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A new approach to classifying 
polymer type of microplastics 
based on Faster‑RCNN‑FPN 
and spectroscopic imagery 
under ultraviolet light
Thunchanok Thammasanya 1,2, Sakarat Patiam 3, Eknarin Rodcharoen 3 & 
Ponlachart Chotikarn 1,2*

Hazardous compounds from microplastics in coastal and marine environments are adsorbed by live 
organisms, affecting human and marine life. It takes time, money and effort to study the distribution 
and type of microplastics in the environment, using appropriate expensive equipment in a laboratory. 
However, deep learning can assist in identifying and quantifying microplastics from an image. This 
paper presents a novel microplastic classification method that combines the benefits of UV light with 
deep learning. The Faster‑RCNN model with a ResNet‑50‑FPN backbone was implemented to detect 
and identify microplastics. Microplastic images from the field taken under UV light were used to train 
and validate the model. This classification model achieved a high precision of 85.5–87.8%, and the 
mAP scores were 33.9% on an internal test set and 35.7% on an external test set. This classification 
approach provides a high‑accuracy, low‑cost, and time‑effective automated identification and 
counting of microplastics.

Today, plastics are the most adaptable and widely used materials. Plastic production on a global scale reached 
nearly 368 million tons in 2019 and is expected to reach 1.1 billion tons by  20501. Unscrupulous waste manage-
ment has led to the release of plastic waste into the environment. In the marine ecosystem, the amount of plastic 
that enters the ocean each year is between 4 and 12 million metric tons, and by 2040, that number will rise to 
29 million metric  tons2. This marine debris affects a variety of marine species. Numerous animals such as fish, 
sea turtles, and many more, suffer and die after eating plastic or after being stuck in  it3–5. Moreover, instead of 
entirely degrading, plastics become shredded and broken down into fibres and tiny fragments, and those of size 
less than 5 mm are known as  microplastics6–8. Microplastics are also found in products like toothpaste and face 
cleansers. They are abundant in coastal and marine environments and contain and adsorb hazardous  chemicals3,9. 
Humans may be exposed to chemical contaminants through the consumption of organisms that have consumed 
contaminated microplastics, possibly with biomagnification of the contaminants via trophic  transfer10,11. Even 
though there is no evidence of the effects of microplastics on humans in a broad population, in a lab setting the 
microplastics can harm human cells, causing both allergic reactions and cell  death4. According to some reports, 
microplastics can contribute to respiratory problems and colorectal  cancer5,12. In addition, numerous studies on 
marine life have shown that fish that consume microplastics have early mortality, energy depletion, reproductive 
problems, behavioural issues, and gut obstructions. The impact of these microplastics also extends to marine 
ecosystems, such as seagrass meadows, mangroves, and coral  reefs5,13.

Microplastics are a globally recognised and growing environmental concern. Precise measurements of the 
amount of microplastics in the environment and the identification of microplastic types are needed in order to 
understand and evaluate the complexity of the problem and to choose the top mitigation priorities. Moreover, 
for the purpose of monitoring microplastics, reliable and comparable sampling and analytical procedures are 
essential. Extraction, separation, identification, and quantification are the steps in the analytical process applied 
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to microplastics in environmental samples. Several techniques for microplastic identification are available. The 
simplest method for the identification of microplastics is visual identification. The stereo microscope is the 
most frequently used identification tool in microplastic studies, for counting and sorting microplastic particles 
according to colour, size, brightness, and  morphology14–16. However, challenges remain since the previous stud-
ies are unable to create a uniform classification of microplastics data for the various microplastics in nature, 
covering their different forms, colours, and polymer types. So, visual sorting should be combined with chemical 
composition analysis to better identify the polymer type. Currently, pyrolysis or thermal decomposition gas 
chromatography coupled with mass spectrometry, Fourier transform infrared (FTIR) spectroscopy, or Raman 
spectroscopy, are the most prevalent techniques for identifying microplastics chemically. However, the visual 
identification method takes more time and can miss certain tiny, translucent particles that are difficult to recog-
nize. Although FTIR and Raman mapping might mitigate this problem, access to pricey analytical equipment 
might not be  feasible12; novel methods should be developed. Physical (size, shape, and colour) and chemical 
(polymer type) aspects are the two crucial parameter types in microplastic  analysis12. Because determining key 
features like particle type or size involves time-consuming and intensive manual labour, counting and classify-
ing certain types of particles is preferably automated using image analysis based identification methods. Using 
neural networks with computer image processing to overcome limitations may be a viable option. The methods 
currently used in image-related research that are speedy, reliable, repeatable, and highly efficient are those based 
on computer vision and deep learning.

