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The clinical manifestations of SARS‑CoV‑2 infection vary widely among patients, from asymptomatic 
to life‑threatening. Host genetics is one of the factors that contributes to this variability as previously 
reported by the COVID‑19 Host Genetics Initiative (HGI), which identified sixteen loci associated 
with COVID‑19 severity. Herein, we investigated the genetic determinants of COVID‑19 mortality, 
by performing a case‑only genome‑wide survival analysis, 60 days after infection, of 3904 COVID‑19 
patients from the GEN‑COVID and other European series (EGAS00001005304 study of the COVID‑19 
HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted 
for age, age2, sex, series, time of infection, and the first ten principal components. We observed a 
genome‑wide significant (P‑value < 5.0 ×  10−8) association of the rs117011822 variant, on chromosome 
11, of rs7208524 on chromosome 17, approaching the genome‑wide threshold (P‑value = 5.19 ×  10−8). 
A total of 113 variants were associated with survival at P‑value < 1.0 ×  10−5 and most of them regulated 
the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair 
and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may 
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modulate COVID‑19 risk of death, possibly through the regulation of gene expression in immune 
response and lung function pathways.

The clinical manifestations of COVID-19, the disease caused by the SARS-CoV-2 virus, vary widely from mild 
respiratory symptoms to severe organ failure and  death1–3. The mortality rate of COVID-19 also shows remarka-
ble temporal and spatial heterogeneity across the  world4,5. Several risk factors have been associated with increased 
mortality, such as older age, male sex, and presence of  comorbidities6,7.

The role of genetics in modulating the severity and outcome of COVID-19 has been a subject of intense 
research and growing evidence supports the existence of individual genetic factors predisposing to a severe 
 outcome8. For example, the COVID-19 Host Genetics Initiative (HGI) consortium performed large-scale meta-
analyses of genome-wide data from over nine thousand critically ill cases (defined as patients who required 
respiratory support or died from COVID-19) and over 25 thousand hospitalized cases with moderate or severe 
disease, compared with up to five million  controls9. These studies identified several genetic loci associated with 
either critical illness or hospitalization due to COVID-19. However, the consortium did not address the survival 
probability of SARS-CoV-2 infected patients, which is a relevant time-to-event phenotype that has received 
limited attention so far. Indeed, most studies have focused on COVID-19 severity (reviewed  in10), some on 
 mortality11–13 and very few on  survival14, mainly investigating candidate gene polymorphisms rather than per-
forming genome-wide analyses.

In this study, we conducted a genome-wide survival analysis to identify variants affecting the risk of death 
from acute SARS-CoV-2 infection. We used genotyping and clinical follow-up data (at 60 days post-infection) 
from about four thousand COVID-19 patients from five European cohorts. We adjusted the analyses for known 
non-genetic independent prognostic factors, like age, sex, and pandemic wave, which were available for all 
patients.

Materials and methods
Case series
The case series investigated in this study comprised 3904 COVID-19 patients molecularly tested for SARS-
CoV-2 infection and enrolled for host genetics studies at several recruiting centres, in the context of the inter-
national COVID-19 HGI. Patients from GEN-COVID Multicenter Study and from the series included in the 
European Genome-Phenome Archive (EGA) study number EGAS00001005304 (except for BRACOVID and 
INMUNGEN-CoV series), with 60-days follow-up information and full data about sex, age, and infection date 
were analysed. BRACOVID patients were not included in the analysis since their data were not shared with us. 
The INMUNGEN-CoV series was not included in our study, since 90% of patients did not have survival data 
and, in addition, they were genotyped with a different SNP-array. Patients provided written informed consent to 
the use of their biological samples and data for research purposes. Personal data treatment was GDPR compliant. 
The research was approved by the Committees for Ethics of the recruiting centres.

Survival analysis
A multivariable Cox proportional hazard model with demographic-clinical features (i.e., age, sex, series, and 
time of infection) was used for survival  analysis15 (age was considered as both a linear and non-linear term, the 
latter defined as age squared and hereafter named  age2). The R survival  package16 was used to draw Kaplan–Meier 
(KM) curves and run the log-rank test in R (v. 3.6.0) environment. The hazard proportionality assumptions were 
verified through the function “cox.zph()” of the survival package. The variables that were found to impact on 
survival from the log-rank test (with P-value < 0.05) were analysed both in multivariable Cox regression and in a 
weighted multivariable analysis to account for non-proportional  hazards17, using the survival R package and the 
coxphw R  package18 (applying the Average Hazards Ratio method, by setting the parameter template = “AHR”), 
respectively. Cox and log-rank test P values < 0.05 (two-sided) indicated sufficient statistical significance.

