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Identification of a novel 
macrophage‑related prognostic 
signature in colorectal cancer
Dongfa Lin 1,2,3, Tingjin Zheng 4, Shangyuan Huang 5, Rui Liu 3, Shuwen Guan 1,2,3* & 
Zhishan Zhang 4*

Colorectal cancer (CRC) is one of the most prevalent and deadliest illnesses all around the world. 
Growing proofs demonstrate that tumor‑associated macrophages (TAMs) are of critical importance in 
CRC pathogenesis, but their mechanisms remain yet unknown. The current research was designed to 
recognize underlying biomarkers associated with TAMs in CRC. We screened macrophage‑related gene 
modules through WGCNA, selected hub genes utilizing the LASSO algorithm and COX regression, 
and established a model. External validation was performed by expression analysis using datasets 
GSE14333, GSE74602, and GSE87211. After validating the bioinformatics results using real‑time 
quantitative reverse transcription PCR, we identified SPP1, C5AR1, MMP3, TIMP1, ADAM8 as 
potential biomarkers associated with macrophages in CRC.

Colorectal cancer (CRC) is a malignant tumor that develops from the colon or rectum and is one of the most 
prevalent malignant tumors among the globe. The International Agency for Research on Cancer statistics showed 
19.3 million cases of cancer diagnosed in 2020, of which CRC accounted for 10%, making it the second most 
common cause of cancer death following lung cancer. Those statistics have shown that CRC has become a 
major public hygiene problem. The European project ColoMARK, which aims at identifying new biomarkers of 
CRC in liquid biopsy samples, has disbursed funding for detection of potential biomarkers for risk prediction 
of CRC, demonstrating that it’s essential to prevent CRC through early diagnosis by testing biomarkers. Major 
risk factors of CRC include obesity, diet, smoking, and physical inactivity. Dietary factors including processed 
meat, red meat, and alcohol, raise risk of CRC 1. Some genetic syndromes are also related to a high incidence of 
CRC. Mutations in some of the genes are already accepted to be relevant to CRC 2,3, while there might still exist 
epigenetic factors and other underlying mechanisms in the development of CRC 4. Further research is needed 
on the pathogenesis of CRC and its related biomarkers.

Over the years, a growing number of reports have indicated the important role of tumor microenvironment 
(TME)5,6 in tumor progression. TME refers to the environment that surrounds the tumor, encompassing immune 
cells, fibroblasts, extracellular matrix, surrounding blood vessels, etc. Tumors can release extracellular signals 
that may affect the microenvironment and alter immune cells, thus facilitating tumor angiogenesis and inducing 
immune tolerance. Among these immune cells, macrophages are the most important phagocytes in vivo and are 
widely recognized to have a vital part in the mechanisms of tumor  development6. The macrophages are divided 
into two subsets, named classically activated (M1) macrophages and alternatively activated (M2) macrophages. 
M2 macrophages, unlike M1 macrophages, secrete various anti-inflammatory factors like arginase1, TGF-β, 
and IL-10. Studies have shown that most of the infiltrated macrophages in tumors are considered to have an 
M2-like  phenotypes7, which might secrete cytokines, chemokines and proteases to provide an immunosuppres-
sive environment for tumor angiogenesis and growth. Those macrophages that reside within TME are called 
tumor-associated macrophages (TAMs). Research has shown that TAMs can be utilized as possible biomarkers 
for breast cancer diagnosis and emerging  therapy8. Identifications of those TAMs might be an effective approach 
in early cancer diagnosis. Hence, in the treatment and prevention of colorectal cancer, increasing the number of 
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M1 macrophages or altering their function may help improve patient outcomes. However, it is essential to note 
that the role of macrophages in colorectal cancer is highly complex and regulated by various factors. Therefore, 
when assessing patient prognosis, factors such as disease stage, patient age and gender, comorbidities, among 
others, should be considered in addition to the presence and quantity of  macrophages9. These factors collectively 
influence the prognosis of colorectal cancer patients.

However, there are few systematic studies that elucidate the immune microenvironment characteristics of 
CRC and the types of immune cells, particularly TAMs. Therefore, our research aimed to identify possible 
macrophage-related biomarkers in CRC and to study the impact of TAMs on CRC.

Materials and methods
Source of data
The details of the data sources can be found in the supplementary files, Tables 1 and S1.

Normalization and merging of datasets
To explore the underlying mechanisms and associated biological characteristics and pathways of differential 
genes in the cancer and normal groups of COADREAD, we first normalized the datasets TCGA-COADREAD, 
GSE14333, GSE74602, and GSE87211 using R package limma, and then used R package  sva10 for the COAD-
READ datasets GSE14333, GSE74602, GSE87211 by removing batch effects to obtain the combined GEO dataset 
COADREAD-dataset, and compare the before and after batch effects by distribution box line plots and principal 
component analysis (PCA) plots.

Calculation of macrophage scores
The single sample gene set enrichment analysis (ssGSEA)11 algorithm enables quantification of the relative abun-
dance of individual genes within a given dataset. We used R packet  GSVA12 and computed macrophage scores 
(MS) of all samples in TCGA-COADREAD and GEO datasets by ssGSEA algorithm in accordance with the 
MRGs expression matrix of all samples in CRC dataset. Then, the expression differences of MS between groups 

Table 1.  COADREAD dataset information list. TCGA  the cancer genome atlas, COADREAD colon 
adenocarcinoma/rectum adenocarcinoma esophageal carcinoma. We employed R package  TCGAbiolinks45 
to download the expression matrix of CRC (colon adenocarcinoma/rectum adenocarcinoma esophageal 
carcinoma, COADREAD) dataset TCGA-COADREAD from the cancer genome atlas (TCGA, https:// portal. 
gdc. cancer. gov/), eliminated samples missing key clinical information, and obtained 644 CRC samples (cancer 
group, grouping: COADREAD) and 51 paracancer samples (normal group, grouping: Normal), and they 
were normalized into Fragments Per Kilobaseper Million (FPKM) format, and UCSC Xena  database49 (http:// 
genome. ucsc. edu) was utilized to acquire corresponding clinical data. R package  limma13 was employed to 
normalize the count sequencing data of TCGA-COADREAD dataset. We obtained the COADREAD-related 
datasets  GSE1433346,  GSE7460247 and  GSE8721148 from the GEO  database50 via R package  GEOquery51. 
For GSE14333, Homo Sapiens was selected, and GPL570 [HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array served as data platform. GSE14333 contained microarray gene expression profile data 
of 290 CRC patient samples. GSE74602 from Homo Sapiens, GPL6104 Illumina humanRef-8 v2.0 expression 
beadchip, containing microarray gene expression profiles from 30 CRC patient samples and 30 fully matched 
normal tissue samples adjacent to cancer. GSE87211 from Homo Sapiens, GPL13497 Agilent-026652 Whole 
Human Genome Microarray 4 × 44 K v2 (Probe Name version), a total of 203 CRC patient samples and 160 
partially matched paracancer normal tissue samples were included in the microarray gene expression profile 
data. All samples were included in this study. The datasets were annotated with the corresponding GPL 
platform files, and all three GEO datasets were used as validation sets (Table 1). We collected MRGs from the 
 GeneCards52 database, which provides comprehensive information on human genes (https:// www. genec ards. 
org/). In the GeneCards database, only MRGs with "Protein Coding" and Relevance score > 5 were retained 
after searching for "Macrophage" as a keyword, and a total of 576 MRGs were obtained. We obtained 92 MRGs 
from the references and then combined and de-duplicated them to obtain a total of 637 MRGs (Table S1). We 
downloaded somatic mutation data from TCGA-COADREAD dataset from the TCGA website including data 
such as SNP (single nucleotide polymorphism) and visualized the data using the R package  maftools53. To 
analyze copy number variation (CNV) in COADREAD patients, R package TCGAbiolinks was employed to 
download "Copy Number Variation" data of TCGA-COADREAD dataset and then the data were integrated 
for GISTIC 2.0  analysis54, using default settings for the analysis parameters. We obtained the data of tumor 
mutation burden (TMB) and microsatellite instability (MSI) of TCGA-COADREAD dataset by downloading 
from cBioPortal for Cancer Genomics database (https:// www. cbiop ortal. org/)55.