Several studies have employed machine learning and computer vision in analysis to quantify and categorize 
 microplastics17–20. The results have indicated a highly accurate classification. However, microplastics used in 
previous studies are not necessarily similar to those collected in the field, and their image analysis necessitates the 
use of specialized equipment, such as special staining dyes and  illumination12,21, a high-resolution  scanner19 or 
microscopy  images20. Hence, it is important to develop protocols that are both affordable and effective in detect-
ing microplastics. The methodology proposed in this work is based on images captured by a camera under UV 
light, which is a low-cost approach that has been developed to create inexpensively photos showing fluorescent 
response of  microplastics22,23. Furthermore, introducing deep learning techniques improves the performance 
of computer vision.

The purpose of this study was to demonstrate an innovative automated, low-cost, and reliable method using 
artificial intelligence, that is capable of detecting and classifying microplastics. Additionally, this study dem-
onstrates how addressing certain knowledge gaps may aid in further improving a standardized protocol for 
microplastics quantification and identification.

Methodology
A high-level overview of the classification process, applied to the samples collected, is now provided. First, 
microplastic images were acquired under ultraviolet light. Second, the microplastic images were well-annotated 
and implemented as a dataset. Third, the data were enhanced and more data was generated to increase the 
number of images. The dataset was then fed into the Faster-RCNN model training. Finally, this model was used 
for quantifying and classifying microplastics. The following subsections contain additional information about 
each of these stages.

Study area
Microplastic samples were collected from nearshore and offshore around Koh Yo in Songkhla province, Thailand, 
between May 2019 and February 2020 (Fig. 1). Station A was in Wat Thai Yo, which practices community-based 
aquaculture (7°9′45.10″ N, 100°32′10.46″ E), Station B was in Ban Ao Sai area (7°10′48.64″ N, 100°32′25.55″ E), 
having many structures including households, homestay, restaurants, and fish cages in the area. Station C was 
located in a mangrove area (7°8′51.27″ N, 100°32′9.01″ E), and station D was on the eastern side of Koh Yo 
(7°10′3.50″ N, 100°33′0.08″ E), which is an island in the Songkhla lagoon.