Genotyping data quality check, principal component analysis, and imputation
Genome-wide genotyping data were available at EGA (study number EGAS00001005304) and University of 
Siena. The LiftOver tool (https:// lifto ver. broad insti tute. org/) was used to convert genomic coordinates and bring 
all the datasets to the same genomic build (GRCh38). PLINK v.2  software19 was used to carry out genotype quality 
control (QC) steps (Supplementary Figure S1). In detail, for each patient series, per-sample and per-variant QC 
steps were performed, excluding samples with call rate < 99% and excess of heterozygosity (F >  ± 0.2), removing 
insertions/deletions, duplicated and non-informative variants, and filtering out single nucleotide polymorphisms 
(SNPs) with genotyping call rate < 99% and Hardy–Weinberg equilibrium test P-value < 1.0 ×  10−10. Then, all the 
datasets were merged, and an additional round of QC was carried out to remove duplicated and related indi-
viduals and patients for whom no survival data were available. Additionally, SNPs with minor allele frequency 
(MAF) < 1% were filtered out, together with SNPs mapping in regions of extended linkage disequilibrium (LD)20. 
PLINK v.2 software was also used to carry out principal components analysis (PCA): we plotted PC1 versus 
PC2 visualizing samples according to our five patient series (i.e., BelCovid, GENCOVID, Hostage, SPGRX, and 
SweCovid; Supplementary Figure S2A). Additionally, to better visualize the ancestry of our patients, we projected 
the first four principal components of our patients together with those of 2504 individuals from five different 
populations, selected from 1000 Genomes  Project21: Africans, Americans, South-East Asians, East Asians, and 
Europeans (Supplementary Figure S2B and S2C). We defined as Europeans those patients that clustered together 
with 1000 Genomes Project European individuals. Genotype imputation to whole-genome sequence was carried 
out on the TopMed imputation  server22 using Eagle v.2.4 for  phasing23, minimac4  algorithm24, and TopMed r2 
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as reference  panel25. Finally, SNPs with a low-quality imputation  (R2 ≤ 0.3)26 and with a MAF < 0.02 were filtered 
out. This second MAF filter was applied after imputation to remove variants with very low frequency alleles, 
thus reducing the risk of the Cox model not-converging and of obtaining spurious association results when, in 
patients carrying the minor allele, few or no events (i.e., death) were observed.

Genome‑wide survival analysis
The associations between SNPs (additive model) and patient overall survival were assessed using multivariable 
Cox proportional hazard model, with the first 10 PCs, sex, age,  age2, patient series, and time of infection (before 
or after the first pandemic wave, that we considered finished by the end of June 2020), as covariates, using the 
GenAbel package in R  environment27. Correction for multiple testing was performed with the Benjamini–Hoch-
berg method of false discovery rate (FDR)28. Top significant polymorphisms were also tested under a dominant 
model using the same covariates as above. This was done for the following two reasons: first, we hypothesized that 
the minor allele was increasing the risk of death by acting as a dominant allele or at least codominant; second, 
in this way we reduced the risk of artifacts in the Kaplan–Meier curves by comparing the probability of survival 
of patients homozygous for the major allele with that of patients with at least one minor allele in their genotype 
(due to the low number of patients homozygous for the minor allele). COVID-19 severity top-significantly 
associated variants (https:// app. covid 19hg. org/ varia nts; analysis B2: Hospitalized COVID19 + vs. population 
controls)9 were also investigated in our study, by comparing P-values of association between these variants and 
survival with those reported by COVID-19 HGI.

A logistic regression between a binary status phenotype (live vs. dead during the 60-days follow-up) and 
genome-wide imputed SNPs was performed using PLINK v.2, with the first 10 PCs, sex, age,  age2, time of infec-
tion, and patient series as covariates.

Functional analyses
To investigate the functional role of the identified variants associated with survival to COVID-19, we used mul-
tiple databases to obtain more reliable and robust results, by pooling together partial results from each platform.

First, we looked for the variants associated with COVID-19 survival at P-value < 1.0 ×  10−5, in the GTEx 
(Analysis V8 release, GTEx_Analysis_v8_eQTL_EUR.tar) and  eQTLGen29 (https:// www. eqtlg en. org/ cis- eqtls. 
html) databases (accessed on 08/05/2023), to test whether they have already been reported as cis expression 
quantitative trait loci (eQTLs). For some variants, we also looked for eQTL SNPs in LD with them, using the 
LDexpress tool of  LDlink30. We searched all tissue eQTLs reported in the European population and in LD with 
query variants at D’ > 0.8. An over-representation analysis of the gene list including all the target genes of the 
found eQTLs was done, using the WEB-based Gene SeT AnaLysis  Toolkit31, to search for enriched Reactome 
and KEGG pathways.

