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Mesh‑based GNN surrogates 
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Physics‑based deep learning frameworks have shown to be effective in accurately modeling the 
dynamics of complex physical systems with generalization capability across problem inputs. However, 
time‑independent problems pose the challenge of requiring long‑range exchange of information 
across the computational domain for obtaining accurate predictions. In the context of graph neural 
networks (GNNs), this calls for deeper networks, which, in turn, may compromise or slow down the 
training process. In this work, we present two GNN architectures to overcome this challenge—the 
edge augmented GNN and the multi‑GNN. We show that both these networks perform significantly 
better than baseline methods, such as MeshGraphNets, when applied to time‑independent solid 
mechanics problems. Furthermore, the proposed architectures generalize well to unseen domains, 
boundary conditions, and materials. Here, the treatment of variable domains is facilitated by a novel 
coordinate transformation that enables rotation and translation invariance. By broadening the range 
of problems that neural operators based on graph neural networks can tackle, this paper provides the 
groundwork for their application to complex scientific and industrial settings.

Numerical models for solving partial differential equations (PDEs) are crucial to scientific modeling in a broad 
range of fields, including physics, biology, material science, and finance. While various techniques, such as finite 
element methods, finite difference methods, finite volume methods, etc., have been developed as high-fidelity 
solvers, accelerating and reducing their computational cost remains a challenge. Additionally, when the gov-
erning PDEs are unknown, predicting a physical system using classical techniques is not possible even when 
observations are available. Recent developments in deep learning have enabled faster and accurate algorithms to 
evaluate the response of a physical system by exploiting the governing equations, observational data, or  both1,2.

Neural networks trained by adding the governing PDEs and boundary conditions to the loss function, called 
physics informed neural networks (PINNs), are a prominent example of using deep-learning-based surrogate 
models to learn solutions of physical  system3–7. Here, the neural network is used as an approximate representation 
of the solution of the PDE. While these surrogates are useful to find the specific solution of a PDE with a given 
set of parameters, a slight modification of such parameters, boundary conditions, or domain geometry requires 
re-training, making them less attractive in settings such as optimization, design, and uncertainty quantification.

Another class of neural network-based solvers is convolutional neural networks (CNNs) which uses snapshots 
of observed data over a discretized domain to predict the physical solution. While such data-driven methods do 
not require a priori knowledge of the governing PDE, they are often limited to the specific domain discretiza-
tion and cannot be easily generalized to other domain geometries. CNN-based methods include PDE-inspired 
 architectures8, autoregressive dense encoder–decoder  networks9, and symbolic multi-layer neural  networks10.

In another class of data-driven, deep-learning-based surrogates, neural networks are used to learn a discre-
tization that is then used in classical  solvers11–14. Specifically, the neural network learns a field used for interpola-
tion at coarse scales. Although these methods have been shown to improve the accuracy and further accelerate 
traditional solvers, it should be noted that they are still limited by the initial discretization.

With the purpose of obtaining resolution invariance, a class of neural network-based PDE solvers focuses 
on continuous graph representation of the computational  domain15–19. In such representations, the continuous 
nature of the network update guarantees the invariance of the architecture with respect to the resolution of the 
data and the enhanced interaction among nodes, typical of graph-based networks, improves the accuracy of the 
architecture for complex physical systems. Related works have shown that the location of the graph nodes can 
be optimized to better learn the solution at different levels of  precision20. Furthermore, some of these methods 
and their  extensions21,22, focus on learning a continuous mapping between input and output of a PDE and are 
referred to as neural operators. These and other neural operators, such as  DeepONets23, have shown significant 
success in accurately predicting the solution of several PDEs and they generalize relatively well with respect 
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to the PDE input parameters. We mention that one advantage of using graph-based representations is that the 
system’s dynamics can be recovered with sparse  representation18,21,24.

Another class of networks that exploits graph-based representation is given by MeshGraphNet and its exten-
sions. Firstly introduced  in25 for time-dependent problems and then extended to a multi-scale setting  in26, these 
mesh-based GNNs encode, in a connected graph, the mesh information and the corresponding physical param-
eters such as loading and boundary conditions, and model parameters. In addition to mesh-based approaches, it 
is worth mentioning that particle-based methods and their graph representation have also been been successfully 
used in physics  simulations27. Here, the physical system is described using particles in a reduced-order-model 
manner; the particles are then identified as nodes of a graph and a message passing neural network is used to 
learn and compute the dynamics of the particles. Both these graph-based approaches can accurately approximate 
physics simulation and generalize well to different resolutions and boundary conditions.