Sample collection, image acquisition and identification
Samples were collected from 8 stations (4 stations along the shoreline and 4 stations offshore) around Koh Yo 
island between May 2019 and February 2020. Three repeat samples of 100 L of water were collected using a plank-
ton net with a 50 µm mesh size. Three repeat samples of soil and benthic fauna were collected from the lagoon 
bottom using a 15 × 15 cm Ekman grab sediment sampling  tool6,24,25. A study of the microplastics accumulating 
in sediment used a saturated sodium chloride solution (NaCl)6,26 and  H2O2 for benthic  fauna27. The microplastics 
were cleaned with a 30% solution of hydrogen peroxide  (H2O2)28. After filtering the microplastics with GF/C filter, 
they were dried at 70 °C for 12 h in a hot air oven to completely dry, as preparation for further identification. 
Microplastics attached to the GF/C filter were photographed through a stereo microscope 40 × under ultraviolet 
light using UVA band (320 nm) with a high-resolution camera (3456 × 4608 pixels). The microplastic samples 
collected from the water and sediment produced 96 images (an average of 24 images/lap), whereas the benthic 
microplastics produced 150 images (an average of 33 images/lap, with the exact number varying depending on 
the monthly occurrence of benthic fauna). Furthermore, the microplastic samples attached to the GF/C filter 
were collected separately using tweezers by visual identification (shapes, colours and textures) into 10 groups 
following the standardised size and colour sorting (SCS)  system29. These 10 groups were white fibre (FI-1), group 
of white twisted fibres (FI-2), black fibre (FI-3), blue fibre (FI-4), transparent fibre (FI-5), blue fragment (FR-1), 
transparent fragment (FR-2), turquoise fragment (FR-3), white fragment (FR-4), and orange fragment (FR-5). 
Next, ten samples from each group were randomly selected to be identified chemically. Fourier-transform infra-
red spectroscopy (FTIR) was used to determine the chemical compositions of the microplastic samples collected 
from wavelength range 4000 to 400  cm−1 in transmission mode using the Spotlight 200i model.
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The results from the FTIR identified that FI-1 and FI-2 were Cotton Polyester Blend, FI-3, FI-4 and FI-5 were 
Polyester, FR-1 and FR-4 were Polypropylene, FR-2 was Low-density polyethylene FR-3 was Polyvinyl chloride 
and Polyethyl cyanoacrylate and the last group FR-5 was Alkyd. From these results the colours under UV light 
of particles in each group were also recorded. The results of the chemical and visual identification process for 
microplastics were adopted during the labelling step.

Image labelling
Object detection in computer vision required manual annotation using expert knowledge. This is a crucial step 
that can affect the classification model’s effectiveness. Each photograph was uploaded to COCO  Annotator30, a 
web-based annotation tool, that was used to manually record the type of microplastic captured. Each piece of 
microplastics in the images was drawn in a tight bounding box. The results from FTIR and visual identification 
were applied as ground-truth to annotate the microplastic components through COCO Annotator. Under UV 
light, various microplastics reflect in different ways, so the fluorescent properties of microplastic can imply the 
type of polymer. FTIR was also adopted to verify the polymer type. The labels fell into 8 categories (Fig. 2): Fauna, 
which refers to non-plastics in photographs (benthic fauna, leaves, rocks, and broken glass), Alkyd (orange 
fluorescent pellets), CPB (Cotton Polyester Blend; blue fibres with low fluorescent), LDPE (Low-density poly-
ethene; fluorescent blue), PC (Polyethyl cyanoacrylate; glows light green), PP (Polypropylene; sample blue but 
not fluorescent), PVC (Polyvinyl chloride; fluorescent blue) and Polyester (blue and some red fluorescent fibres).

After labelling all images in a tight bounding box from the real environments, there were 5720 objects spread 
across 230 images. The CPB had the highest number of microplastic objects which was 1844 instances, followed 
by Fauna (1435 objects) and Polyester (1293 objects). The top 3 lowest microplastics instances were LDPE, PC 
and PP which had 7, 10, and 136 objects, respectively. The remaining were Alkyd and PVC which had the counts 
488 and 507, respectively. The dataset’s object instances were tiny, as the median size of all microplastic instances 
in this study was 39 × 39 pixels and the object area varied from 72 to 51909 pixels. The statistics of microplastic 
size (in pixels) of each class are shown in Table 1 including the number of objects in the original images (#origi-
nal), the min area, and the area at 25, 50 and 95 percentiles (the max area was excluded due to an error when 
transforming data from the annotation platform). Using only this original data for training may not be enough. 
In order to balance the objects by class and help increase the quantity of images and objects, data augmentation 
and data creation were adopted.