TCGA-COADREAD GSE14333 GSE74602 GSE87211

Platform GPL570 GPL6104 GPL13497

Species Homo sapiens Homo sapiens Homo sapiens Homo sapiens

Samples in normal group 51 30 160

Samples in COADREAD group 644 290 30 203

Reference 45 46 47 48

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://genome.ucsc.edu
http://genome.ucsc.edu
https://www.genecards.org/
https://www.genecards.org/
https://www.cbioportal.org/
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with low and high scores in TCGA-COADREAD and GEO datasets were calculated utilizing Mann–Whitney U 
test, with P < 0.05 considering as statistical significance.

To recognize differentially expressed genes (DEGs) associated with MS grouping, limma  package13 was 
employed for analyzing differences in the expression profile of TCGA-COADREAD dataset. DEGs between the 
MS groups of COADREAD patients were acquired. Screening | logFC|> 0 and P < 0.05 genes as DEGs for further 
study. Genes were deemed up-regulated differential genes with logFC > 0 and P < 0.05, and down-regulated dif-
ferential genes with logFC < 0 and P < 0.05.

To obtain macrophage-related DEGs (MRDEGs) associated with COADREAD disease, Firstly, the inter-
section of MRGs and prognostic genes of CRC was selected, and then the intersection of DEGs in the dataset 
TCGA-COADREAD was selected with the above genes. R package ggplot2 was employed to generate volcano 
plots and heatmaps and visualize differential analysis results. In addition, the positions of MRDEGs on human 
chromosomes were annotated utilizing R-package RCircos.

Prognostic analysis
Kaplan–Meier (KM) curve analysis is a method of analyzing and inferring patient survival time based on data, 
studying relationship and degree of outcome with many influencing factors, also known as survival analysis or 
survival rate analysis. It was proposed by Kaplan and Meier, hence the name Kaplan–Meier method, usually 
abbreviated as KM method. The KM approach estimates the survival curve by determining the likelihood of 
patients surviving consecutive periods (i.e., survival probability), and then multiplying each survival probability 
one by one to obtain the survival rate of the corresponding time period. We plotted KM curves for MRDEGs and 
searched for related genes with statistical differences using P < 0.05 as the threshold.

Weighted gene co‑expression network analysis (WGCNA)
WGCNA evaluates co-expression relationship between genes using the correlation coefficient of standardized 
expression level of each gene and defines genes with co-expression relationships as a module. Genes in the same 
module have similar expression levels, while those in different modules have large differences in expression lev-
els. Through this approach, complex high-throughput data could be transformed into simple modules to some 
extent for dimensionality reduction. Finally, the relationship between these gene co-expression modules and 
clinical phenotypes could be discovered, and the biological significance of the module could be discovered. We 
used the WGCNA  package14 for analysis, with a minimum module gene number of 50, a soft power setting of 
the optimal threshold 10, a module merge cut height setting of 0.2, and a minimum distance setting of 0.2. This 
method was utilized to derive co-expression modules comprising DEGs between samples in COADREAD and 
normal groups within the TCGA-COADREAD dataset.

Differential gene functional enrichment analysis (FEA) and pathway enrichment analysis 
(PEA)
Gene ontology (GO)15 is an analysis approach commonly employed for conducting FEA of large-scale researches 
that encompass cellular component (CC), molecular function (MF), and biological process (BP) categories. In 
addition, Kyoto Encyclopedia of Genes and Genomes (KEGG)16 is a resource platform that contains information 
on biological pathways, genomes, illnesses, and medications. We utilized R package  clusterProfiler17 to conduct 
GO annotation analysis of MRDEGs, with both P-value and FDR value (q.value) < 0.05 as the screening criteria. 
Benjamini–Hochberg was conducted for P-value correction to determine the statistical significance.

Gene set enrichment analysis (GSEA)
GSEA18 is a way that assesses the distribution pattern of genes within a pre-defined set, by analyzing the list 
of genes ranked based on their association with a particular phenotype. This allows the method to determine 
the contribution of the gene set to the phenotype. In this study, we first assessed whether a predefined gene set 
exhibited significant enrichment based on the logFC value ranking of the molecules. Subsequently, clusterProfiler 
package was employed to conduct an enrichment analysis for all genes related to the phenotype. The GSEA was 
performed with the following parameters: a seed of 2020, 1000 calculations, a minimum of 10 genes per gene set, 
a maximum of 500 genes per gene set, and Benjamini–Hochberg correction for P-values. Molecular Signatures 
Database was utilized to acquire the gene set "h.all.v7.4.symbols.gmt" and conduct GSEA on expressed genes 
in TCGA-COADREAD dataset. Significant enrichment criteria were defined as FDR value (q.value) < 0.25 and 
P < 0.05.

Macrophage diagnostic model construction
To obtain the diagnostic model for MRDEGs in TCGA-COADREAD, glmnet  package19 was employed to execute 
least absolute shrinkage and selection operator (LASSO) regression on the basis of MRDEGs, with family = "bino-
mial" as parameter, and a tenfold cross-validation was performed and run for 1000 cycles to hinder from overfit-
ting. LASSO regression is a machine learning algorithm generally utilized in building diagnostic models today, 
mostly for building diagnostic models. On the basis of linear regression, by supplementing a penalty term 
(lambda × absolute value of slope), regularization was utilized to address the occurrence of overfitting in the 
curve fitting process. The model’s generalization ability is also improved.

risk Score =
∑

i
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Subsequently, we extracted the penalty coefficients (lambda) of the obtained MRDEGs in LASSO regression 
diagnostic model, followed by computing the risk scores of MRDEGs diagnostic model on the basis of MRDEGs, 
i.e. riskScore.

Prognostic clinical analysis
Cox regression models were constructed for the expression of key genes and clinical variables T-stage, N-stage, 
and M-stage in TCGA-COADREAD dataset to evaluate the clinical prognostic value of target genes in CRC. 
We implemented Uni/multi-factor Cox regression analyses, built nomogram plots depending on single-factor 
Cox regression analysis results, and predicted CRC patient survival at 1-, 3-, and 5-year intervals. A nomogram 
plot is a type of plot that predicts the probability of an event based on the total score calculated from multiple 
independent variables. We visualized the Cox regression results, illustrated the grouping of each sample in Cox 
regression model in accordance with risk scores and survival outcomes, and analyzed molecular expression of 
prognostic MRDEGs in each group by risk factor plots.

Finally, the accuracy and discriminatory power of the column plots were evaluated utilizing calibration curves. 
Calibration curves are employed to evaluate how well the model predicts the actual outcome by plotting the fit 
of the actual probabilities and model-predicted probabilities under different scenarios. They are commonly uti-
lized in the analysis of the fit between Cox regression model and the actual situation. We also employed decision 
curve analysis (DCA) to evaluate nomograms of 1-year, 3-year, and 5-year survival outcomes of CRC patients 
in TCGA-COADREAD dataset. R package  ggDCA20 was employed for this analysis.

Immune infiltration analysis (CIBERSORT)
Depending on expression matrices of human immune cell subtypes, the immune cell infiltration (ICI) status of 
TCGA-COADREAD dataset was assessed utilizing  CIBERSORT21 (https:// ciber sort. stanf ord. edu/). CIBERSORT 
is a web version of an instrument for deconvolving expression matrices of immune cell subtypes on the basis 
of principle of linear support vector regression (LVR). The ICI status was assessed utilizing CIBERSORT based 
on the gene expression characteristics of 22 known immune cell subtypes. First, differences in infiltration of 22 
immune cells in COADREAD group were analyzed, and group comparison was plotted. We then generated a 
heat map of correlations among immune cells and selected the immune cells with significant (P < 0.05) presence.

COADREAD disease subtype identification
We employed Consensus  Clustering22 to identify different subtypes of COADREAD disease in the TCGA-
COADREAD dataset based on filtered MRDEGs. CC is a resampling algorithm that identifies each sample and 
subgroup number and verifies the clustering’s rationality. ConsensusClusterPlus package in R was employed 
to implement CC, setting the number of clusters between 2 and 8, repeating 50 times, and drawing 80% of the 
total sample. We used clusterAlg = "km" and distance = "euclidean". For analyzing the differences in grouped 
expression of MRDEGs between samples of different disease subtypes, we performed Mann–Whitney U tests 
and considered P < 0.05 as statistically significant.