In this work we explore mesh-based GNN architectures; the latter exploit local (or short-range) interactions 
between neighboring nodes to estimate the response. When the nodes of a GNN are associated to a PDE com-
putational domain, interactions between nodes can be interpreted as spatial interactions in the PDE domain. 
As most physical systems involve local interactions, GNN-based surrogates are among the best candidates to 
serve as effective simulator engines. However, when a physical system requires long-range interactions, such as 
in static solid mechanics problems, standard mesh-based, GNN approaches typically fail at capturing the phys-
ics accurately. This happens because in general the exchange of information between distant nodes requires a 
large number of message passing steps. This is unfavorable because of the poor scaling behaviors of GNNs with 
respect to the number of layers. In the context of graph-based neural operators, this problem has been addressed 
by using multi-resolution graphs to allow for faster propagation of  information16.

Here, we build on MeshgraphNets and propose two GNN architectures that overcome the challenge of long-
range message passing without using a deep network. We introduce the Edge Augmented Graph Neural Network 
(EA-GNN) and the multi-graph neural network (M-GNN). In EA-GNN, we introduce “virtual” edges that yield 
faster information propagation resulting in better computational efficiency. In M-GNN we instead pursue a multi-
resolution approach, inspired by the multi-grid method and based on the Graph U-Net  architecture28. Contrary 
to the work proposed  in26 we obtain the low resolution graph by removing nodes from the original mesh and by 
adding new edges to second or third order neighbors. In this process, the nodes keep their original coordinate 
attributes and the interactions with higher order neighbors are gradually added to the graph. Furthermore, in 
order to make GNNs generalizable to different geometries, we introduce an invariant simulation coordinate 
space by moving the physical systems to a simulation space that is invariant to translation and rotation  (see29 for 
a technique that enables the same properties in the context of graph-based neural operators). This process helps 
faster training of GNNs and allows for generalization to new geometries.

Our major contributions include:

• A novel coordinate transformation method to make the proposed GNN invariant to rotation and translation, 
and generalizable to new domain geometries.

• An edge augmentation strategy that accelerates message passing across the graph, enabling more efficient 
training for problems involving long-range interactions.

• A multi-graph approach, where information is passed through different resolution graphs in a hierarchical 
manner, resulting in faster propagation of messages across domain.

With the purpose of stressing similarities and advantages with respect to the literature we next report on similar 
works and highlight substantial differences with the proposed approaches. First, the idea of augmenting a GNN 
with new edges is not new.  MeshGraphNets25, the architecture that inspires this work, introduces virtual edge 
based on spatial proximity; we instead add edges to increase connectivity between nodes that are far apart. A 
recent paper focused on cardiovascular  applications30 introduces virtual edges that connect all internal nodes 
with boundary nodes; although this modification is very powerful in one-dimensional settings, like the one 
presented in the paper, it could become prohibitive in case of three-dimensional geometries. More in general, 
we mention that edge augmentation is a well-established technique in the context of classification  problems31,32. 
Second, in the context of both mechanics and fluid dynamics, several authors have considered ideas similar to 
ours to coarsen (and refine) the graph while training. For a mechanics application,  papers33,34 introduce a network 
model with a similar down- and up-sampling process, but a different aggregation step that does not necessarily 
guarantee generalization with respect to new geometries. Furthermore, these papers do not guarantee translation 
and rotation invariance. The idea of different resolution levels is also used  in35 that introduces a multifidelity 
GNN where the coarsening and refining operations happen before the graph is passed to the network. This work, 
while valuable, has different objectives from ours, i.e. addressing the data generation burden. For fluid mechan-
ics applications, the  papers36–39 introduce a down-sampling/up-sampling technique that presents an intrinsic 
difference compared to ours, i.e., the down-sampling operation is established manually (based, for example, on 
standard mesh coarsening), whereas our down-sampling operation is learned. This guarantees that only nodes 
that carry relevant information are selected, making sure that no salient information is lost. In the context of 
fluids, but with data compression purposes, a technique similar to ours in encoder–decoder form is proposed  in40.

