verified experimentally yet, although chaos was confirmed  recently57.

Figure 5.  (a) Dynamical trajectory of the magnetization in a parametric oscillation state. Parameters are 
Happl = 300 Oe and HKa = 1600 Oe. The black triangle indicates the direction of the magnetization motion. (b) 
Time evolution of mz in the parametric oscillation state. (c) Fourier spectrum of mz.
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We note that the classification of chaos and transient chaos depends on a measurement  time43. For example, 
in the present work, we solve the LLG equation from t = 0 to t = 5 µ s and classify the magnetization dynamics. 
If we change this maximum time (5 µ s) to, for example 2 µ s, the dynamics for HKa = 2000 Oe, shown in Fig. 7c, 
will be classified as chaos. Another example can be seen in the bifurcation diagram and the Lyapunov exponent 
shown in Fig. 3, where a broadened structure in the bifurcation diagram and a positive Lyapunov for HKa = 1920 
Oe, indicating chaos for this parameter. If we measure the dynamics for this parameter longer, however, the 
dynamics might change to a steady state; in such a case, the dynamics will be classified as transient chaos. As a 
general knowledge on transient  chaos43, we should remember that the classification of chaos and transient chaos 
has such an arbitrary property.

Bifurcation diagrams for various applied fields
As mentioned above, a bifurcation diagram is useful to classify the magnetization dynamics, although, for exam-
ple, the difference between a simple steady oscillation and a transient chaos should be verified from temporal 
dynamics, as mentioned above. We also notice that the whole structure of the bifurcation diagram does not 
change qualitatively even when the initial condition is slightly changed. Recall that the present system includes 
only three parameters, HKa , Happl , and α . Therefore, in Fig. 8a–c, we show the bifurcation diagrams for (a) 
Happl = 200 Oe, (b) Happl = 300 Oe, and (c) Happl = 400 Oe. These figures indicate that the local maxima of mz 
for relatively small HKa concentrate on single points, which indicate the excitation of the parametric oscillation. 
As HKa increases, broadened structures appear, i.e., the local maxima of mz have various values, implying the 
appearance of complex oscillation and chaos. The figures also imply that this boundary between the parametric 
oscillation and the complex dynamics, i.e., the boundary between the single and multiple points in the bifurcation 
diagram, locates near HKa/Happl ≃ 1.5 to 2.0. We examine similar calculations for different α but the boundary 
seems to be unchanged; see Fig. 8d–f, which are the bifurcation diagrams for α = 0.020 . Because of high non-
linearity in the LLG equation, it is difficult to analytically verify these indications; however, it might be useful to 
design, for example, the modulation voltage for VCMA-based MRAM utilizing the parametric oscillation. We 
keep this question as a future work.

Figure 6.  Time evolution of mz near t = 0 for (a) HKa = 620 Oe and (b) HKa = 1600 Oe.

Figure 7.  Time evolution of mz for (a) HKa = 1900 Oe, (b) HKa = 1980 Oe, and (c) HKa = 2000 Oe.
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We note that the value of HKa/Happl ≃ 1.5 to 2.0 is available by current technology. The typical value of Happl 
is on the order of 100 Oe; for example, it is 250 Oe in Ref.23 and 720 Oe in Ref.29. Although the value of Happl can 
be further large experimentally, a large Happl might be unsuitable for practical applications; see “Methods” for 
analytical treatment of the LLG equation. On the other hand, the value of HKa relates to the VCMA efficiency η , 
the saturation magnetization M, the applied voltage Vappl , and the thicknesses of the free and insulating layers, 
dF and dI , via HKa = (2ηVappl)/(MdFdI) . Substituting their typical values [ η is about 300 fJ/(Vm)18, Vappl is about 
0.5 V at maximum, M is about 1000 emu/cm3 , dF is about 1 nm, and dI is about 2.5 nm), HKa can be on the order 
of kilo Oersted at maximum, as written in the introduction. Therefore, we believe that the value of HKa/Happl ≃ 
1.5 to 2.0 is experimentally achievable.