Image pre‑processing and dataset creation
To improve the details in the images and minimize noise and uninteresting areas, image processing was used. 
The processes in this step were developed using Python language with OpenCV library (https:// opencv. org/). 
First, a dark background was applied to exclude noise and other elements that were not in the designated area 

Figure 1.  The study areas around Koh Yo island in Songkhla lagoon. The map was created using Google Earth 
Pro (Version 7.3.6.9750) and post-processed with Adobe Photoshop (Version 25.3.1).

https://opencv.org/
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of main interest. This stage involved detecting the microplastics that were attached to the GF/C filter in the 
inner circle area; the outer part of the circle area was mask out. Second, the images were added cold colour and 
the saturation increased to enhance the colour and details of the object. Microplastic classification using deep 
learning required a large number of labelled data for training a model. However, the number of microplastics in 
some classes was low. So, image creation was required. Moreover, the microplastic images were imbalanced in 
each category, which interferes with the model  learning31. This motivated the creation of new images to ensure 
that the number of microplastics in each category is balanced and large enough for training. To generate a new 
image, the idea from Copy-Paste data augmentation  method32 was applied. First, several background photos 
that contain fewer microplastic objects were selected. Second, microplastic objects were randomly selected and 
overlaid with balanced distribution by class, and still keeping the number of objects in each image unchanged 
from the original. Next, each object was rotated and flipped by a random angle (0°, 90°, 180°, or 270° to match 
the pixel pattern), and randomly resized (to 0.6, 0.8, 1, 1.5, 2, 2.5 or 3 fold linear expansion). Lastly, the generated 
images were saved, and the dataset was then split into training, testing, and validation sets in the proportions 
80:10:10. The original images also separated into training, testing, and validation set the same ratio as the gen-
erated images. Additionally, an external testing set was adopted from different study area but with comparable 
environmental control, which performed the same pre-processing and labelling process.

Adding a black background to an uninteresting region aided in the removal of noise and other objects that 
are not relevant to the subject of interest. Adding cold colour and increasing saturation, on the other hand, did 
not improve training, since a photo taken under UV light was sufficient to enhance microplastic details. The 
microplastics photo dataset was generated from the original 230 images to 650 images for the training set and 
65 images for the testing set. Figure 3 shows examples of microplastics images, including a microplastics image 
under natural light (Fig. 3a), the same microplastics imaged under UV light (Fig. 3b), and a generated image 
(Fig. 3c). The results of the increase in the number of generated images are shown in the last column (#gener-
ated) in Table 1 which has a total number of objects from 5720 instances, increasing the number of objects to 
18,512 instances.

Figure 2.  Examples of different microplastic types under UV light.

Table 1.  Summary statistics of microplastic size and number by polymer type collected from the study areas. 
*The number of objects in the original images. **The number of objects in generated images performed in the 
data creation process.

Polymer type Min area Area @ 25% Area @ 50% Area @ 95% #Original* #Generated**

Alkyd 132 667 1184 3212.8 488 2177

CPB 171 1174.5 2024 10,757.9 1844 2419

Fauna 108 834 1386 29,623.6 1435 2639

LDPE 34,124 67,043.5 89,000 123,835.9 7 2224

PC 360 484.5 739 4492.9 10 2146

PP 72 211.5 374 1843.05 136 2222

PVC 99 272 399 1452.6 507 2266

Polyester 216 1178 2040 12,097.9 1293 2419

Overall 72 837 1520 11,813.2 5720 18,512
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Microplastics classification
Classifying and counting the number of microplastics is a problem of object detection and instance of semantic 
segmentation. Due to pixel-wise labelling, segmentation algorithms are time-consuming, and compute and 
memory expensive. Even though pixel-wise approach might produce good results, the object detection method 
was used in this study. Object detection can be divided into two types: two-stage object detectors (e.g., RCNN, 
Fast-RCNN, Faster-RCNN, Mask R-CNN, etc.) and one-stage object detectors (e.g., YOLO, SSD, RetinaNet, 
etc.)33. One-stage detectors are normally significantly faster than the two-stage detectors, although they produce 
less accurate results. The Faster R-CNN model with a ResNet-50-FPN  backbone34 was selected due to its high 
performance in detecting small objects according to Liu et al. Python language and PyTorch library (https:// 
pytor ch. org/) was used to implemented the model. The Faster R-CNN is composed of 3 parts: (1) convolutional 
neural network (CNN) to extract the appropriate features and classify image region, (2) region proposal network 
(RPN) to predict the bounding box of the objects, (3) region-based convolutional neural network (R-CNN) to 
predict object class for all bounding boxes. The 50-layer Residual Neural Network (ResNet-50) was adopted 
as a backbone model in the feature extraction process (first part of Faster R-CNN). Transfer learning was also 
applied, which helps reduce the training time and allows a comparatively small training dataset. As the size of 
the objects was varied, Feature Pyramid Network (FPN) can assist in better detection. When the Faster R-CNN 
model with a ResNet-50-FPN backbone was ready in Python code, the labelled images from the pre-processing 
process were used as input data for training the microplastic models which needed to find-tune the parameters 
of the models for the best result. The highest accuracy model was used for classifying the type of microplastic.