Additionally, genes that included or are close to the variants associated with COVID-19 survival 
(P-value < 1.0 ×  10−5) were retrieved. The ENSEMBL gene database was used with the R Bioconductor package 
“biomaRt”32 to find genes that lie at a maximum distance of ± 50 kb from detected SNP variants. The resulting list 
of genes was then used as input for functional analysis tools. We used the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID)33 with default functional categories and applying the high classification 
stringency parameters; Benjamini–Hochberg adjusted P-values (FDR) < 0.05 was considered as significance 
threshold of enrichment.

The GENE2FUNC functionality of the Functional Mapping and Annotation (FUMA) for GWAS  platform34 
was selected to retrieve gene ontologies (biological processes, molecular functions, cell compartments), differ-
entially expressed genes associated with COVID-19, target tissues and metabolic pathways, with the following 
parameters: all background genes; Ensembl version v102; GTEx v8 (54 tissue types) and GTEx v8 (30 general 
tissue types) gene expression datasets; Benjamini-Hochberg (FDR) correction when testing for gene-set enrich-
ment (threshold: FDR < 0.05); minimum overlapping genes with gene set: ≥ 2.

Ethical approval and informed consent
The research was performed in accordance with the Declaration of Helsinki and was approved by the commit-
tees for Ethics of the recruiting centres, namely, the University Hospital (Azienda ospedaliero-universitaria 
Senese) ethical review board, Siena, Italy (Prot n. 16917, dated March 16th, 2020); Euskadi Ethics Committee, 
Donostia-San Sebastian, Spain, on April 6, 2020 (approval number PI2020064); Vall d’Hebron Ethical Committee, 
Barcelona, Spain; ethics committee of the Junta de Andalucia, Spain (ethics id: 0886-N-20 and 1954-N-20); the 
ethics committee of Humanitas Clinical and Research Center, Rozzano (MI), Italy (reference number, 316/20); 
Valladolid Ethics Committee (PI-201716) and the Granada Ethics Committee, Spain, on March 24, 2020, and 
April 13, 2020, respectively; Erasme Ethics committee, Bruxelles, Belgium (protocol P2020_209); the National 
Ethical Review Agency, Sweden (EPM; 2020-01623). Patients provided written informed consent to the use of 
their biological samples and data for research purposes. Personal data treatment was GDPR compliant.

Results
Age, sex, and period of infection are associated with COVID‑19 patient survival
In this study, we included a total of 3904 European COVID-19 patients recruited in Italy (GEN-COVID and, in 
part, Hostage series), Spain (Hostage and SPGRX), Sweden (SWECOVID) and Belgium (BelCovid) (Table 1). 
The median age at infection was 63 years and male patients were slightly prevalent (58%). More than two thirds 
of patients included in this study were infected during the first COVID-19 wave (before June 30th, 2020). Most of 
enrolled patients were hospitalised (86%), but 78% of the whole series did not need to be admitted to the intensive 
care unit (ICU). Among the 3175 patients for whom we have information about the respiratory support, just a 
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small fraction of patients included in the study (15%) did not need any oxygen support, whereas most of them 
(40%) received oxygen by mask or cannula, 11% received non-invasive ventilation, and 14% needed intubation. 
Information about comorbidities was available for 2887 patients and about a quarter of patients had a comorbid-
ity (hypertension, diabetes, cancer, asthma, and heart failure, in order from the most to the least frequent) and 
12% had at least two comorbidities. Considering a follow-up time of 60 days after the infection, approximately 
11% of COVID-19 patients of this study have died.

To investigate the factors affecting mortality after SARS-CoV-2 infection, we carried out a survival analysis 
in a period of 60 days post-infection. Since the hazard proportionality assumption was not verified in our series 
(global Schoenfeld residuals test P-value = 6.5 ×  10−6) we carried out both a weighted multivariable Cox analy-
sis, to deal with non-proportional hazards, and a multivariable proportional hazard Cox regression. In both 
models we used the following variables, for which we had full data availability: age,  age2, sex, and date of infec-
tion (Table 2A). The results obtained were similar. Indeed, we observed that the major mortality risk factor for 
COVID-19 patients was the age at infection (as expected, in both models it was a risk factor for poor prognosis, 
with HR > 1, with increasing age). We also explored a non-linear effect of age (i.e.,  age2) on survival and, although 
statistically significant, it was quite irrelevant (HR = 1 in both models). Female sex was associated with a slightly 
higher probability of survival (HR = 0.73 in both models), compared to males. Additionally, we observed that 
patients infected in the first pandemic wave (i.e., in the first half of 2020) had lower probabilities of survival than 
patients infected later (HR = 1.6 and 1.5 in Cox and weighted Cox models, respectively).