Conclusion
In summary, the magnetization dynamics in the voltage-controlled parametric oscillator for a large microwave 
voltage limit were investigated by numerical simulation of the LLG equation. As the modulation increases, the 
dynamical trajectory changes from a simple parametric oscillation to complex oscillations, which are still peri-
odic but have several local maxima in the amplitude. Such dynamics will be of little preference in a switching 
scheme for VCMA-based MRAM. The evaluation of the bifurcation diagrams for various values of the external 
magnetic field and the damping constant indicated that the simple parametric oscillation is broken when the 
amplitude of the modulated magnetic anisotropy field becomes larger than the external magnetic field, and this 
bifurcation point seems to be hardly sensitive to the value of the damping constant. A further enhancement of 
the microwave modulation leads to chaotic and transient-chaotic behaviors, which might make the voltage-
controlled parametric oscillator applicable to other usage in electric devices. These dynamics were classified 
from the bifurcation diagrams, Lyapunov exponent, and analyses on temporal dynamics.

Methods
Preparation of initial state
We prepare natural initial states by solving the LLG equation with thermal  fluctuation34. For this purpose, we 
use Eq. (1) as the magnetic field. We add a torque, −γm× h , due to thermal fluctuation to the right-hand side 
of Eq. (3). Here, the components of h satisfy the fluctuation–dissipation  theorem63,

In the numerical simulation, the random field is given by

(4)�hk(t)hℓ(t′)� =
2αkBT

γMV
δkℓδ(t − t ′).

Figure 8.  Bifurcation diagrams summarizing the local maxima of mz for (a) Happl = 200 Oe, (b) Happl = 300 
Oe, and (c) Happl = 400 Oe. Note that (b) is identical to Fig. 3a but is shown here for comparison. The value of 
the damping constant α is 0.005. Those for α = 0.020 are shown in (d–f).
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where the time increment �t is 1 ps in this work. White noise ξk is defined from two random numbers, ζa 
and ζb , in the range of 0 < ζa, ζb < 1 by the Box–Muller transformation as ξa =

√
−2 ln ζa sin(2πζb) and 

ξb =
√
−2 ln ζa cos(2πζb) . We added Eq. (5) to the magnetic field and solved the LLG equation numerically 

using the Runge–Kutta method for the investigation of thermal equilibrium before applying microwave voltage. 
The value of the net perpendicular magnetic anisotropy field, HK − 4πM(Nz − Nx) , in the absence of microwave 
voltage is assumed to be 6.283 kOe, while the saturation magnetization is set to be 955 emu/cm329. The tempera-
ture T is 300 K, and the volume is V = π × 50× 50× 1.1 nm3 , which is typical for VCMA experiments. The 
thermal fluctuation excites a small-amplitude oscillation of the magnetization around the energetically minimum 
state with the ferromagnetic resonance frequency. We pick the temporal directions of the oscillating magneti-
zation and use them as the natural initial states. It should be noted that the value of HKa at which the complex 
but still periodic oscillation appears weakly depends on the choice of the initial state, despite the structure of 
the bifurcation diagram is not changed qualitatively. It might relates to the presence of two stable phases of the 
parametric oscillation with respect to the microwave  voltage35.

Analytical treatment of the LLG equation
Here, we discuss an analytical treatment of the parametric oscillation, which provides a condition to excite the 
oscillation. It is, however, not applicable to investigate the bifurcation from the simple parametric oscillation to 
the complex but still periodic oscillation shown in Figs. 1b and 2a.

Since we are interested in the oscillation around the x axis, we introduce angles � and � as 
m = (cos�, sin� cos�, sin� sin�) . For simplicity, we introduce notations k = γHKa and h = γHappl . 
The LLG equation for � and � are given as d�/dt = −(1/ sin�)(∂ε/∂�)− α(∂ε/∂�) and 
sin�(d�/dt) = (∂ε/∂�)− α(1/ sin�)(∂ε/∂�) , where

i.e.,

Since we are interested in an oscillation where my and mz oscillates with the frequency fL = f /2 , we introduce 
� = �− 2π fLt , which obeys

In the parametric oscillation states, the tilted angle � of the magnetization from the x axis and the phase dif-
ference � are approximately  constants35. Therefore, after averaging Eqs. (7) and (9) over a period 1/fL , we obtain,

where σ = h− 2π fL . Although the present work focuses on the case of σ = 0 only, we keep σ as finite here, for 
generality. The steady state solutions of � and � after averaging are

These solutions imply, for example, that (1+ α2)k2 > [4α(h− σ)]2 for exciting the parametric oscillation, 
which can easily be satisfied when α ≪ 1 . These solutions, however, cannot be used to discuss, for example, the 
bifurcation from the simple parametric oscillation to the complex oscillation because � above is assumed to 
oscillates with only a single frequency fL , while the complex oscillation is a superposition of multiple frequen-
cies. Even for the parametric oscillation state, the above solutions may not be quantitative due to the fact that, 
strictly speaking for example, � is not constant.