Evaluation metrics
The microplastic classification performance was assessed using the following evaluation methods that character-
ize the model’s accuracy and validity.

Confusion matrix
A confusion matrix was used to evaluate the classification performance of microplastics. The classification results 
were obtained from the actual dataset and the prediction  dataset35, and the matrices had each the size of n × n, 
where n denotes the number of microplastic species. If n is 2 for microplastic and non-microplastic classes, a 
true positive (TP) outcome occurs when the model correctly predicts the microplastic class, a true negative (TN) 
outcome occurs when the model correctly predicts the non-microplastic class, a false positive (FP) outcome 
occurs when the model incorrectly predicts the microplastic class, and a false negative (FN) outcome occurs 
when the model incorrectly predicts the non-microplastic class. The following criteria were used to assess the 
classification efficiency of microplastics: precision, recall, and F1 score, which can be calculated using the Eqs. 
(1)–(3). The proportion of accurately detected microplastics among all of the candidate microplastics is known 
as precision. Recall is the proportion of actual microplastics that was successfully identified. The F1 score com-
bines recall and precision.

(1)precision =
TP

TP + FP

(2)recall =
TP

TP + FN

(3)F1 =
2× precision× recall

precision+ recall

Figure 3.  An example of microplastic images. (a) A microplastics image under natural light, (b) same 
microplastics image under UV light, and (c) a generated microplastics image.

https://pytorch.org/
https://pytorch.org/
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If the suspected object was detected by the model, the bounding box (bbox) object’s confidence score is 
checked to see if it is greater than or equal to the specified threshold. (This study required greater than 0.4 level 
of confidence.) Accept and display the bbox of the selected object in the image. However, to determine which 
bbox is TP, Intersection over Union (IoU) was used to evaluate the overlap of the ground truth region and pre-
diction region. IoU values are between 0 and 1 where 0 denotes an absence of overlap and 1 denotes complete 
overlap. The threshold of this IoU can both decrease the loss of tiny object data during training and improve 
small object detection  accuracy33. In this study, the IoU threshold was set at 0.5, a standard of PASCAL VOC’s 
 measure36, and employed to determine which bbox is TP and which is FP. The bbox is TP if the IoU score is 
larger than 0.5 and FP otherwise.

Precision–recall curve
After determining the precision and recall of data, these were plotted in the same graph for the precision–recall 
curve (PR-Curve) as shown in Fig. 4, and the area under the curve was  determined37. If the frame overlay is not 
microplastic, the precision is reduced, and the recall is constant. Overlays of microplastics increase precision and 
recall values and shift them to the right. After drawing, the graph was restyled to make it easier to read. Interpo-
lated precision was obtained by omitting serrated lines and drawing a line from the maximum precision (pinterp).

Mean average precision (mAP)
Mean average precision is the average precision (AP) of all microplastics  averaged38. The AP values are calculated 
from the area under the precision curve and recalled from the PR-Curve. The equation for this calculation is 
as follows:

where r denotes the recall value for each level at which the precision changes for the first time, n denotes the 
total number of images, and pinterp denotes the new precision value, with the maximum value equal to the recall 
value at each level.

in which the total number of classes is denoted by K, and the mean accuracy of the i-class is denoted by APi.

