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Spatial quasi‑bound states of Dirac 
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Our study investigated the emergence of spatial quasi‑bound states (QBSs) in graphene monolayers 
induced by rectangular potential barriers. By solving the time‑independent Dirac equation and using 
the transfer matrix formalism, we calculated the resonance energies and identify the QBSs based on 
probability density functions (PDF). We analyzed two types of structures: single and double barriers, 
and we find that the QBSs are located within the barrier region, at energies higher than the single 
barrier. Additionally, we observe QBSs in the double barrier and their position depends on the distance 
and width of the well between the two barriers. The width and height of the barrier significantly 
impact the QBSs while the well width influences the resonance energy levels of the QBSs in the double 
barrier. Interestingly, the QBSs can be manipulated in the graphene system, offering potential for 
optoelectronic devices. Finally, our results demonstrated that the spatial localization of these states is 
counter‑intuitive and holds great promise for future research in optolectronic devices.

Graphene consists of a single monolayer of carbon atoms. It has attracted a lot of theoretical and experimental 
 attention1,2. One factor that makes graphene highly attractive is that the electrons in graphene behave like chiral 
massless  fermions3, described by a two-dimensional Dirac equation. In graphene, Dirac electrons, by means of 
Klein tunneling can penetrate through high and wide potential  barriers4,5. As a result, controlling Dirac electrons 
by means of electrical potential is considered a very difficult  task6–8. However, the electron penetration into the 
potential barrier is reduced if the propagation is at certain  angles9.

The peculiarity of the graphene spectrum, namely the existence of degeneration points, makes the local 
density of carriers very sensitive to the electric  field10. This paves the way for the creation of localized electronic 
states close to the zero energy of the two-dimensional Dirac  Hamiltonian10–12.

In the usual way, Dirac electrons in graphene cannot be effectively confined to a finite spatial  area13. This 
effect is disadvantageous for the creation of useful structures in graphene-like structures. However, using elec-
trostatic potentials, some theoretical attempts have been suggested to trap Dirac electrons in graphene to form 
quasi-bound states (QBSs).

In the continuous spectrum all states are accessible and all are not square  integrable14–16. However sometimes 
in very specific situations, there are states that behave almost like bound  states14–18. This duality, which appears 
only in very special situations and at certain values, which is called quasi-bound  states18–21.

According to some works in the literature, QBS are bounded states within a rather short lifetime (trapping 
time). In contrast, bounded states can be defined as those in which the carriers are absolutely bounded within 
an infinite  time22–25.

Later, it has been shown that sharp circular potential wells in graphene display QBSs and the electron is 
trapped for a limited amount of time before escaping down through the Klein  tunnelling26–28, the transport 
resonance in Z-shaped graphene nanoribbons (GNR) has been studied.

The results indicate that the QBSs induce resonant transmission of electrons around the Dirac point. QBSs 
are mainly confined in the zigzag edges of the GNR. In addition, their energies and lifetimes depend on the 
structural  size29–31. Additionally, the QBSs in graphene quantum dots (QDs) has been investigated. The existence 
of QBSs by applying an external parabolic potential to a graphene strip was  reported32–34. Moreover, cylindrical 
symmetric potentials were investigated in single and bilayer graphene QDs. It was demonstrated that in bilayer 
graphene, rather narrow QBSs appear when the energy is smaller than the barrier height. The broadening of 
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states in the graphene bilayer increases as the orbital momentum becomes larger, which is in contrast with the 
case of the graphene  monolayer35.

This study used the solution of the Dirac equation and transfer matrix formalism, along with the continuity 
of the wave function, to determine the transmission coefficient and resonance energies. Probability density func-
tions are calculated for each resonance energy to plot the QBSs in the case of one or two barriers (see Figs. 1, 2). 
The results demonstrated that Dirac electrons are localized as QBSs above the barrier and are influenced by the 
barrier’s width and height. Furthermore, we investigated the QBSs in the case of two rectangular barriers with 
identical height and width. Our findings reveal that the well width between the two barriers has a significant 
impact on QBS control.