Receiver operating characteristic (ROC) curves
In this study, ROC curves were plotted for hub genes in high and low (High/Low) score groupings in TCGA-
COADREAD identified in our analysis utilizing pROC package. The ROC curve is a useful tool for evaluating 
the diagnostic performance of a biomarker or gene set, and area under the curve (AUC) is a common metric 
employed to quantify the test accuracy. Generally, an AUC value closer to 1 indicates a better diagnostic per-
formance. ROC curves were plotted for the hub genes in both groups with high and low scores, and calculated 
AUC values to evaluate their diagnostic value in CRC.

Cell cultivation and treatment
Normal human colon epithelial cell lines (FHC) and human colorectal carcinoma cell lines (HCT116) were 
supplied by the American Type Culture Collection. Liquid nitrogen was utilized to preserve cells. The culture 
medium was composed of high-glucose DMEM containing penicillin/streptomycin (100 units/ml) and fetal 
bovine serum (10%). Cell culture was fulfilled under the condition of 37 °C with 5%  CO2.

Human tissues
Eight paired CRC tissues and matched normal adjacent tissue samples were obtained from patients who under-
went surgical resection at Quanzhou First Hospital Affiliated to Fujian Medical University (Fujian, China). 
The clinicopathological features of all samples analyzed in this study were confirmed as colorectal cancer. All 
specimens were frozen in liquid nitrogen. Ethical approval was confirmed by the Quanzhou First Hospital Eth-
ics Committee, and written informed consent was obtained from each patient. All methods were performed in 
accordance with the relevant guidelines and regulations.

Real‑time quantitative PCR
Trizol was applied for total RNA extraction. Removal of the contaminating genomic DNA and cDNA synthesis 
was implemented with PrimeScript RT Reagent kit with gDNA Eraser (Takara RR047A, Japan). CFX96 Real-Time 
PCR detection system (Bio-Rad, Singapore) was utilized to fulfill real-time quantitative reverse transcription 
PCR employing TB Green Premix Ex Taq II kit. The internal reference of mRNA qPCR was glyceraldehyde-
3-phosphate dehydrogenase (GAPDH). Significant differences were validated utilizing independent-sample t-test, 
with P < 0.05 deeming statistical significance. All primer sequences employed in the experiment are in the Table 2.

https://cibersort.stanford.edu/
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Western blot analysis
Total protein was lysed in RIPA buffer (Beyotime, Shanghai, China) in the presence of PMSF (Beyotime) and 
PhosSTOP (Roche, Basel, Switzerland). Western blots were carried out according to standard procedures. Anti-
body against MMP3 was obtained from Bio-Techne. Antibody ADAM8、TIMP1、C5AR1 was obtained from 
proteintech.

Statistical analyses
R software (Version 4.1.2) was employed to process and analyze data. Independent student t-test and Mann–Whit-
ney U-test were implemented for variables with normal distributions and non-normal distributions, respectively. 
Categorical variables were compared utilizing χ2 test or Fisher’s exact test. Unless otherwise specified, spear-
man correlation analysis was implemented to compute correlation coefficients among different molecules, with 
P < 0.05 deeming statistical significance.

Results
Sketch of study design and GEO dataset merging
As can be seen in the research protocol (Fig. 1), we obtained MS by phenotypic scoring of MRGs on the dataset 
TCGA-COADREAD, and then categorized the samples into groups with high/low scores in accordance with 
median phenotypic scores. Then differential expression analysis was implemented in two groups to obtain DEGs, 
which were intersected with MRGs to obtain MRDEGs, and MRDEGs were intersected with weighted gene 
co-expression module related genes to obtain key genes by LASSO model screening, and consistency clustering 
analysis, cox analysis, immuno-infiltration analysis, mutation analysis, clinical relevance analysis, etc. were car-
ried out. Finally, the datasets GSE14333, GSE74602, GSE87211 were used for external validation of expression 
analysis, and real-time quantitative PCR were used for validation of bioinformatics results.

Then, we removed the batch effect for CRC datasets GSE14333, GSE74602 and GSE87211 to obtain the 
merged dataset GEO dataset, and compared the datasets before and after batch effect removal by distribution 
box line plots and PCA plots (Fig. S1). The results of the distribution box line plots and PCA plots showed that 
the batch effect of the samples in GEO dataset is largely eliminated after the batch removal process.

Analysis of DEGs associated with CRC 
To analyze the DEGs between groups with high/low MS scores of COADREAD patients in TCGA-COADREAD 
dataset, differential analysis was fulfilled on TCGA-COADREAD dataset utilizing limma package to obtain 
DEGs of the data. The results are as follows: with |logFC|> 0 and P < 0.05 as the thresholds, there were 11,316 
genes identified in TCGA-COADREAD dataset, including 4074 up-regulated genes with logFC > 0 and 7242 
down-regulated genes with logFC < 0. According to differential analysis results of this dataset, a volcano plot 
was plotted (Fig. 2A).

To identify Macrophage-related differentially expressed genes (MRDEGs), we initially conducted a univari-
ate Cox regression analysis on a set of 637 MRGs (Macrophage-related genes). Among these genes, we selected 
those with a p-value < 0.05, resulting in a final set of 45 MRGs that exhibit prognostic significance. Detailed 
information about these MRGs can be found in Table S2. Subsequently, we compared these 45 MRGs with all 
the differentially expressed genes (DEGs) derived from the TCGA-COADREAD dataset, specifically focusing 
on genes with |logFC|> 0 and a P-value < 0.05. The overlapping genes from this analysis yielded a total of 37 
MRDEGs. To visually represent the intersection results, we created a Venn diagram (Fig. 2B).

The expression differences between various sample groups in TCGA-COADREAD dataset were analyzed, and 
R package pheatmap was employed to plot heat maps to show the analysis results. We selected the differential 
analysis results of 37 MRDEGs for heat map display, with these results displaying in Table S1.

FEA (GO) and PEA (KEGG) of MRDEGs
For the purpose of analyzing BP, CC, MF, biological pathways, and their association with colon cancer of 37 
MRDEGs, we first performed GO (Table 3) and KEGG (Table 4) enrichment analyses on MRDEGs. P.value < 0.05 
served as screening criteria of enrichment entries, and FDR value (q.value) < 0.05 was deemed to statistically 

Table 2.  Primer.

Gene name Primer-F Primer-R

SPP1 CTC CAT TGA CTC GAA CGA CTC CAG GTC TGC GAA ACT TCT TAGAT 

MMP3 CTG GAC TCC GAC ACT CTG GA CAG GAA AGG TTC TGA AGT GACC 

WNT5A ATT CTT GGT GGT CGC TAG GTA CGC CTT CTC CGA TGT ACT GC

TIMP1 CTT CTG CAA TTC CGA CCT CGT ACG CTG GTA TAA GGT GGT CTG 

ADAM8 GAG GGT GAG CTA CGT CCT TG CAG CCG TAT AGG TCT CTG TGT 

CTSD TGC TCA AGA ACT ACA TGG ACGC CGA AGA CGA CTG TGA AGC ACT 

GAPDH GTG GCA AAG TGG AGA TTG TTG AGT CTT CTG GGT GGC AGT GAT 

C5AR1 TCC TTC AAT TAT ACC ACC CCTGA ACG CAG CGT GTT AGA AGT TTTAT 
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significant. We showed the results of GO FEA and KEGG PEA in bubble charts (Fig. 3A,B), circular network 
diagrams (Fig. 3C,D), and chord diagrams (Fig. 3E,F).

Figure 1.  Flow diagram of overall analysis of bioinformatics approach in exploring the biological features of 
CRC. DCA decision curve analysis, DEGs differentially expressed genes, GO gene ontology, GSEA gene set 
enrichment analysis, KEGG Kyoto encyclopedia of genes and genomes, LASSO least absolute shrinkage and 
selection operator, MRDEGs macrophage-related DEGs, PCA principal component analysis, ssGSEA single-
sample GSEA, WGCNA weighted gene co-expression network analysis. Created with BioRender.com.