Results
In Python 3.7, the model was implemented using the PyTorch library (https:// pytor ch. org/). The microplastic 
classification model had the highest accuracy when the following parameters were configured. The stochastic 
gradient descent (SGD) optimizer was used to minimize the loss on training the model, with a learning rate of 
0.03, a momentum of 0.9, and weight decay of 0.0001. The model was trained on a GeForce RTX 2080Ti GPU. 
The model was unable to learn when trained directly from the original dataset, and the mAP was extremely low 
due to the small number of images and imbalanced objects in each class. Then, the training process was separated 
into two steps. The first step was training from generated images using COCO train2017 as pre-trained weights 
in the Faster R-CNN model. The model was trained with 45 epochs, and the learning rate scheduler which 
decreases the learning rate by 10 × every 25 epochs was used. Because the created dataset has class balance, this 

(4)AP =

n−1∑

i=1

(ri+1 − ri)pinterp(ri+1)

(5)mAP =

K∑

i=1

APi

K

Figure 4.  Example of precision recall curve.

https://pytorch.org/
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initial phase was employed to decrease the problems of class imbalance from the original dataset. Furthermore, 
the created dataset aided in increasing the number of training images, which improved the model’s accuracy 
and reduced the problem of overfitting. However, the generated dataset increased the possibility of identical 
objects from lower classes being duplicated, which resulted in poor prediction accuracy for those classes. The 
mAP for the validation and test sets of the generated images were 0.877 and 0.927, respectively. The second step 
was training from original images in the training set using the pre-trained model from the first step. The learn-
ing rate scheduler, which reduces the learning rate by 10 × per 8 epochs, was used to train the model across 20 
epochs. This step included retraining the model using the original dataset, which aids in fine-tuning the model’s 
ability to predict labels for items in the actual photos. The mAP for the validation and test sets, and an external 
test set of the original images were 0.382, 0.339 and 0.357, respectively. Moreover, the area under the PR-curve 
revealed that Alkyd plastics had the highest average precision (AP) at 0.67, followed by LDPE (0.50), Polyester 
(0.48), CPB (0.46), Fauna (0.46), PVC (0.24), PP (0.12), and the least was for PC (0.00).

The predicted object is presented in a bbox with the label and confidence score of each class above the bbox 
in Fig. 5. The confusion matrix (CM) in Table 2 quantifies the classification efficiency of microplastics in the test 
dataset of the original images. In Table 3 the last row (obj_gt) shows the number of labelled objects in each class 
(ground truth), whereas the row of None shows the number of predicted but unlabelled items. We, however, left 
the ‘None’ scenario first because we were unable to label all the microplastics present in the photos. We addition-
ally removed LDPE, PC, and PP in this scenario, since the original training data for these three classes was too 
limited (Table 1). So, based on this scenario the overall precision, recall and F1 scores were 0.878, 0.361, and 
0.494, respectively, and the details by each class are shown in Table 3. The Alkyd got the highest F1 score (0.786) 
followed by Polyester (0.578), CPB (0.457), Fauna (0.377) and PVC (0.273), respectively. After inspecting all 
the predicted items in the instance of None, we discovered that practically all of the predicted things that were 
not labelled were correct. As a result, we recalculated the precision, recall, and F1 score based on the assump-
tion that the prediction in the ‘None’ scenario is 80% accurate (Table 3). Precision, recall, and F1 score had all 
been improved to 0.861, 0.455, and 0.585, respectively. Alkyd received the highest F1 score (0.787), followed by 
Polyester (0.629), CPB (0.587), Fauna (0.559), and PVC (0.365).

We also verified the model’s accuracy with an external test set of microplastic photos from a different research 
location but with comparable settings (120 images). This external test set, on the other hand, had mostly CPB 
(1291 objects), Fauna (1883 objects), and Polyester (1624 objects) categories. The total precision, recall, and F1 
score with ‘None’ excluded scenario were 0.855, 0.318, and 0.458 respectively (Table 3). It can be seen that the 
precision and recall of both the internal and the external test sets were comparable, confirming that the model 
can predict the same behaviour with photographs under UV light using a high-resolution camera. Additionally, 

Figure 5.  An example of microplastics image taken through a microscope under UV light with ground truth 
and predicted bounding boxes.
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our microplastic classification model’s prediction time from a single microplastic image with contain 21 objects 
in the median (or 1 to 444 objects per image) was around 4 seconds.