Background
Graph neural networks
Graph neural networks (GNNs) are a class of deep learning methods that operate on graph structures consist-
ing of nodes and  edges41. GNNs use message passing between neighboring nodes in the graph to model the 
interdependence of features at various nodes. They have been successfully used for prediction and classification 
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tasks at the level of graphs, edges, or nodes. In recent years, variants of GNNs such as graph convolutional net-
works (GCNs)42, graph attention networks (GATs)43, and graph recurrent networks (GRNs)44 have demonstrated 
ground-breaking performances on various tasks. The expressive nature and superior performance of GNNs have 
led to their application in a variety of domains where data is naturally represented with a graph structure, such 
as in particle  physics45, high energy physics  detectors46, power  systems47, etc. Additionally, GNN frameworks 
have been able to simulate complex physical domains involving fluids, and rigid solids, and deformable materi-
als interacting with one  another27. In MeshGraphNets, the mesh physical domain is represented using a mesh, 
which is basically a graph on which GNNs learn to predict physics (see e.g.,25).

Challenges in modeling deformation of elastic and hyper elastic materials with GNNs
In this work, we consider the stationary elasticity and hyper-elasticity problems, with a special focus on the 
Mooney–Rivlin hyper-elastic  model48, even though our proposed approaches have the potential of performing 
well for a broad class of elliptic partial differential equations. We seek to train GNN models that capture the 
constitutive behavior of a physical system, rather than approximate the response for a fixed problem setting. To 
this end, we expect the proposed GNN surrogates to perform well on varying domain geometries, boundary 
conditions, loadings, and material properties.

A challenging aspect of developing surrogates for stationary mechanics problems (and elliptic PDEs in gen-
eral) is the fact that solution at any point depend on points that are farther away in the domain. In fact, the 
solution in these problems can be expressed as integrals over the entire domain. This means that the GNN must 
include connections between distant points within the network. In a way, the proposed architecture is designed 
to enable fast message propagation between any points in the domain.

MeshGraphNet for physics simulations
MeshGraphNets25 take advantage of the mesh representations, which is extensively used for finite element simula-
tions for structural mechanics, aerodynamic problems, etc. With the development of adaptive meshing, accurate, 
high-resolution simulations can be carried out for deformation of complex geometries with highly irregular 
meshes. MeshGraphNets predict the dynamics of the physical systems by encoding the simulation state in meshes 
into a graph structure using an encoder, approximating the differential operators that underpin the internal 
dynamics of the physical systems using message passing steps of the graph neural network and using a decoder 
to extract the node level dynamics information to update the meshes.

MeshGraphNet learns the forward model of the dynamic quantities of the mesh at time t + 1 given the current 
mesh and meshes at previous time steps. The encoder encodes the current mesh into a graph, with mesh nodes 
becoming graph nodes and mesh edges becoming bi-directional edges in the graph. They also add extra edges, 
known as world edges, to learn external dynamics such as self-collision, contact etc., which are non-local to the 
meshes. World edges are created by spatial proximity, within a fixed radius. Once the graph is created, node and 
edge attributes are generated and encoded using a learnable encoder network. Next, the processor, consisting of 
L graph net (GN) blocks that can do message passing operations, update the world edges, mesh edges and the 
node features of the current graph. Finally, to predict the state at time t + 1 from the state at time t, a decoder 
network, which is an MLP, is used to transform the updated node features to output features.

MeshGraphNets can accurately and efficiently model the dynamics of the physical systems. It also has good 
generalization capability, and can be scaled up at inference time. However, they have not been tested on time-
independent problems such as static solid mechanics problems.

In26, an improved version of MGNs, Multiscale MGN, was proposed with the purpose of recovering the con-
cept of spatial convergence that characterizes mesh based discretizations and improving the training efficiency 
when refining the mesh. This work takes inspiration from multigrid approaches from mesh based discretizations, 
but its intrinsic architecture and scope are different from the one presented in this paper.

Methods
As explained in the previous section, solving time-independent solid mechanics problems requires fast propaga-
tion of information across all the degrees of freedom, since the deformation, or stress, of every point in space 
depends on all the other points. Guaranteeing such propagation becomes computationally challenging as the 
resolution of the computational domain increases. To address this challenge, when using GNNs as numerical 
solvers, a natural solution is to increase the depth of the network. However, this approach is computationally 
very expensive and may result in over-smoothing49, making the model harder to train, or causing vanishing/
exploding  gradients50. To achieve fast propagation of information while avoiding these pitfalls, we propose two 
approaches: (a) edge-augmentated graph neural network , and (b) multi-graph neural network. In the following 
we describe each model separately. 