We consider the potential represented by the following equation:

Under the effect of the potential, the Dirac cone of graphene monolayer moves proportionately to the applied 
voltage V0

36.
The Dirac equation is used to study the graphene monolayer-based structure.

where σi with i = x, y, z is the Pauli matrix, vF is the Fermi velocity and V0 is the applied potential, and −→p  is the 
momentum.

By solving (Eq. 2), we can obtain the eigenfunctions and eigenvalues. Usually, the electronic wave functions 
in graphene are described by two-components (i.e: pseudo-spins). The two components correspond to the 
quantum mechanical amplitudes of finding the particle in the well-barrier. The function ψ±

qj
(x, y) represents the 

wave function in the barrier region (Region II, Fig. 1), namely:

where qx , ky are the wave vector and v± are the wave function components given by:

(1)V(x) =
{

0, if x ∈ Region I
V0, if x ∈ Region II
0, if x ∈ Region III

.

(2)[vF(�σ · �p)+ V0]ψ(x, y) = Eψ(x, y),

(3)ψ±
q (x, y) = 1√

2

(

1

v±

)

e±iqxx+ikyy ,

Figure 1.  (a) Schematic illustration of a rectangular electrostatic barrier on a structure-based graphene 
monolayer. Regions I, III are wells and II is a barrier. (b) The potential profile indicates the incident and reflected 
particles in each region. WB is the barrier width, V0 is the barrier height, and Lx is the length of the structure.

Figure 2.  (a) Schematic illustration of two rectangular electrostatic barriers on a structure-based graphene 
monolayer. (b) The potential profile indicates the incident and reflected particles in each region. ds is well width.
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with the corresponding dispersion relation:

In the case of the well regions (Region I, III), the wave function is given as:

where kx , ky are the wave vector and u± are the corresponding wave function components given by:

with dispersion relation:

To determine the amplitudes of the wave functions in each well-barrier, the solution of the Dirac equation is 
written in matrix form using the continuity conditions as a function of the amplitudes:

 where Dj , Pj(xj) are the dynamic matrix and propagation matrix, respectively, and are defined as:

 where j = 1, 2, . . . , n . If j is odd, then the component of the wave function uj = u± and the wave vector will 
be equal to qj = kx that correspond to the well region (Region I). If j is even, then uj = v± and qj = qx that 
correspond to barrier region (Region II).

The transfer  matrix37 can be calculated as:

 where M(E, θ) given by:

The coefficients can be determined Aj−1 , Bj−1 , Aj , Bj , Aj+1 , Bj+1 , using the continuity condition and transfer-
matrix approach. We assume that Aj−1 = 1 and Bj+1 = 0 , where this condition, reflects that the wave function 
can only be transmitted through the barrier. The probability density function (PDF) that corresponds to each 
region, in terms of amplitude coefficient, is given by:

In region (I):

In region (II):

In region (III):

In n-region:

(4)v± = �vF(±qx + iqy)

E − V0

,

(5)E = ±�vF

√

q2x + k2y + V0.

(6)ψ±
k (x, y) = 1√

2

(

1

u±

)

e±ikxx+ikyy ,

(7)u± = ±sign(E)e±iθ
,

(8)E = ±�vF

√

k2x + k2y .

(9)
(
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All probability density functions are normalized to the whole interval domain of the structure. Once we have the 
transfer matrix, we can calculate the transmission coefficient using the following equation:

where M11 is the first element of the transfer matrix.
Initially, we investigated the presence of QBSs in a single barrier (SB) structure. To achieve this, we calculated 

the probability density function (PDF) for each resonance energy by utilizing the transmittance. Figure 3 displays 
the transmission probability as a function of the Fermi energy. The parameters used in this structure include 
the barrier height ( V0 = 0.2 eV), the length of the barrier ( WB = 150 Å), and the incidence angle of the Dirac 
electron ( θ = 15◦ ). These parameters were selected to obtain the QBSs energies of the graphene system in 
the linear approximation regime. We analyzed the QBSs at different resonance energies obtained from the 
transmission curve for T = 1.