Discussion
To the best of our knowledge, this is the first study using deep learning to classify microplastic types from images 
of microplastics collected in the field and photographed through stereo microscope under UV light. As a result, 
direct comparison with other studies may be challenging. Therefore, the following subsections will cover: clas-
sifying the type of microplastic under UV light; machine learning methods for detecting and classifying micro-
plastics; deep learning model architectures for discriminating microplastic types; and comparing the accuracy 
of the same methods and architectures for small object detection.

We attempted to differentiate between several types of microplastics in our study, including Fauna, Alkyd, 
CPB, LDPE, PC, PP, and Polyester. Since the microplastic morphology is complicated, it is challenging to dis-
tinguish the type of microplastic manually under sunlight using only colour, shape, and size. So, we adopted 
UV light to enhance the ability to discriminate the microplastics. Different polymer types react to UV light in 
distinctive ways, resulting in different fluorescent  colours12. Due to this advantage of UV light, we prepared and 
annotated microplastic images that were captured under UV light for use in training the deep learning model. The 
trained model, Faster-RCNN, from our study can automatically recognize many tiny plastic pieces and categorize 
the different types of polymers from an image at once. Moreover, our classification model was trained using a 
large number of thousands of microplastic pieces (4000–5000 objects from original dataset). A high-resolution 
camera was used to collect as much information as possible, and image resizing was restricted to prevent losing 
microplastic features. In contrast, the Meyers et al.  study12 utilises reflectance values from images in Red Green 
Blue (RGB) data and applies a decision tree to distinguish between microplastics by focusing solely on colour and 
ignoring shape and size. Additionally, their work is slower and less effective than ours since their process must 
isolate each plastic particle into a single image for training and it can only label one particle from an image at a 
time. Furthermore, there were only about 200 plastic particles used in their study, which is a very small quantity.

Object detection and semantic segmentation are two techniques used in computer vision and image process-
ing to discriminate and annotate objects into various categories. Object detection is the process of identifying 
each distinct object in an image and annotating the presence of microplastics within the bounding box. Semantic 
segmentation is another technique that can count and detect objects by labelling boundaries at the pixel level. 
Since segmentation approaches are time-consuming, requiring expensive computation and memory, our study 
used object detection instead of pixel-by-pixel labelling. However, Lorenzo-Navarro et al. combine semantic 

Table 2.  The confusion matrix for the internal test set of the original images. Significant values are in bold.

Polymer type

Predicted

Alkyd CPB Fauna LDPE PC PP PVC Polyester

Actual

Alkyd 11 0 0 0 0 0 0 0

CPB 0 69 1 0 0 0 0 9

Fauna 0 1 30 0 0 0 0 1

LDPE 0 0 0 1 0 0 0 0

PC 0 0 3 0 0 0 0 0

PP 0 0 1 0 0 0 0 0

PVC 0 4 0 0 0 0 9 0

Polyester 0 14 2 0 0 0 1 85

None 1 92 60 0 0 5 7 44

obj_gt 17 214 122 2 5 38 56 199

Table 3.  Accuracy in the internal and external test set of the original images excluding and including ‘None’ 
scenario with 80% correct.