We also tested Cox and weighted Cox models with an additional covariate, i.e., the series in which patients 
were recruited. Indeed, we were aware that some differences in the recruitment might have confounding effects 
on patient survival. For instance, we knew that SweCovid patients were all admitted in intensive care unit, they 
probably were affected by a severe form of COVID-19 and, therefore, their probability of survival was lower than 
other patient series. As expected, SweCOVID patients had the highest risk of death among all patients included 
in the present study (Table 2B). These results prompted us to include the explored variables as covariates in the 
genome-wide survival analysis, in order to identify genetic variants that were independent prognostic factors.

We also drew KM curves testing the effects of age, sex, pandemic wave, and patient series, on the risk of death 
60 days after infection. Regarding the age, it was discretized in five age groups, starting from patients < 55 years 
old, then by decades till the age of 84, and the last group comprising patients ≥ 85 years old. Highly significant 
associations were observed for age, patient series, and pandemic wave (Supplementary Figure S3), whereas the 
association with sex was weaker, but still significant (log-rank test, P-value = 0.03). As already observed with the 
Cox models, the probability of survival decreased with increasing age and was lower for males than females, for 
patients infected at the beginning of 2020, and as expected, for SweCOVID patients.

Germline variants are associated with COVID‑19 overall survival 60 days after infection
Genotype data of patients from GEN-COVID Multicenter Study and from the series included in the European 
Genome-Phenome Archive (EGA) study number EGAS00001005304 (except for BRACOVID and INMUNGEN-
CoV, that were unavailable and with missing data, respectively, as explained above) were used for the genome-
wide survival analysis. After quality controls and imputation, the dataset comprised 7,151,809 variants and 3904 
patients, 91% of which were of European ancestry (Supplementary Figure S2B and C).

We run a GWAS Cox model, with the first 10 PCs, age,  age2, sex, period of infection and patient series as 
covariates and we found one variant (rs117011822) associated with survival at P-value < 5.0 ×  10−8 (genome-wide 
significance level) and another one (rs7208524) nearly significant (P-value = 5.19 ×  10−8). The results for all the 
variants tested in the multivariable Cox model are reported in a Manhattan plot (Fig. 1). The minor alleles of both 
these variants were risk factors for poor prognosis, showing hazard ratios > 1. Both are low frequency variants, 
in our dataset (MAF < 5%). The top one is a 2 kb upstream variant of FGF19 gene on chromosome 11, and the 
other one maps in an intron of the GPRC5C gene on chromosome 17.

Looking at all the variants with a P-value < 1.0 ×  10−5 (n = 113; Supplementary Table S1), we found that 7 vari-
ants mapped in the GPRC5C gene locus, 16 polymorphisms were on chromosome 8, in the PSD3 gene locus, 9 
SNPs on chromosome 9, in an intergenic region of 359 kb between PBX3 and MVB12B genes, and 9 variants 
in the CDH13 locus, on chromosome 16. Additionally, other 27 mapped on chromosome 6, 12 of which were 
in an intergenic region near the EPHA7 gene, in proximity of an enhancer region (ENSR00000798782), and 13 
mapped in the locus of the PERP gene, mostly in its 5’ regulatory region. A zoomed plot for each of these loci 
is reported in Fig. 2.

Beside the additive model, we tested the two top-significant variants in a dominant model (using the same 
covariates), where the survival of patients heterozygous and homozygous for the alternative allele was compared 
with that of patients homozygous for the common allele. Also this analysis indicated that having at least one 
alternative allele of these variants conferred a higher risk of poor COVID-19 prognosis than having a wild-type 
genotype (rs117011822: HR = 2.47, P-value = 3.43 ×  10−8; rs7208524: HR = 2.70, P-value = 1.10 ×  10−7). We plot-
ted the KM curves to visualize the probability of survival according to the genotypes of both variants (Fig. 3).

We also looked for the top-significant variants previously identified by the meta-analysis, reported by the 
COVID-19 HGI, as associated with COVID-19  severity9, in our results. Of note, the phenotypes under inves-
tigation in that study were quite different, since the COVID-19 HGI defined the severity phenotype as a binary 
variable representing COVID-19 patients’ risk of hospitalisation. As shown in Supplementary Table S2, none 
of the COVID-19 HGI top variants were significant, neither at nominal P-value < 0.01, in our survival model.

Finally, we tested the risk of mortality in the 60 days after infection, using a logistic regression model, with 
the same covariates used in the Cox analysis. In this GWAS, no SNPs reached the genome-wide significance 
threshold. However, 30% of the 113 top significant SNPs associated with survival probability were confirmed 
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also in this GWAS, as associated with mortality risk, although at a higher P-value (< 1.0 ×  10−5). These results are 
reported in Supplementary Table S1, for comparison with Cox analysis results.