(5)hk(t) =

√

2αkBT

γMV�t
ξk(t),

(6)ε = −h cos�−
k

2
sin(2π ft) sin2 � sin

2 �,

(7)
d�

dt
=k sin(2π ft) sin� sin� cos�− α

[

h− k sin(2π ft) cos� sin2 �
]

sin�,

(8)
d�

dt
=h− k sin(2π ft) cos� sin2 �+ αk sin(2π ft) sin� cos�.

(9)

d�

dt
= h− 2π fL − k sin(2π ft) cos� sin2(� + 2π fLt)+ αk sin(2π ft) sin(� + 2π fLt) cos(� + 2π fLt).

(10)
d�

dt
=
k

4
sin� cos 2� − α

(

h−
k

4
cos� sin 2�

)

sin�,

(11)d�

dt
=σ −

k

4
cos� sin 2� +

αk

4
cos 2� ,

(12)cos� =±
4(σ + α2h)

√

(1+ α2)k2 − [4α(h− σ)]2
,

(13)tan 2� =±
√

(1+ α2)k2 − [4α(h− σ)]2

4α(h− σ)
.
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Although a reliability of the magnetization switching by the parametric oscillation is not the main scope 
of this work, let us briefly provide a comment on the relationship between the switching reliability and the 
value of HKa/Happl mentioned in the introduction. First, the value of Happl should be carefully chosen. For 
a large Happl , the precession frequency of the magnetization becomes high. Such a fast precession makes the 
switching unstable because the dynamics becomes sensitive to the pulse shape, as mentioned in the introduc-
tion. When Happl is small, however, the switching is also unstable because the dynamics is highly affected by 
thermal fluctuation, which is also written in the introduction. Summarizing them, the value of Happl should be 
carefully determined, depending on the various factors, such as circuit quality controlling the pulse shape and 
the volume of the ferromagnetic layer. Second, a large HKa is considered to be preferable for a reliable switch-
ing due to the following reasons. First, as mentioned below Eqs. (12) and (13), there is a threshold value of HKa 
[ (1+ α2)k2 > [4α(h− σ)]2 ] to excite the parametric oscillation. Second, Eq. (12) indicates that the cone angle 
� of the magnetization precession around Happl becomes close to 90◦ when HKa is large. In other words, the cone 
angle decreases as HKa decreases. A precession with a small cone angle is unstable because such a small oscillation 
is easily disturbed by thermal fluctuation. Regarding these points, it will be preferable to increase HKa/Happl , or 
HKa , for a reliable switching because there is a threshold of HKa of the parametric oscillation and it is necessary 
to make the oscillation robust against thermal fluctuation. However, as revealed in the main text, the precession 
becomes complex when HKa/Happl becomes greatly large, which is a main message in this work.

Evaluation method of Lyapunov exponent
The evaluation method of the Lyapunov exponent is as  follows34,64. We denote the solu-
tion of the LLG equation at a certain time t as m(t) . We introduce the zenith and azi-
muth angles, θ  and ϕ ,  as m = (mx ,my ,mz) = (sin θ cosϕ, sin θ sin ϕ, cos θ) .  We also introduce 
m

(1)(t) = (sin θ(1) cosϕ(1), sin θ(1) sin ϕ(1), cos θ(1)) , where θ(1) and ϕ(1) satisfy ε =
√

[θ − θ(1)]2 + [ϕ − ϕ(1)]2 . 
Note that ε corresponds to the distance between m(t) and m(1)(t) at t in the spherical space. Since the Lyapunov 
exponent characterizes the sensitivity of the dynamical system to the initial state, we study an expansion of ε 
with time. For this purpose, we assume a small value of ε , which is ε = 1.0× 10−5 in this work. For convenience, 
we introduce a notation,