Polymer type

Internal test set
Exclude the ‘None’ scenario

Internal test set
Include the ‘None’ scenario with 
80% correct

External test set
Excluding the ‘None’ scenario

Precision Recall F1 Precision Recall F1 Precision Recall F1

Alkyd 1 0.647059 0.785714 0.983333 0.655556 0.786667 – – –

CPB 0.784091 0.32243 0.456954 0.792222 0.466013 0.586831 0.783217 0.260263 0.390698

Fauna 0.810811 0.245902 0.377358 0.804124 0.428571 0.55914 0.930845 0.450345 0.607015

PVC 0.9 0.160714 0.272727 0.858824 0.231746 0.365 – – –

Polyester 0.894737 0.427136 0.578231 0.864748 0.49465 0.629319 0.850972 0.242611 0.377575

Overall 0.877928 0.360648 0.494197 0.86065 0.455307 0.585391 0.855011 0.31774 0.458429
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segmentation (U-Net) with image classification to separate particles from the surrounding environment and 
classify microplastics into fragments, pellets, and lines by their  morphology19. Their study achieved very high 
precision and recall in classifying microplastics. The Lorenzo-Navarro et al. study reported a precision of 98.17% 
and a recall of 98.11%, while the Faster-RCNN model used in our study achieved lower precision and recall. How-
ever, it is much simpler to distinguish between different morphologies of microplastics than the actual polymer 
types as done in our study, because fragments, pellets, and lines are only considered in terms of shape, whereas 
only shape cannot classify into type of microplastics. In addition, it should be highlighted that the microplastics 
utilized in the research by Lorenzo-Navarro, et al. were fabricated and particularly created for laboratory  use19,39, 
which differs from our study that used real samples from the lagoon.

Several model architectures have been utilized to classify objects, when it comes to object detection. Faster 
R-CNN model with a ResNet-50-FPN backbone was deployed in our study due to its high performance in 
detecting small  objects33. Microplastic particles are similarly small in size to the Liu et al. study. However, 
Mask-RCNN is one of the most efficient models for identifying objects in bounding boxes. In the Wegmayr 
et al. study, which used the Mark R-CNN model to discriminate microplastic fibre type (single and tangled 
fibres), their precision was in the range 30–64% and recall in the range 32–63%20. The Faster-RCNN model in 
our study had a higher detection efficiency for polymer type, with precision and recall in the ranges 79.2–98.3% 
and 23.1–65.6%, respectively.

Since the microplastic particles are small, of size comparable with the Liu et al. study, we selected deep learn-
ing methods for the small object  detection33. In their study the small objects are less than 50 × 50 pixels in images, 
which is almost similar size to ours. Object detection using Faster R-CNN in Liu et al. study achieved 35% from 
the DOTA dataset, 24.1% from COCO and SUN datasets and 33.6% from Wider Face dataset as mAP, and we 
can use these results as a baseline to assess our results. In comparison to Liu et al., our study’s mAP scores were 
33.9 % on the internal test set and 35.7 % on the external test set, which are almost similar. This suggests that 
the microplastic identification technique used in our study is in the same league as in other studies that classify 
tiny objects. As a result, the deep learning approach combined with microplastic imaging under UV light can 
reasonably well distinguish polymer types. However, because of the low recall, our method’s quantification has 
to be improved.

To achieve better results, images should be taken at a higher resolution to avoid losing microplastic particle 
 details19 and to avoid problems with imbalanced data, there should be enough photos for model training and 
 testing40. Moreover, collecting more data to gather a diversity of microplastic samples in the real world is needed. 
Additional microplastic samples need to be collected and labelled, and a new model must be trained in order to 
improve the classification accuracy of LDPE, PC, and PP as well as to distinguish other polymer types. The seman-
tic segmentation approach can improve the performance of the classification model. In summary, microplastic 
classification utilizing deep learning raises the current microplastic monitoring to a higher level and establishes 
an information technology application standard in the classification of microplastics.

Conclusions
The approach of using deep learning with microplastic images taken through a microscope under UV light, as 
presented in this work, is valid and promising. This procedure also included data creation to increase the number 
of training images in a class-balanced manner. The accuracy of classification was high and met the standard of 
small object detection. Moreover, this approach reduced the microplastic discrimination and counting time. 
Also, this study is the first one to differentiate specific polymer types using deep learning from microplastic 
imagery under UV light.

Data availability
The paper includes all the information required to assess its conclusions. Additional information related to this 
paper can be requested from the Corresponding Author (Ponlachart Chotikarn).
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