Variants associated with COVID‑19 patient survival are involved in immune or lung functions
We queried two different eQTL databases, namely GTEX and eQTLGen, to test whether our most significant 
variants (P-value < 1.0 ×  10−5) were previously reported as eQTLs. In GTEx, 43 out of 113 SNPs were eQTLSs of 
33 target genes, in several different tissues (e.g., brain, lung, muscle, heart, spleen, whole blood) and in eQTLGen 
54 out of 113 SNPs acted as cis eQTLs for 30 genes, in the whole blood (Supplementary Table S3 and S4). Eight 
target genes (i.e., TSPYL1, EPHB4, MOSPD3, UFSP1, GIGYF1, SLC12A9, MVB12B, and KLRC1) were found 
in both databases. The list of the 55 unique eQTL target genes was enriched for the Reactome pathway R-HSA-
198933: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell (enrichment ratio = 16.7; 
FDR = 0.017), including the CD300 genes (A, C, and LB) and two other genes (KLRC1 and KLRF1).

In addition, we explored the possibility that the quite numerous SNPs identified on chromosome 6 and 8, 
next to EPHA7 and PSD3 genes, respectively, might be in LD with some near variants reported as eQTLs of these 
two genes. Indeed, none of these SNPs were reported as eQTLs in the two searched databases. Looking at data 
available in the European population (using LDlink), we found several variants in strong LD (D’ > 0.8) with our 
SNPs and acting as EPHA7 and PSD3 eQTLs, in many tissues (Supplementary Table S5).

Considering the list of 38 genes (Supplementary Table S6) mapping within 50 kbps of the 113 top significant 
variants, functional annotation analysis with DAVID identified 19 significant terms (FDR < 0.05, Supplementary 
Table S7). Among these, the top significant ones are two Gene Ontology (GO) biological processes, namely, 
“positive regulation of natural killer (NK) cell mediated cytotoxicity” and “stimulatory C-type lectin receptor 
signalling pathway”, both involving the same five genes (KLRK1, KLRC3, KLRC4, KLRC4-KLRK1, and KLRD1). 
Three of these genes (KLRC3, KLRC4, and KLRD1) were also annotated in the Biocarta “h_nkcellsPathway: 
Ras-Independent pathway in NK cell-mediated cytotoxicity”, the only pathway that reached the statistical sig-
nificance threshold.

Partially overlapping results were obtained in the overrepresentation analysis carried out with the FUMA 
platform (Supplementary Table S8), that identified 36 significantly enriched functional gene sets. Among them, 
we observed GO biological processes, KEGG and Biocarta pathways related to NK cell regulation and other 
immune functions, in which approximately the same genes as above are involved. In addition, looking at tissue 
specificity analysis by FUMA, we observed that the 38-gene list was enriched of genes over-expressed in the lung 
and in the brain’s putamen basal ganglia (Supplementary Figure S4).

Discussion
In this study we investigated the effects of host germline variants on the overall survival of COVID-19 patients, 
60 days after the infection. With a case-only approach and using a multivariable Cox model to look for variants 
associated with the probability of survival after infection, we aimed to dissect the genetics bases to develop a 
severe COVID-19 from a different point of view, as compared to several other genetic studies on COVID-19 
severity (reviewed  in10). The analysis considered, as covariate of the multivariable model, the most widely known 
prognostic factors for COVID-19 survival, i.e., patient age at infection, sex, and period of infection (at the very 
beginning of the pandemic or after).

We identified a genome-wide level significant association between survival and the SNP rs117011822, on 
chromosome 11. We observed that individuals with an increasing number of minor alleles of this variant in their 
genotype (both under additive and dominant model) had a worse prognosis than patients homozygous for the 
major allele, 60 days after SARS-CoV-2 infection. This variant maps in a regulatory region (ENSR00000958007), 
specifically a CTCF binding site, upstream the FGF19 gene. However, we did not find evidence for a regulation 
of FGF19 expression by this variant in GTEx or eQTLGen, but it might be interesting to investigate this aspect 
further. Indeed, it was reported that serum levels of the FGF19 protein were lower in asymptomatic than symp-
tomatic COVID-19  patients35. In that study, the authors discussed a possible role of FGF19 (together with other 
proteins) in lung tissue repair, with differences between asymptomatic and symptomatic patients. Therefore, it 
might be interesting to further investigate the role of the minor allele of rs117011822 in the regulation on FGF19 
levels with the aim to understand the functional mechanism underlying the statistical association observed in 
our study.