Figure 2.  Analysis of differential genes in CRC TCG A-COADREAD dataset. (A) Volcano plot of differential 
genes. (B) Venn diagram of prognostic molecular DEGs and MRGs. DEGs differentially expressed genes, MRGs 
macrophage-related genes.
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GSEA of CRC dataset
We studied how gene expression levels relate to colon cancer by looking at the differences in gene expression, 
BP, CC, and MF between two groups of CRC patients (high/low scores) in TCGA-COADREAD dataset using 
GSEA. All genes in TCGA-COADREAD showed significant enrichment in pathways (Fig. 4) like NFKB pathway, 
Macrophage pathway, JAK_STAT pathway, TGFBETA pathway, etc. (Table 5).

WGCNA to screen co‑expression modules in the dataset TCGA‑COADREAD
We performed WGCNA on the DEGs in colon cancer patients with high/low scores in TCGA-COADREAD 
dataset to screen for co-expression modules. In the WGCNA process, we first clustered colon cancer patients 
with high/low scores in TCGA-COADREAD dataset using a clustering tree and labeled grouping information 
(without setting cut height). We set a screening criterion of 50 to identify the best number of modules. The 
DEGs of CRC patients with high/low scores in TCGA-COADREAD dataset were aggregated into nine mod-
ules (MEturquoise, MEred, MEyellow, MEbrown, MEgreen, MEpink, MEdarkgrey, MEblack, MEblueMEgrey) 
(Fig. 5A). The DEGs in colon cancer patients with high/low scores in TCGA-COADREAD dataset were clustered 
again and the relationship between genes and corresponding new modules was visualized. Finally, depending 
on expression patterns of module genes and grouping information of two groups in TCGA-COADREAD data-
set, we obtained nine modules (MEturquoise, MEred, MEyellow, MEbrown, MEgreen, MEpink, MEdarkgrey, 
MEblack, MEblueMEgrey) and their correlation with CRC patients with high/low scores in TCGA-COADREAD 
dataset (Fig. 5B). Then we merged modules with a cut height set to 0.2 and clipped and merged modules with a 
cut height below 0.2 (Fig. 5C).

Firstly, we analyzed four modules (MEred, MEyellow, MEbrown, MEgreen) containing DEGs that show sig-
nificant statistical differences. (P < 0.05, correlation absolute value ≥ 0.3) and correlations with CRC patients with 
high/low scores in TCGA-COADREAD dataset among nine modules (excluding useless gray module: MEgrey). 
Firstly, we took intersections between MRDEGs in colon cancer patients with high/low scores in TCGA-COAD-
READ dataset with DEGs contained in four modules respectively and drew Venn diagrams (Figs. 5D–G) to obtain 
module MRDEGs. As shown in Fig. 5, we obtained a total of 15 MRDEGs (SLC11A1, SPP1, CXCL9, MMP3, 
CXCL8, CIITA, C5AR1, WNT5A, PDGFRA, FABP4, TIMP1, CCL22, CTSD, ADAM8, MS4A1).

In this study, the expression levels of 15 MRDEGs (SLC11A1, SPP1, CXCL9, MMP3, CXCL8, CIITA, C5AR1, 
WNT5A, PDGFRA, FABP4, TIMP1, CCL22, CTSD, ADAM8, MS4A1) were analyzed in two groups of colon 

Table 3.  GO enrichment analysis results of MRDEGs. MRDEGs macrophage-related differentially expressed 
genes, GO gene ontology, BP biological process, CC cellular component, MF molecular function.

Ontology ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:0050727 Regulation of inflammatory response 12/36 485/18,670 5.86e-11 1.22e-07 6.52e-08

BP GO:0006869 Lipid transport 10/36 365/18,670 1.17e-09 1.22e-06 6.48e-07

BP GO:0010876 Lipid localization 10/36 400/18,670 2.82e-09 1.96e-06 1.04e-06

BP GO:0070372 Regulation of ERK1 and ERK2 cascade 9/36 300/18,670 4.08e-09 2.13e-06 1.13e-06

BP GO:0070371 ERK1 and ERK2 cascade 9/36 317/18,670 6.59e-09 2.75e-06 1.46e-06

CC GO:0070820 Tertiary granule 4/36 164/19,717 2.21e-04 0.028 0.020

CC GO:0009897 External side of plasma membrane 5/36 393/19,717 6.95e-04 0.044 0.032

CC GO:0034774 Secretory granule lumen 4/36 321/19,717 0.003 0.069 0.051

CC GO:0042581 Specific granule 3/36 160/19,717 0.003 0.069 0.051

CC GO:0060205 Cytoplasmic vesicle lumen 4/36 338/19,717 0.003 0.069 0.051

MF GO:0005125 Cytokine activity 7/36 220/17,697 2.56e-07 3.16e-05 2.13e-05

MF GO:0048018 Receptor ligand activity 9/36 482/17,697 3.75e-07 3.16e-05 2.13e-05

MF GO:0042379 Chemokine receptor binding 4/36 66/17,697 9.50e-06 5.35e-04 3.60e-04

MF GO:0008009 Chemokine activity 3/36 49/17,697 1.34e-04 0.006 0.004

MF GO:0045236 CXCR chemokine receptor binding 2/36 11/17,697 2.19e-04 0.007 0.005

Table 4.  KEGG enrichment analysis results of MRDEGs. MRDEGs macrophage-related differentially 
expressed genes, KEGG Kyoto encyclopedia of genes and genomes.

Ontology ID Description GeneRatio BgRatio pvalue p.adjust qvalue

KEGG hsa05152 Tuberculosis 5/32 180/8076 6.43e-04 0.024 0.019

KEGG hsa05142 Chagas disease 4/32 102/8076 6.57e-04 0.024 0.019

KEGG hsa05146 Amoebiasis 4/32 102/8076 6.57e-04 0.024 0.019

KEGG hsa04621 NOD-like receptor signaling pathway 5/32 181/8076 6.59e-04 0.024 0.019

KEGG hsa04620 Toll-like receptor signaling pathway 4/32 104/8076 7.07e-04 0.024 0.019
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cancer patients with high/low scores in both TCGA-COADREAD (Fig. 6A) and GEO datasets (Fig. 6B). The 
results showed that the expression levels of all 15 MRDEGs were statistically significantly different (P < 0.001) in 
TCGA-COADREAD dataset, whereas in GEO dataset, 12 MRDEGs (SLC11A1, SPP1, CXCL9, MMP3, CXCL8, 

Figure 3.  GO and KEGG analyses of MRDEGs. (A,B) Bubble chart of GO (A) and KEGG (B) analyses of 
MRDEGs. (C,D) Circular network diagram of GO (C) and KEGG (D) analyses of MRDEGs. (E,F) Chord 
diagram of GO (E) and KEGG (F) analyses of MRDEGs. Both P.value and FDR value (q.value) less than 0.05 
were taken as the screening criteria of GO and KEGG enrichment entries.
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CIITA, C5AR1, WNT5A, PDGFRA, TIMP1, CCL22, CTSD, ADAM8) exhibited significant differences (P < 0.001) 
between the two groups.

We then annotated the positions of 15 MRDEGs on human chromosomes and visualized them using circle 
diagrams (Fig. 6C). As shown in the figure: gene WNT5A is located on chromosome 3 and SLC11A1 is located on 
chromosome 2. We then performed friends analysis on 15 MRDEGs and visualized them using a plot (Fig. 6D). 
Then we generated ROC curves for 15 MRDEGs (SLC11A1, SPP1, CXCL9, MMP3, CXCL8, CIITA, C5AR1, 
WNT5A, PDGFRA, FABP4, TIMP1, CCL22, CTSD, ADAM8, MS4A1) in both TCGA-COADREAD and GEO 
datasets, demonstrating the association between high/low scores of these genes and CRC patients. (Figs. S2 and 
S3).