Solving the LLG equations of m(t) and m(1)(t) , we obtain m(t +�t) and m(1)(t +�t) , where �t is time 
increment. From them, we evaluate the distance between m(t +�t) and m(1)(t +�t) as

Then, a temporal Lyapunov exponent at t +�t is given as

where D (1) = D [m(t +�t),m(1)(t +�t)].
Next, we introduce m(2)(t +�t) = (sin θ(2) cosϕ(2), sin θ(2) sin ϕ(2), cos θ(2)) , where θ(2) and ϕ(2) are defined as

According to these definitions, m(t +�t) and m(2)(t +�t) satisfy

It means that m(2)(t +�t) is defined by moving m(t +�t) to the direction of m(1)(t +�t) with a distance 
ε in the (θ ,ϕ) phase space. Solving the LLG equations for m(t +�t) and m(2)(t +�t) , we obtain m(t + 2�t) 
and m(2)(t + 2�t) . The temporal Lyapunov exponent at t + 2�t is

where D (2) = D [m(t + 2�t),m(2)(t + 2�t)].
These procedures are generalized. At t + n�t , we have m(t + n�t) = (sin θ(t + n�t) cosϕ(t + n�), sin θ

(t + n�t) sin ϕ(t + n�t), cos θ(t + n�t)) and m(n)(t + n�t) = (sin θ(n)(t + n�t) cosϕ(n)(t + n�), sin θ(n)

(t + n�t) sin ϕ(n)(t + n�t), cos θ(n)(t + n�t)) . Then, we define m(n+1)(t + n�t) = (sin θ(n+1)(t + n�t)
cosϕ(n+1)(t + n�), sin θ(n+1)(t + n�t) sin ϕ(n+1)(t + n�t), cos θ(n+1)(t + n�t)) by moving m(t + n�t) to 
the direction of m(n)(t + n�t) with a distance ε in the phase space as

(14)D [m(t),m(1)(t)] =
√

[

θ(t)− θ(1)(t)
]2 +

[

ϕ(t)− ϕ(1)(t)
]2
.

(15)D [m(t +�t),m(1)(t +�t)] =
√

[

θ(t +�t)− θ(1)(t +�t)
]2 +

[

ϕ(t +�t)− ϕ(1)(t +�t)
]2
.

(16)Λ(1) =
1

�t
ln

D
(1)

ε
,

(17)θ(2)(t +�t) = θ(t +�t)+ ε
θ(1)(t +�t)− θ(t +�t)

D [m(t +�t),m(1)(t +�t)]
,

(18)ϕ(2)(t +�t) = ϕ(t +�t)+ ε
ϕ(1)(t +�t)− ϕ(t +�t)

D [m(t +�t),m(1)(t +�t)]
.

(19)D [m(t +�t),m(2)(t +�t)] = ε.

(20)Λ(2) =
1

�t
ln

D
(2)

ε
,
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Note that m(t + n�t) and m(n+1)(t + n�t) satisfy D [m(t + n�t),m(n+1)(t + n�t)] = ε . Then, solving the 
LLG equations of m(t + n�t) and m(n+1)(t + n�t) , we obtain m(t + (n+ 1)�t) and m(n+1)(t + (n+ 1)�t) . 
A temporal Lyapunov exponent at t + (n+ 1)�t is

where D (n+1) = D [m(t + (n+ 1)�t),m(n+1)(t + (n+ 1)�t)] . The Lyapunov exponent is defined as a long-
time average of the temporal Lyapunov exponent as

In the present study, we solve the LLG equation from t = 0 to tmax = 5 µ s with �t = 1 ps. Therefore, there 
are tmax/�t = 5× 106 steps during the evaluation of the magnetization dynamics. We use the last 1× 106 steps 
for the evaluation of the Lyapunov exponent. Note that this method is an application of Shimada–Nagashima 
 method44 for the evaluation of the Lyapunov exponent from numerical simulation of an equation of motion to 
the LLG equation. Strictly speaking, the Lyapunov exponent evaluated here corresponds to the conditional largest 
Lyapunov exponent in non-autonomous  system34,47.

Data availability
The datasets used and/or analyses during the current study available from the corresponding author on reason-
able request.
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