Additional loci on chromosomes 17, 8, 6, 9, and 16 were suggestively associated with COVID-19 patient 
overall survival. On chromosome 17 we identified a locus of seven variants that were reported to act as regulators 
of the expression of CD300 genes (CD300A, CD300C, and CD300LB). Of note, CD300 is a family of leukocyte 
surface proteins involved in immune response signalling pathways and it has been observed that shifts in the 
expression pattern of CD300 molecules in T-cells of COVID-19 patients correlated with COVID-19  severity36.

The 16 variants on chromosome 8 mapped in intronic regions of the PSD3 gene, also known as EFA6R, a 
member of the family of guanine nucleotide exchange factors, that activate ADP-ribosylation factor 6 (ARF6)37. 
This protein is involved in endocytosis, and it has been reported to play a role in SARS-CoV-2 cell  entry38,39. 
So far, it has not yet been reported any role of PSD3 variants in the regulation of ARF6 activation. Our variants 
showed a strong LD with eQTL SNPs of PSD3.

The six variants we found associated with COVID-19 patient survival, mapping in an intergenic region of 
chromosome 9, were reported to be eQTLs of the near the MVB12B gene. No evidence for a role of this gene in 
COVID-19 is available, but it is interesting to underline that it codes for a subunit of the ESCRT-I complex that 
mediates HIV virus  budding40.

The 12 intergenic variants on chromosome 6 (at position 93 Mb) were near the EPHA7 gene, which was 
suggested to be a downstream mediator of cytokine production, induced by the N-terminal domain of the 
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SARS-CoV-2 spike  protein41. These variants mapped in an enhancer region and might affect the expression of 
the EPHA7 gene, although we did not find them among the eQTLs of this gene. However, these variants are in 
strong LD with eQTL SNPs of EPHA7. The other 11 variants on chromosome 6, instead, mapped in the PERP 
gene locus and some of them were already annotated as eQTLs of this gene. Although no functions related to 

Table 1.  Clinical characteristics of patients included in the survival genome-wide association study. *CPAP, 
BiPAP, or high-flow cannula.

Characteristic
BelCovid 
(n = 381)

GENCOVID 
(n = 1727)

Hostage 
(n = 1303) SPGRX (n = 364)

SweCovid 
(n = 129) Total (n = 3904)

Age at diagnosis, 
years, median 
(range)

59 (23–104) 60 (18–99) 65 (1–96) 71 (23–103) 61 (24–86) 63 (1–104)

Age at diagnosis, years, n (%)

 < 55 151 (39.6) 615 (35.6) 318 (24.4) 66 (18.1) 42 (32.6) 1192 (30.5)

 55–64 89 (23.4) 416 (24.1) 321 (24.6) 59 (16.2) 31 (24.0) 916 (23.5)

 65–74 83 (21.8) 345 (20.0) 363 (27.9) 88 (24.2) 30 (23.3) 909 (23.3)

 75–84 43 (11.3) 227 (13.1) 202 (15.5) 88 (24.2) 24 (18.6) 584 (15.0)

 > 85 15 (3.94) 124 (7.18) 99 (7.60) 63 (17.3) 2 (1.55) 303 (7.76)

Sex, n (%)

 Male 199 (52.2) 1032 (59.8) 773 (59.3) 188 (51.6) 91 (70.5) 2283 (58.5)

 Female 182 (47.8) 695 (40.2) 530 (40.7) 176 (48.4) 38 (29.5) 1621 (41.5)

Infection before June 30th, 2020, n (%)

 No 41 (10.8) 1075 (62.2) 118 (9.06) 0 17 (13.2) 1251 (32.0)

 Yes 340 (89.2) 652 (37.8) 1185 (90.9) 364 (100) 112 (86.8) 2653 (68.0)

Hospitalization, n (%)

 No 125 (32.8) 357 (20.7) 9 (0.691) 52 (14.3) 0 543 (13.9)

 Yes 256 (67.2) 1370 (79.3) 1294 (99.3) 312 (85.7) 129 (100) 3361 (86.1)

ICU admission, n (%)

 No 238 (62.5) 1566 (90.7) 961 (73.8) 263 (72.2) 0 3028 (77.6)

 Yes 143 (37.5) 161 (9.32) 342 (26.2) 101 (27.7) 129 (100) 876 (22.4)

Highest respiratory support, n (%)

 None 0 605 (35.0) 0 0 0 605 (15.5)

 Oxygen (mask or 
cannula) 124 (32.5) 592 (34.3) 854 (65.5) 0 0 1570 (40.2)

 Non-invasive 
ventilation * 6 (1.57) 369 (21.4) 63 (4.83) 0 0 438 (11.2)

 Intubation 103 (27.0) 161 (9.32) 298 (22.9) 0 0 562 (14.4)

 Not available 148 (38.8) 0 88 (6.75) 364 (100) 129 (100) 729 (18.7)