Figure 4 illustrates the resonance states and probability of QBSs existence for various resonance energies. 
Figure 4 exhibits the scenario where the barrier width is WB = 150 Å. The curves show that the first energy level 
E1 corresponds to the initial QBSs and is manifested above the energy barrier. At the succeeding energy level, 
E2 , distinctive characteristics of the QBSs were observed.
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Figure 3.  The transmission probability as a function of the Fermi energy. (Ei) is the resonance energy where is 
i = 1, 2, . . . ,N = 8 . θ = 15◦ is the angle incident of Dirac electron.

Figure 4.  The probability density function (PDF) as a function of the distance x. QBSs corresponding to the 
energies resonance levels Ei . The resonance energies of the Dirac electron are chosen such that the transmission 
coefficient is T = 1.
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The behavior of QBSs changes from one energy level to another, as the number of nodes increases with energy. 
This means that the quasi-bound states appear in series above the barrier, with their spatial distributions having 
a maximum of one, two, three, and so on, as seen in the case of bound states in conventional  semiconductors37.

To investigate the evolution of different QBSs, we explored other resonance energies, and the results are dis-
played in Fig. 4. At higher energy levels, the QBSs exhibit the same characteristic, with the number of maxima 
and minima increasing as the resonance energy increases, similar to what was previously observed in Fig. 4.

We also investigated the effect of barrier width on QBSs. QBSs for a barrier width of WB = 50 Å, were deter-
mined, and the results are shown in Fig. 5. The Dirac electrons are quasi-localized at an energy level above the 
barrier. We found that the QBS energies for the barrier with width WB = 50 Å, are higher than those of the bar-
rier with width WB=150 Å. Furthermore, the energies of the QBSs decrease as the width of the barrier increases, 
which is consistent with the dispersion relation expression given in Eq. (5).

It is noteworthy that the quasi-bound states (QBSs) situated within the energy barrier can be modulated by 
both the width ( WB ) and the height ( V0 ) of the barrier. Therefore, by varying the barrier width in this system, 
different QBSs can be probed. In this study, we have examined various barrier widths and found that the reso-
nance energies are affected by changes in WB.

Likewise, our investigation into the impact of barrier height on the quasi-bound states (QBSs) revealed that 
there was no noticeable effect on the energy levels. In contrast, varying the angle of incidence resulted in gradual 
changes in the energy levels of the QBSs. Specifically, increasing the angle of incidence had a discernible impact 
on the QBSs.

We have investigated the impact of barrier width ( WB ) and height ( V0 ) on the energy difference between 
quasi-localized states, �E = Ei+1 − Ei , of the quasi-bound states (QBSs). Our findings suggest that varying WB 
does not lead to any noticeable change in �E , whereas altering V0 results in an increase in �E′′ proportionate 
to the increase in barrier height. Furthermore, our study on the effect of different angles of incidence indicates 
that the energy difference, �E , remains unaffected by changes in the incidence angle. Therefore, we report no 
dependence of the energy difference on the angle of incidence of Dirac electrons.

An empirical formula has been derived for the energy difference between quasi-localized states, �E , which 
is dependent on the width ( WB ) of the energy barrier. The formula is expressed as follows:

Where �̃s is the difference energy in eV.
It is noteworthy that the behavior of the quasi-bound states (QBSs) in a single energy barrier is remarkable. 

Specifically, all of the first states are physically located within the barrier region, and their probability distribution 
is concentrated in that region. Furthermore, it has been observed that the energy difference between successive 
levels of the QBSs, �E , is generally constant at approximately 0.12 eV.