Correlation analysis between hub genes and MS
To explore the relationship between 15 MRDEGs (SLC11A1, SPP1, CXCL9, MMP3, CXCL8, CIITA, C5AR1, 
WNT5A, PDGFRA, FABP4, TIMP1, CCL22, CTSD, ADAM8, MS4A1) and the macrophage score, we created 
a scatter plot (Fig. S4) to visualize their correlation. The results indicated that a subset of MRDEGs (C5AR1, 
CXCL8, CIITA, CXCL9, ADAM8, CCL22, SLC11A1, MMP3) exhibited a moderate level of correlation with the 
macrophage score (0.5 < r < 0.8). Conversely, the remaining MRDEGs (SPP1, CTSD, TIMP1, MS4A1, PDGFRA, 
WNT5A, FABP4) displayed a weak correlation with the macrophage score (0.3 < r < 0.5).

Construction of the diagnostic model for MRDEGs
To determine the diagnostic value of 15 MRDEGs in TCGA-COADREAD dataset, a MRDEGs diagnostic 
model was constructed utilizing LASSO regression analysis (Fig. 7A). Then we visualized the expression of 
MRDEGs in different groups through a forest plot (Fig. 7B). According to Fig. 6B, there are a total of 13 MRDEGs 
(ADAM8, C5AR1, CCL22, CIITA, CTSD, CXCL8, CXCL9, FABP4, MMP3, MS4A1, SPP1, TIMP1, WNT5A) 
in the MRDEGs diagnostic model we constructed. LASSO regression is a type of linear regression that includes 

Figure 4.  GSEA of TCGA-COADREAD dataset. (A) Four main biological features of GSEA in the TCGA-
COADREAD dataset. (B-E) Differential genes in TCGA-COADREAD dataset showed significant enrichment in 
NFKB pathway, Macrophage pathway, JAK_STAT pathway, TGFBETA pathway. Blue represents group with low 
scores group and red represents group with high scores. GSEA gene set enrichment analysis. FDR value (q.value) 
less than 0.25 and P-value less than 0.05 served as screening criteria of significant enrichment for GSEA.
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a penalty term to mitigate overfitting and enhance the model’s ability to generalize. We visualized the LASSO 
variable trajectory based on LASSO regression results (Fig. 7C), which showed that gene expression changes with 
lambda coefficient (log) of LASSO penalty term. As lambda decreases, the number of genes with a coefficient 
of zero gradually increases. Differential expression analysis of MRDEGs diagnostic model of CRC patients with 
high/low scores in TCGA-COADREAD dataset was conducted (Fig. 7D), and the two groups exhibited marked 
differences in expression levels of MRDEGs diagnostic model (P < 0.001).

A ROC curve was drawn for MRDEGs diagnostic model of CRC patients with high/low scores in TCGA-
COADREAD dataset. As shown in Fig. 7E, MRDEGs diagnostic model (AUC = 0.936) has high diagnostic value 
for colon cancer patients in TCGA-COADREAD dataset. The correlation between MRDEGs diagnostic model 
and MS was illustrated by creating a scatter plot (Fig. 7F). The plot indicates a statistically significant difference 
between LASSO and MS (P < 0.001).

Prognostic performance of MRDEGs
To probe the correlation of expression of 13 MRDEGs (ADAM8, C5AR1, CCL22, CIITA, CTSD, CXCL8, CXCL9, 
FABP4, MMP3, MS4A1, SPP1, TIMP1, WNT5A) with the incidence of CRC, univariate/multivariate Cox regres-
sion analysis was implemented on expression levels of MRDEGs and clinical variables M stage, N stage, and T 
stage with prognostic clinical relationship in TCGA-COADREAD dataset. The analysis result illustrated a correla-
tion between expression levels of MRDEGs and clinical variables M stage, N stage, and T stage with prognostic 
clinical relationship. In this study, the clinical data of COADREAD patients acquired from TCGA-COADREAD 
dataset was also statistically analyzed (Table 6).

A forest plot (Fig. 8A) was utilized to present univariate/multivariate Cox regression analysis results (Table 6). 
Subsequently, the prognostic ability of Cox regression model was assessed through nomogram analysis, and a 
nomogram chart was generated (Fig. 8B). Additionally, in Cox regression model, a risk factor chart was employed 
to visualize grouping of risk factors (Fig. 8C).

In our research, calibration analysis was implemented on the variables in univariate/multivariate Cox regres-
sion models for 1-, 3-, and 5-year periods, and results were presented in calibration curve charts (Fig. 8D–F). 
Furthermore, DCA was implemented to appraise the clinical utility of Cox regression prognostic model con-
structed for 1-, 3-, and 5-year periods and presented the results (Fig. 8G–I).

We drew prognostic survival KM curves for 13 MRDEGs (ADAM8, C5AR1, CCL22, CIITA, CTSD, CXCL8, 
CXCL9, FABP4, MMP3, MS4A1, SPP1, TIMP1, WNT5A) in TCGA-COADREAD dataset. It showed that only 9 
MRDEGs (Fig. 9) met the requirements when each of the 13 MRDEGs was drawn one by one with a prognostic 
survival KM curve using P < 0.05 as the standard for statistically significant correlation molecules.

Construction of COADREAD‑related disease subtypes
To explore the expression differences of MRDEGs in COADREAD patient samples in TCGA-COADREAD 
dataset, R package "ConsensusClusterPlus" was employed to identify different subtypes of COADREAD dis-
ease related to COADREAD in TCGA-COADREAD dataset on the basis of expression levels of 13 MRDEGs 

Table 5.  GSEA analysis of TCGA-COADREAD. GSEA gene set enrichment analysis.

Description setSize enrichmentScore NES pvalue p.adjust qvalues

REACTOME_SIGNALING_BY_INTER-
LEUKINS 456 0.701298128 2.393264504 0.001027749 0.012502634 0.008280184

REACTOME_GPCR_LIGAND_BINDING 460 0.629681172 2.14886594 0.001029866 0.012502634 0.008280184

REACTOME_NEUTROPHIL_DEGRANU-
LATION 476 0.682547961 2.330513729 0.001029866 0.012502634 0.008280184

WP_VEGFAVEGFR2_SIGNALING_PATH-
WAY 429 0.521171688 1.770735811 0.001035197 0.012502634 0.008280184

REACTOME_G_ALPHA_I_SIGNAL-
LING_EVENTS 401 0.605939472 2.050456534 0.001036269 0.012502634 0.008280184

REACTOME_CLASS_A_1_RHODOPSIN_
LIKE_RECEPTORS_ 328 0.697306527 2.329167117 0.001057082 0.012502634 0.008280184

WP_PI3KAKT_SIGNALING_PATHWAY 339 0.583911284 1.952058028 0.001057082 0.012502634 0.008280184

NABA_SECRETED_FACTORS 342 0.668712195 2.232364181 0.001060445 0.012502634 0.008280184

KEGG_PATHWAYS_IN_CANCER 325 0.522291083 1.743352174 0.001062699 0.012502634 0.008280184

WP_NUCLEAR_RECEPTORS_METAPA-
THWAY 317 0.431864318 1.439679141 0.001066098 0.012502634 0.008280184

REACTOME_METABOLISM_OF_CARBO-
HYDRATES 293 0.459825426 1.527002163 0.001072961 0.012502634 0.008280184

WP_FOCAL_ADHESIONPI3KAKTMTOR-
SIGNALING_PATHWAY 303 0.63321308 2.103597705 0.001072961 0.012502634 0.008280184

REACTOME_EXTRACELLULAR_
MATRIX_ORGANIZATION 301 0.777275698 2.578891043 0.001074114 0.012502634 0.008280184

NABA_CORE_MATRISOME 274 0.766890111 2.535010872 0.001082251 0.012502634 0.008280184

WP_IL18_SIGNALING_PATHWAY 272 0.687058296 2.268978836 0.001082251 0.012502634 0.008280184
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(ADAM8, C5AR1, CCL22, CIITA, CTSD, CXCL8, CXCL9, FABP4, MMP3, MS4A1, SPP1, TIMP1, WNT5A) 
using the consistency clustering method. Finally, two COADREAD disease subtypes (cluster1 and cluster2) were 