Number of comorbidities, n (%)

 None 64 (16.8) 865 (50.1) 323 (24.8) 0 36 (27.9) 1322 (33.9)

 1 97 (25.5) 522 (30.2) 305 (23.4) 0 48 (37.2) 964 (24.7)

 2 72 (18.9) 205 (11.9) 174 (13.4) 0 36 (27.9) 469 (12.0)

 3 or more 22 (5.77) 55 (3.18) 54 (4.14) 0 9 (6.98) 132 (3.38)

 Not available 126 (33.1) 80 (4.63) 447 (34.3) 364 (100) 0 1013 (26.1)

Comorbidity, n (%)

 Asthma 34 (8.92) 148 (8.57) 91 (6.98) 22 (17.1) 295 (7.56)

 Cancer 51 (13.4) 126 (7.30) 154 (11.8) 15 (11.6) 346 (8.86)

 Diabetes 89 (23.4) 207 (12.0) 266 (20.4) 35 (27.1) 597 (15.3)

 Heart failure 39 (10.2) 160 (9.26) 87 (6.68) 6 (4.65) 292 (7.48)

 Hypertension 156 (40.9) 484 (28.0) 554 (42.5) 70 (54.3) 1264 (32.4)

Alive status (at 60 days of follow-up), n (%)

 Alive 335 (87.9) 1622 (93.9) 1147 (88.0) 286 (78.6) 95 (73.6) 3485 (89.3)

 Deceased 46 (12.1) 105 (6.08) 156 (12.0) 78 (21.4) 34 (26.4) 419 (10.7)

Series, n (%)

 BelCovid 381 (9.76)

 GEN-COVID 1727 (44.2)

 Hostage 1303 (33.4)

 SPRGX 364 (9.32)

 SweCovid 129 (3.33)
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COVID-19 have been reported for the PERP gene, so far, it encodes a protein that is a p53 apoptosis effector, 
and, recently, Wang and colleagues reviewed the possible roles of p53 in mediating host-virus interactions in 
infections caused by  Coronaviruses42.

Finally, the nine SNPs on chromosome 16, intronic to the CDH13 gene, were eQTLs of this gene, which 
encodes the T-cadherin protein, a regulator of vascular permeability, but also receptor of adiponectin and LDL. 
It is involved in lung function, and reportedly associated with several metabolic disorders as atherosclerosis, 
dyslipidemia, obesity, and also diabetes (as reviewed  in43).

Interestingly, the list of genes, whose expression was reported to be regulated by our top-significant vari-
ants, was enriched for genes with immunoregulatory functions. These included the already mentioned CD300 
genes, but also KLRC1 and KLRF1 genes. KLRC1 (alias NKG2A) expression, in SARS-CoV-2 infected patients 
was suggested to correlate with functional exhaustion of cytotoxic lymphocytes and with a severe COVID-19 
 outcome44. In addition, functional annotation of the genes near or where top-significant variants mapped resulted 
in an enrichment of immune-related terms and pathways, in particular those involved in regulation of NK cell-
mediated cytotoxicity. This finding is interesting in the light of previous results by Maucorant et al.45 showing that 
distinct NK-immunotypes were related to COVID-19 severity. Among the genes in this pathway, there is KLRK1, 
also known as NKG2D, coding for a NK cell activating receptor. It has been previously reported that SARS-CoV-2 
non-structural protein 1 can downregulate ligands of the NKG2D receptor, thus escaping NK cells  cytotoxicity46.

Regarding the findings from FUMA tissue specificity analysis, the observed enrichment of our gene list in 
genes whose expression is altered in lung is not unexpected: as the major clinical manifestation of SARS-CoV-2 
infection and severity is at respiratory level, we expected that variants associated with COVID-19 survival were 
in genes expressed in the lungs. On the other hand, it is more difficult to speculate on the finding of an enrich-
ment of genes upregulated in brain putamen basal ganglia. In a recent  paper47, Balsak et al. reported that basal 
ganglia can be damaged after COVID-19, due to microstructural alterations caused by hypoxia. However, further 
studies are needed to understand if the variants/genes identified in our study might be involved in the hypoxia 
induced brain alterations after SARS-CoV-2 infection and, also, if this kind of damage might affect COVID-19 
patient survival.

Despite the above cited evidence found in the literature, without appropriate functional studies, we cannot 
assert that the variants we identified as associated with survival play a role in predisposing patients to a worse 
COVID-19 outcome. However, we believe that our findings are worthy of further investigation and are of interest, 
since we explored the genetics of COVID-19 severity with an unconventional approach that might have led to 
new results. Indeed, not surprisingly, none of the previously reported variants associated with severity  in9 were 

Table 2.  Clinical and personal prognostic factors for COVID-19 patients, as resulted from Cox’s and weighted 
Cox’s multivariable tests. HR, hazard ratio; CI, confidential interval.