This paper presents another study conducted to investigate the presence of quasi-bound states (QBSs) and 
the impact of a double barrier (DB) structure, as well as the effect of well width ( ds ). Specifically, we examined 
the well width between two barriers for various systems (see Fig. 2). Figure 6 illustrates the transmission coef-
ficient as a function of Fermi energy for a double barrier (DB) structure. Specifically, we investigated two cases: 
one with a well width of ds1 = 5 Å, (blue curve) and another with a well width of ds2 = 500 Å, (black curve). 
Our findings indicate that the transmission probability of the second case exhibits a higher number of resonance 
peaks, whereas a smoother transmission curve is observed for the first case. Thus, it can be concluded that the 

(19)
�̃s =(WB − 150)(WB − 300) ∗ 1.48.10−5 − (WB − 50)(WB − 300) ∗ 1.6.10−5

+ (WB − 50)(WB − 150)) ∗ 1.6.10−6

Figure 5.  The PDF as a function of the distance x. E1 , E2 , E3 , and E4 correspond to the resonance energies of 
QBS above the barrier, respectively. The energies of the Dirac electron are chosen such that the transmission 
coefficient T = 1 . The length of the barrier is WB = 50 Å, and the electron incident angle is θ = 15◦.
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resonance energies are significantly influenced by the well distance ( ds ), as demonstrated in Fig. 6. Consequently, 
a considerable impact on the quasi-bound states (QBSs) is observed.

Figure 7 displays the resonance energies of QBSs as a function of the well width ( ds ) between two barriers. 
The energy levels of QBSs are significantly affected by the well distance, as shown in the figure. Specifically, as the 
well width ds increases, the energy levels of QBSs decrease. This result confirms the previous findings presented 
in the paper. It is important to note that the well width plays a crucial role in controlling the QBSs and their 
corresponding resonance energies.

Furthermore, it is observed that as the well distance ( ds ) increases, the energy levels decrease, indicating 
that the QBSs can be tuned accordingly. Additionally, the energy level of the QBSs can also be modified by the 
incidence angle. Consequently, we examined various angles of incidence for both cases, i.e., (ds = 5 Å) and 
(ds = 500 Å). Our findings indicate that in both cases, the energy levels are dependent on the angle of incidence, 
while the energy difference between two successive levels ( �E ) remains constant. As a result, it can be concluded 
that �E does not exhibit any dependence on the angle of incidence.

The results depicted in Fig. 8 support our previous findings illustrated in Fig. 7. As mentioned earlier, the 
energy levels decrease as the well width ( ds ) increases. It is worth noting that for values of ds that are close to zero, 
the QBSs in the DB system exhibit similar characteristics to those observed in the SB case. It is worth noting that 
certain states of the SB with specific ds can be maintained and also appear in the case of another barrier width, 
which is an important feature. For instance, at energy E = 0.59 eV, the QBSs are located in the third state of the 
SB with WB = 150 Å, (as shown in Fig. 4). Interestingly, the last state also appears in the case of WB = 50 Å, and 
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Figure 6.  The transmission probability as a function of the Fermi energy. The transmission coefficient is 
calculated for two well widths, for instance, ds1 , ds2 . The electron incident angle is θ = 15◦.

Figure 7.  The PDF is a function of the distance x. ( E′
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4 ), ( E1,E2,E3,E4 ), are the energies of resonance 

corresponding to the QBSs in the case of ds1 =5 Å  and ds2=500 Å, respectively. The barrier height is V0 = 0.2 eV, 
and the electron incident angle is θ = 15◦.
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its energy level becomes the ground state of this barrier width (as shown in Fig. 5). Furthermore, it is possible 
that some states of the SB case coexist in the DB, which is another surprising characteristic.

In this study, we explored the quasi-bound states (QBSs) in single and double rectangular potentials using 
the transfer matrix formalism. We calculated the resonance energies and the probability density function to 
determine the spatial location of the QBSs. We found that the QBSs are located above the barrier and can be 
tuned by adjusting the width and height of the barrier. Interestingly, the QBSs also appeared in the case of double 
barriers and their energy levels were found to be affected by the width of the well between the barriers. The 
study is unique in that it calculated the wave function and established the spatial region where these states are 
located. The investigation of QBSs in graphene-based low-dimensional systems also revealed new characteristics. 
Finally, this study provides insights into the behavior of QBSs and their dependence on different parameters in 
the system.

Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable 
request.
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