Figure 5.  WGCNA to identify co-expression modules in TCGA-COADREAD dataset. (A) The unscaled 
network display of sample modules. (B) The correlation analysis results of DEGs clustering modules. (C) 
The module aggregation results of DEGs. (D-G) Venn diagrams of DEGs in four modules MEred, MEyellow, 
MEbrown, and MEgreen. MRDEGs macrophage-related DEGs, WGCNA weighted gene co-expression network 
analysis.
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Figure 6.  Expression of MRDEGs in CRC dataset. (A,B) The grouping comparison chart of MRDEGs in CRC 
patients with high/low scores in TCGA-COADREAD (A) and GEO (B) datasets is shown in the MRDEGs 
diagnostic model. (C) Chromosome location map of MRDEGs. (D) Chromosome location map of MRDEGs. 
Blue represents high score group, and red represents low score group. *P < 0.05 refers to significant difference, 
**P < 0.01 to high significant difference, ***P < 0.001 to extremely significant difference. MRDEGs macrophage-
related differentially expressed genes.
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identified (Fig. 10A). COADREAD disease subtype 1 (cluster1) contained 360 samples and COADREAD disease 
subtype 2 (cluster2) contained 284 samples. PCA was implemented on the expression data matrix of two subtypes 
of COADREAD disease samples in TCGA-COADREAD dataset. It demonstrated notable dissimilarities between 
the two COADREAD disease subtypes based on their expression matrices (Fig. 10B). We also showed the Delta 
plot (Fig. 10C) and cumulative distribution function (CDF) plot (Fig. 10D) of different numbers of clusters in the 
consistency clustering results and the consistency clustering CDF plot. The figure shows that the unsupervised 
clustering of the TCGA-COADREAD dataset is most consistent when using k = 2 as the number of clusters.

Figure 7.  Establishment of the MRDEGs diagnostic model. (A) LASSO regression diagnostic model diagram 
of MRDEGs. (B) Forest plot results of MRDEGs in diagnostic model. (C) LASSO variable trajectory chart of 
MRDEGs diagnostic model. (D) Group comparison chart of MRDEGs diagnostic model. (E) ROC analysis 
of MRDEGs diagnostic model. (F) Scatter plot of correlation of MRDEGs diagnostic model with macrophage 
score. LASSO least absolute shrinkage and selection operator, MRDEGs macrophage-related differentially 
expressed genes.
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Table 6.  Univariate and multivariate cox regression. CI confidence interval. Significant values are in bold.

Characteristics Total (N)

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

T stage 640

 T1&T2 131 Reference

 T3 435 2.047 (1.090–3.842) 0.026 1.500 (0.666–3.379) 0.328

 T4 74 6.148 (3.045–12.415)  < 0.001 2.577 (1.013–6.554) 0.047

N stage 639

 N0 367 Reference

 N1 153 1.774 (1.131–2.781) 0.013 1.318 (0.776–2.237) 0.307

 N2 119 3.873 (2.588–5.796)  < 0.001 2.487 (1.490–4.151)  < 0.001

M stage 563

 M0 474 Reference

 M1 89 3.989 (2.684–5.929)  < 0.001 2.135 (1.303–3.500) 0.003

ADAM8 643

 High 321 Reference

 Low 322 0.601 (0.423–0.853) 0.004 0.639 (0.391–1.042) 0.073

C5AR1 643

 High 321 Reference

 Low 322 0.715 (0.504–1.012) 0.058 0.604 (0.351–1.039) 0.069

CCL22 643

 High 322 Reference

 Low 321 1.871 (1.299–2.694)  < 0.001 1.531 (0.934–2.512) 0.091

CIITA 643

 High 322 Reference

 Low 321 1.628 (1.137–2.332) 0.008 1.130 (0.662–1.931) 0.654

CTSD 643

 High 322 Reference

 Low 321 0.769 (0.543–1.088) 0.137

CXCL8 643

 High 321 Reference

 Low 322 1.525 (1.068–2.176) 0.020 1.080 (0.658–1.775) 0.760

CXCL9 643

 High 322 Reference

 Low 321 1.595 (1.119–2.275) 0.010 1.238 (0.752–2.038) 0.402

FABP4 643

 High 321 Reference

 Low 322 0.583 (0.408–0.832) 0.003 0.824 (0.523–1.298) 0.403

MMP3 643

 High 321 Reference

 Low 322 1.623 (1.133–2.325) 0.008 1.404 (0.859–2.293) 0.176

MS4A1 643

 High 321 Reference

 Low 322 1.729 (1.204–2.484) 0.003 1.952 (1.208–3.152) 0.006

SPP1 643

 High 322 Reference

 Low 321 0.774 (0.547–1.096) 0.149

TIMP1 643

 High 322 Reference

 Low 321 0.645 (0.454–0.917) 0.015 0.830 (0.541–1.275) 0.395

WNT5A 643

 High 321 Reference

 Low 322 1.496 (1.046–2.138) 0.027 1.417 (0.892–2.253) 0.140
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In addition, the variation in expression of 13 MRDEGs between two COADREAD disease subtypes (cluster1 
and cluster2) in TCGA-COADREAD dataset was examined utilizing Mann–Whitney U test, and a group com-
parison graph was employed to present the results (Fig. 10E). The group comparison graph reveals significant 
variations in expression of 13 MRDEGs between cluster1 and cluster2 in TCGA-COADREAD dataset (P < 0.001).

Then we plotted the ROC curves of 13 MRDEGs (ADAM8, C5AR1, CCL22, CIITA, CTSD, CXCL8, CXCL9, 
FABP4, MMP3, MS4A1, SPP1, TIMP1, WNT5A) in the two COADREAD disease subtypes of TCGA-COAD-
READ dataset (Fig. S5).

Figure 8.  Prognostic performance of MRDEGs. (A-C) Forest plot (A), nomogram chart (B), and risk factor 
chart (C) of univariate regression analysis of MRDEGs. (D-F) Calibration curve of Cox regression prognostic 
model for 1-year (D), 3-year (E), and 5-year (F). (G-I) Decision curve analysis chart of Cox regression 
prognostic model for 1-year (G), 3-year (H), and 5-year (I).
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Mutation analysis of MRDEGs in CCRC patients
To analyze the mutation status of 13 MRDEGs (ADAM8, C5AR1, CCL22, CIITA, CTSD, CXCL8, CXCL9, FABP4, 
MMP3, MS4A1, SPP1, TIMP1, WNT5A) in COADREAD patients in TCGA-COADREAD dataset, mutation of 
13 MRDEGs from COADREAD patient samples in TCGA-COADREAD dataset were analyzed and visualized 
utilizing R package maftools. The analysis revealed the presence of five main types of somatic mutations in the 
body cells: Missense Mutation, Frame Shift Deletion, Nonsense Mutation, Frame Shift Insertion, and Splice Site 
mutation. Missense mutations accounted for most of them (Fig. 11A). Most of the mutations observed in the 13 
MRDEGs in COADREAD patients were SNPs, with a small number of insertions (INS) and deletions (DEL) also 
detected. Furthermore, the most frequent single nucleotide variant (SNV) observed in COADREAD patients 
was the C > T transition, followed by C > A (Fig. 11A). Then we showed all the somatic mutations of 13 MRDEGs 
in COADREAD patients (Fig. 11B).

Figure 9.  Prognostic performance of MRDEGs KM curve (OS) analysis. (A-I) The KM curve (OS) of 
MRDEGs was used to perform prognostic analysis. The low-expression group of colon cancer patient samples 
is represented by a blue line, while the high-expression group of colon cancer patient samples is represented 
by a red line. OS refers to overall survival, and the KM curve refers to the Kaplan–Meier curve. P < 0.05 refers 
to significant difference, P < 0.01 to high significant difference, and P < 0.001 to extremely high significant 
difference.
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We conducted an analysis on the CNV of 13 MRDEGs in TCGA-COADREAD dataset of COADREAD 
patients. We downloaded and merged the CNV data of COADREAD patients and analyzed it using GISTIC 2.0 
and visualized the results (Fig. 11C–E). The results indicated a high frequency of amplifications and deletions 
of 13 MRDEGs in COADREAD patient samples, among which FABP4, CCL22, CIITA and other genes had 
higher amplification frequencies while CXCL9, SPP1 and ADAM8 had higher deletion frequencies (Fig. 11C).