Multivariable Cox’s test Multivariable weighted Cox’s test

HR (95% CI) P-value HR (95% CI) P-value

A

 Age at diagnosis (linear) 1.20 (1.10–1.30) 2.59 ×  10−5 1.20 (1.09–1.32) 1.54 ×  10−4

 Age at diagnosis (quadratic) 1.00 (1.00–1.00) 0.0135 1.00 (1.00–1.00) 0.0235

 Sex

  Male 1 1

  Female 0.730 (0.596–0.894) 2.38 ×  10−3 0.733 (0.597–0.902) 3.23 ×  10−3

 Infection before June 30th, 2020

  No 1 1

  Yes 1.55 (1.21–1.99) 6.13 ×  10−4 1.53 (1.19–1.96) 9.35 ×  10−4

B

 Age at diagnosis (linear) 1.20 (1.10–1.30) 2.68 ×  10−5 1.20 (1.10–1.31) 1.32 ×  10−4

 Age at diagnosis (quadratic) 1.00 (1.00–1.00) 0.0159 1.00 (1.00–1.00) 0.025

 Sex

  Male 1 1

  Female 0.730 (0.595–0.895) 2.43 ×  10−3 0.733 (0.595–0.903) 3.56 ×  10−3

 Series

  BelCovid 1 1

  GEN-COVID 0.736 (0.508–1.07) 0.104 0.739 (0.503–1.09) 0.124

  Hostage 0.760 (0.547–1.06) 0.103 0.745 (0.529–1.05) 0.0931

  SPRGX 1.05 (0.727–1.52) 0.795 1.03 (0.702–1.51) 0.884

  SweCovid 2.57 (1.64–4.01) 3.52 ×  10−5 2.54 (1.62–3.99) 4.79 ×  10−5

 Infection before June 30th, 2020

  No 1 1

  Yes 1.36 (1.01–1.83) 0.0405 1.36 (1.01–1.82) 0.0424
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significant in our study. Indeed, both the phenotype (severity vs. overall survival 60 days after the infection) and 
the analysis model (regression vs. Cox) were completely different.

We are aware of some limitations in our study. First, validation in an independent, wider, but possibly geneti-
cally homogeneous patient series should be needed. Indeed, we were able to detect only one variant associated 
with survival at a genome-wide significance level. In addition, our series, is mainly composed of patients of 
European ancestry and our results, although controlled for population stratification, would not be directly 
generalizable to patients from different ethnicities. Additionally, since we did not adjust for patients’ comor-
bidities (as no full data were available), we cannot exclude that some of the identified associations might result 
from such potential confounding factors. For instance, the variants in the CDH13 gene, involved in metabolic 
disorders, might be this case. Although we were aware of this limitation, we preferred not to further reduce the 
already relatively small sample size of our analysis, by excluding patients with unavailable comorbidity data, to 
avoid losing statistical power.

Overall, our results shed new light on the genetics of COVID-19 severity, having identified some loci associ-
ated with patient survival, at 60 days after infection. Although our findings suggest that genetics plays a limited 
role in affecting mortality probability after SARS-CoV-2 infection, the identified variants are worthy to be further 
investigated as possible prognostic factors for COVID-19.

Figure 1.  Manhattan plot of the results of the GWAS for survival of COVID-19 patients. SNPs are plotted 
on the x-axis according to their genomic position (GChr 38, hg38 release), and P-values (− log10(P)) for 
their association with survival probability are plotted on the y-axis. The horizontal solid line represents the 
threshold of significance (P-value < 5.0 ×  10−8), whereas the dashed one represents a suggestive threshold 
(P-value < 1.0 ×  105). Names, hazard ratios and P-values of the two most significant SNPs are shown on top.
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Figure 2.  Zoomed plots of six loci associated with patient survival. SNPs are plotted on the x-axis according 
to their chromosome position (GChr 38, hg38 release), and P-values (− log10(P)) for their association with 
survival probability are plotted on the y-axis. The horizontal line represents the threshold of significance 
(P-value < 5.0 ×  10−8). Below the x axis, the mapped genes are plotted (according to University of California Santa 
Cruz Genome Browser notation).



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3000  | https://doi.org/10.1038/s41598-024-53310-x

www.nature.com/scientificreports/

Data availability
Genotype data that support the findings of this study are available at The European Genome-phenome Archive 
(EGA) (study number: EGAS00001005304) and upon request to Prof. Renieri at University of Siena.

Code availability
No custom software or algorithm were used. Packages and tools used for the analyses described in the manu-
script are all publicly available. Anyway, used scripts are available from the corresponding author upon request.
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