We analyzed MSI and TMB data, as well as TIDE algorithm evaluation TIDE score data for COADREAD 
patients in TCGA-COADREAD dataset. Then we created grouping comparison graphs (Fig. 11F–H) and cor-
relation scatter plots (Fig. 11I–K) to compare the patients’ risk scores. The results showed that MSI, TMB, and 
TIDE scores had statistically marked differences between patients with high/low risks (P < 0.05). Higher TIDE 
scores denote higher possibility of tumor immune escape in patients with high risk in contrast to those with low 
risk. The correlation scatter plot results showed a weak linear correlation between MSI data, TMB data, TIDE 
scores evaluated by TIDE algorithm, and risk scores.

Immune infiltration analysis of CRC (CIBERSORT)
The correlation between the expression profiles of 22 immune cells in different groups (cluster1 and cluster2) 
in colon cancer patients were analyzed utilizing CIBERSORT algorithm. On the basis of immune infiltration 
analysis results, a bar chart (Fig. 12A) was generated to display the infiltration status of these 22 immune cells 
in each sample of colon cancer patients.

Differential expression of 22 immune cells in two groups (cluster1 and cluster2) in CRC patients was analyzed 
(Fig. 12B). The analysis revealed extremely significant differences of 11 immune cells, including dendritic cells 
resting, eosinophils, macrophages M0, M1, M2, mast cells activated, monocytes, neutrophils, plasma cells, T cells 
CD4 memory resting, and T cells regulatory (Tregs) in expression levels between the two groups (P < 0.001). Three 
immune cells (T cells gamma delta, NK cells activated, mast cells resting) had significant differences (P < 0.01), 
and four immune cells (B cells naive, NK cells resting, dendritic cells activated, T cells follicular helper) showed 
certain differences (P < 0.05).

We showed correlation heat map (Fig. 12C) of 13 MRDEGs (ADAM8, C5AR1, CCL22, CIITA, CTSD, CXCL8, 
CXCL9, FABP4, MMP3, MS4A1, SPP1, TIMP1, WNT5A) with statistically significant immune cell infiltration 
abundance (P < 0.05). There was a strong correlation between infiltration abundance of Neutrophils and MMP3 

Figure 10.  Construction of correlated disease subtypes of COADREAD. (A) Consistency clustering (K = 2) 
result of COADREAD disease in TCGA-COADREAD dataset. (B) PCA results of two COADREAD disease 
subtypes (cluster1 and cluster2) in TCGA-COADREAD dataset. (C,D) Delta plot (C) and cumulative 
distribution function (CDF) plot (D) of different numbers of clusters in consistency clustering. (E) Group 
comparison of MRDEGs in different subtypes of COADREAD disease in TCGA-COADREAD dataset. 
***represents P < 0.001 statistical significance. CDF cumulative distribution function, MRDEGs macrophage-
related differentially expressed genes.
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Figure 11.  Mutation analysis of MRDEGs in COADREAD patients. (A,B) MRDEGs somatic mutation status 
(A) and proportion results (B) in COADREAD patients. (C) MRDEGs copy number variation in COADREAD 
patients. (D-E) Genes with increased (D) and decreased (E) copy numbers in COADREAD patients. (F–H) 
Group comparison charts of microsatellite instability (MSI) (F), tumor mutation burden (TMB) (G), and tumor 
immune dysfunction and exclusion (TIDE) scores (H) in COADREAD groups with high/low risks. (I-K) Scatter 
plots of correlation between MSI (I), TMB (J), TIDE score (K) and risk score. **P < 0.01 refers to high significant 
difference, ***P < 0.001 to extremely high significant difference. Absolute values of 0.3–0.5 refer to weak 
correlation, while values below 0.3 indicate refer to no correlation.
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Figure 12.  Immune infiltration analysis of CRC group (CIBERSORT). (A) The bar chart displays immune 
cell infiltration results of 22 immune cells in two groups (cluster1 and cluster2) of CRC patient. (B) The group 
comparison chart illustrates differences in the abundance of immune cell infiltration in two groups (cluster1 
and cluster2) of CRC patients. (C) The heatmap shows correlation analysis results of MRDEGs and immune 
cells expressed between different groups (cluster1 and cluster2) in CRC patients. The symbol ns indicates 
no statistical significance (p > 0.05), *P < 0.05 refers to significant difference, **P < 0.01 to high significant 
difference, and ***P < 0.001 to extremely high significant difference. MRDEGs refer to Macrophage-related 
differentially expressed genes. In the correlation heatmap, a red circle denotes a positive correlation of the gene 
with abundance of immune cell infiltration, with larger circle representing stronger correlation. A blue circle 
represents a negative correlation of the gene with abundance of immune cell infiltration, with larger circle 
representing stronger correlation.
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among MRDEGs in different groups (cluster1 and cluster2) of colon cancer patients. In the COADREAD sub-
type, the differential expression of M1 and M2 can be interpreted from multiple perspectives. Firstly, colorectal 
cancer, characterized by high heterogeneity, exhibits distinct molecular subtypes. M1 and M2 macrophages 
represent two different activation states, possibly influenced by diverse immune environments and cell signal 
regulations specific to these subtypes, resulting in their expression differences across various subtypes. Secondly, 
different subtypes may display varying levels of inflammation, with M1 macrophages commonly associated 
with inflammation. Therefore, in subtypes with more pronounced inflammation, the expression of M1 may be 
more prominent. Further exploration is relevant to the immunological characteristics and clinical prognosis 
of colorectal cancer. Immune cell infiltration positively correlates with anti-tumor immune responses, and the 
heightened expression of M1 macrophages may reflect a stronger anti-tumor immune response, associated with 
better prognosis, aligning with previous research findings. However, significant expression of M2 in certain 
subtypes may indicate immune suppression and tumor escape, consistent with the general notion that groups 
exhibiting M2 characteristics tend to have poorer prognoses.

Finally, the expression differences between M1 and M2 may have potential biological implications for patient 
prognosis. High expression of M1 may serve as an independent predictor for a better prognosis in colorectal 
cancer patients, as its robust anti-tumor immune response helps restrict tumor growth and spread. Conversely, 
elevated expression of M2 may suggest immune escape and tumor progression, correlating with adverse prog-
nosis, possibly reflecting an immune-suppressive microenvironment conducive to tumor escape and growth. 
These findings provide crucial insights into understanding the functional disparities of M1 and M2 in colorectal 
cancer subtypes and offer valuable information for potential therapeutic strategies.

Clinical correlation analysis of prognostic MRDEGs
We investigated whether the expression levels of 13 prognostic MRDEGs were related to clinical features in 
COADREAD patients. The correlation of high and low expressions of these MRDEGs with different clinical 
pathological characteristics was examined (Fig. S6).

In vitro and vivo analyses
Real-time quantitative reverse transcription PCR was employed to detect the mRNA expression levels of hub 
genes in the HCT116 colorectal cancer cell line, normal colon epithelial cells, eight colorectal cancer (CRC) 
patients, and eight control subjects in adjacent tissues. This validation aimed to assess the reliability of the hub 
genes. The results demonstrated a significant upregulation of SPP1, C5AR1, MMP3, TIMP1, and ADAM8 expres-
sion in HCT116 cells compared to normal colon epithelial cells (Fig. 13A). Consistently, in the clinical samples, 
the expression levels of SPP1, C5AR1, MMP3, TIMP1, and ADAM8 were significantly higher in CRC patients 
compared to the control tissues (Fig. 13B), corroborating the aforementioned findings. The protein expression 
of SPP1, C5AR1, MMP3, TIMP1, and ADAM8 was examined using the Human Protein Atlas database from 
CRC patients, revealing a similar trend for C5AR1, MMP3, TIMP1, and ADAM8 (Fig. 13C). Additionally, we 
observed a significant increase in protein expression levels of MMP3, TIMP1, ADAM8, and C5AR1 in HCT116 
cells compared to FHC cells, consistent with the mRNA expression results. (Fig. 13D).

Discussion
The crucial role of macrophages in tumor proliferation is increasingly recognized. Among the two classes of 
macrophages, M2 class macrophages are thought to depress immunity against tumor. Tumor associated mac-
rophages are mostly thought to be similar with M2 macrophages. Approaches through targeting macrophages 
in TME are proposed to treat  cancer23. In tumor immunotherapy, targeting macrophages has several advantages. 
Hypoinvasive is a main obstacle to T cell-based anti-cancer therapies, while in the TME, macrophages make 
up 30–50% of infiltrating immune cells. Macrophage infiltration in tumors is mainly derived from circulating 
monocytes, and macrophage-based therapeutic strategies are easily to employ in the clinic due to the availability 
of peripheral blood mononuclear cells. In order to do so, it is important to understand what specific changes are 
happening in the TAM genes.

In our study, we obtained the Macrophage scores by performing ssGSEA on the TCGA-COADREAD dataset 
to score the MRGs. The samples were categorized into groups with high/low scores by utilizing median phenotype 
score, and DEGs was subsequently conducted. Then DEGs were intersected with MRGs to obtain the MRDEGs, 
and GO-KEGG enrichment analyses were implemented on MRDEGs, as well as GSEA on TCGA-COADREAD 
dataset. We identified key genes (ADAM8, C5AR1, CCL22, CIITA, CTSD, CXCL8, CXCL9, FABP4, MMP3, 
MS4A1, SPP1, TIMP1, WNT5A) by performing LASSO model selection on the genes obtained from the inter-
section of MRDEGs and co-expression module-related genes, and subsequently performed consistent cluster-
ing analysis, Cox analysis, immune infiltration analysis, mutation analysis, clinical correlation analysis, and we 
conducted differential expression analysis of critical genes within GEO dataset. Despite the publication of the 
dataset, previous research has not emphasized the connection between macrophage infiltration and CRC in gene 
expression analysis. Furthermore, the precise function of TAMs in CRC has not been definitively established. 
Thus, this study aims to broaden the screening parameters for CRC through bioinformatics analysis, improve 
the sensitivity of CRC diagnosis standards, and identify potential macrophage-related genes in CRC.

Prior research has indicated that MMPs are primarily expressed by macrophages, and are involved in regu-
lating the equilibrium between deposition and degradation of the extracellular  matrix24. MMP3 is a family 
member of zinc-dependent endopeptidases. It is mostly secreted by immune cells (i.e. neutrophils, mononuclear 
macrophages), endothelial cells, and cancer cells. MMP3 has been illustrated to have a vital part in extracellular 
matrix  degradation25,26, and both MMP3 and TIMP1 have been utilized as biomarkers for CRC 27,28. In addition, 
the level of MMP3 in the serum has a direct association with disease activity, with elevated MMP3 levels leading 
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to an increase in disease activity. There is evidence suggesting that TAMs may engage with the complement 
system to facilitate tissue  remodeling29. Nonetheless, the activity of matrix metalloproteinases (MMPs) can be 
neutralized by TIMP1. We speculate that high expression of MMP3 in CRC patients leads to an upregulation 
of TIMP1. According to a previous report, TIMP1 serves as a prognostic marker for colon cancer development 
and metastasis via the MAPK and AKT-pi3k/AKT  pathways30. This finding aligns with our bioinformatics 
analysis and validation results. The association between TAMs and the upregulation of MMP3 and TIMP1 in 
CRC progression needs further exploration. A disintegrin and metalloprotease domain 8 (ADAM8) belongs to 
a human ADAM family, containing disintegrin and metalloproteinase  domains31. ADAM proteins participate 
in different cellular processes, comprising protein hydrolysis, cell fusion, migration, adhesion, membrane shed-
ding, etc.32,33. ADAM8 can activate metalloproteinases, leading to the promotion of matrix remodeling. Research 
has demonstrated that inhibiting activities of ADAM8 and MMP can impede invasive and migratory abilities 
of drug-resistant colon cancer  cells34. ADAM8 has also been suggested as an underlying biomarker for CRC 35. 
Our analysis suggests that ADAM8 is a potential macrophage-related biomarker for CRC, and its mechanism 
of function requires further investigation.

The SPP1 gene encodes a protein associated with osteoclasts attachment to mineralized bone matrix, and 
also functions as a cytokine that increases the expression of interferon-γ and interleukin-12. A subtype of TAMs, 
called  SPP1+ macrophages, have been reported to exhibit unique characteristics and have immunosuppressive 
properties. These macrophages are positively correlated with markers of epithelial-mesenchymal transition, a 
process related to increased tumor growth and metastasis.  SPP1+ TAMs mainly interact with fibroblasts and 
promote angiogenesis and tumor  metastasis36 which is mediated by cytokines encoded by IL1A, IL1B, or TGFB1. 
The promotion of stromal TME through ECM remodeling facilitates tumor growth and invasion, exacerbat-
ing CRC  progression37. Targeting  SPP1+ macrophages may be a possible strategy for anti-tumor growth and 
metastasis. The discovery suggests that increased levels of SPP1 in macrophages surrounding tumors are linked 
to unfavorable outcomes in patients with CRC.  SPP1+ macrophages exhibit significant promise in the field of 
CRC immunotherapy.

Figure 13.  The mRNA levels of hub genes. (A) The gene expression levels of hub genes in HCT116 and FHC 
cell. The FHC cells are normal human intestinal epithelial cells, while HCT116 cells are human colorectal 
carcinoma cells. (B) The gene expression levels of hub genes in CRC tissue and Noncancerous tissue from 
human patients. (C) Representative images and statistics of IHC staining for MMP3, C5AR1, TIMP1, ADAM8 
in colon tissues and CRC from the Human Protein Atlas dataset. (D) The protein expression levels of MMP3 
("F" represents FHC cells, and "H" represents HCT116 cells), ADAM8, TIMP1, and C5AR1 were assessed in 
FHC cells and HCT116 cells, with GAPDH serving as a reference. Statistical significance levels were denoted as 
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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As a vital component of the immune response, the complement system is able to react swiftly and com-
prehensively to both external microbial threats and internal challenges. Made up of a range of plasma and 
membrane proteins, this system plays a critical role in upholding immune homeostasis while simultaneously 
facilitating immune  surveillance38. The complement system not only functions in the extracellular environment, 
but also inside cells. How activation of the complementary system functions in tumor cells remain unknown. 
In TME, C5a recruits immune suppressive cells expressing the C5AR1 receptor, and high C5aR1 levels correlate 
with a poor prognosis in  CTSD39. Our findings indicate that MRDEGs are significantly enriched in functions 
related to chemotactic factors, such as cytokine activity, chemokine receptor binding, receptor-ligand activity 
and chemotactic factor signaling pathways. Complement 5a (C5a) is a cell cytokine-like peptide produced during 
the complement system activation process, and there is literature suggesting that C5a stimulates macrophage 
polarization and promotes colon cancer  metastasis40. Despite extensive research on intracellular complement 
activation in various cell types, little attention has been paid to its role in tumor cells. However, recent animal 
studies have demonstrated that knocking out C5AR1 inhibits β-catenin expression and activation in intestinal 
tissue, resulting in a significant decrease in CRC development. The findings indicate that C5AR1 could be taken 
as a underlying therapeutic target for CRC 41. Investigating the intricate mechanisms of complement system and 
macrophage interaction in CRC would be a fascinating area for future research.

In our study, we utilized WGCNA and LASSO screening methods, and verified via real-time quantitative 
PCR, to ultimately identify SPP1, C5AR1, MMP3, TIMP1, ADAM8 as potential macrophage-related biomark-
ers for CRC 37,41–44 (Fig. 14). The work mentioned provides new and valuable information about the key genes 
and underlying mechanisms of TAMs in CRC development. Studying these important genes in more detail can 
improve our understanding of how CRC progresses and assist us to recognize potential targets for treatment. 

Figure 14.  Illustration of the roles of SPP1, C5AR1, MMP3, TIMP1, and ADAM8 in the progression of 
colorectal cancer. Created by biorender.
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However, this study still presents areas that require further investigation. Comparative analyses with other clini-
cal subtypes and more in-depth functional analyses would be both intriguing and crucial. We intend to explore 
these directions in our future research endeavors.

Conclusions
In conclusion, our study successfully identified five hub genes associated with macrophages, which could 
potentially collaborate in promoting CRC formation. It may even hold the promise of improving therapeutic 
approaches for colon cancer patients in clinical practice.

Data availability
The original data for this study were obtained from TCGA database (https:// portal. gdc. cancer. gov). All data 
generated or analysed during this study are included in this published article and its supplementary information 
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