(a) Edge augmentation: we refer to the first approach as “edge augmentation” of the existing graph. As the 
graph is generated from a mesh, nodes are only connected to their neighbors; if two nodes are n hops away, 
it requires n GN blocks for the message to be passed between these  nodes51. Thus, as n increases, a deeper 
network is required to achieve broad message propagation. To avoid increasing the depth of the network, we 
increase the non-locality of the graph by introducing augmented edges between randomly selected nodes 
(see Fig. 1c). This edge augmentation significantly reduces the number of hops required for the nodes to 
gather messages from distant nodes, thus resulting in a smaller number of GN blocks for faster message 
propagation.

(b) Multi-graph: this approach draws inspiration from multigrid methods for PDEs, whose foundation is a 
hierarchy of discretizations (or meshes)52. By performing a series of graph down-sampling operations fol-
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lowed by up-sampling operations, we apply the multigrid concept to graphs and pass information across 
the computational domain in a hierarchical manner. In practice, the down-sampling operations correspond 
to mesh coarsening and result in smaller graphs connecting points that are far away in the domain. On the 
other hand, during up-sampling the information is redistributed across the entire graph. This approach 
resembles the graph U-Net architecture used  in28 for image processing tasks such as image classification 
and segmentation.

For both approaches, we assume that the computational domain is a triangular mesh which undergoes a trans-
formation into a graph as detailed in “Data generation” and illustrated in Fig. 1.

Edge augmented graph neural network (EA‑GNN)
With the purpose of achieving faster propagation of information between nodes we select a set of nodes from 
the graph and, if no edges exist between them, we add a bi-directional edge. We point out that, since this edge is 
not similar to other edges, we add an extra feature to the edge attributes to indicate that the edge belongs to the 
augmentation set. The number of additional edges in the augmented graph is a hyperparameter that is manually 
tuned during the training. Moreover, vertices of augmented edges are selected randomly, by following a uniform 
distribution. It is to be noted that edges have not been added based on spatial  proximity53 as that would not 
improve the message propagation to farther nodes. Instead, sparse and random edges have been added all over 
the domain, thus improving the long-range interactions between the nodes. As more sophisticated sampling 
methods, such as farthest point  sampling54, did not yield significant improvements in the performance of the 
model, we employed random sampling of nodes in all of our experiments.

The proposed EA-GNN has the same high-level network architecture as the  MeshGraphNet25 whose building 
blocks are: (1) an encoder, (2) m GN blocks, and (3) a decoder. As described in “Data generation”, for the time-
independent problems considered in this work, with the purpose of making the graph translation and rotation 
invariant, before the graph is created, the mesh is transformed to be in the principal axis coordinate system 
(referred to as simulation coordinate system). Then, the mesh is converted into a graph structure by identifying 
the vertices of the mesh as nodes and the connections between the vertices in the mesh as the edges (see Fig. 1a,b). 
The node attributes are nodal positions in simulation coordinates (x, y), nodal type (interior or boundary), type 
of the boundary condition applied (Dirichlet homogenous and non-homogenous, Neumann), direction and 

+

+

+

+

+

Figure 1.  (a) Schematic of a 2D time-independent (static) solid mechanics problem. (b) Physical domains are 
transferred to a normalized coordinate. (c) Schematic of edge-augmented graph neural networks (agumented 
edges are marked as dashed line) where the normalized graph is passed to an MLP encoder and multiple 
passes of GN blocks and then a decoder to recover the displacement and stress vectors across the domain. (d) 
Schematic of multi-graph neural network, where features after encoding, pass through M-Net block with down-
sampling/upsampling of the mesh.
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magnitude of the boundary conditions, a flag for body forces and its magnitude and direction all in simulation 
coordinate system. The edge attributes are the Euclidean distance between the nodes, and positional difference 
in x and y directions, i.e., �x = x2 − x1 and �y = y2 − y1.

Once the graph is generated, the node attributes and edge attributes are encoded into a latent space through 
an encoder. The encoded nodes and edges attributes are then passed through m GN blocks and updated. Each 
GN block consists of an edge update module and a node update module. Let u′i be the encoded node attribute 
vector of node i and u′j be the encoded node attribute vector for node j, such that j ∈ M(i) , where M(i) denotes 
the neighborhood of node i. Let e′ij be the encoded edge attribute vector for the edge between i and j. The edge 
update module, χ , is a MLP that receives the attributes of the nodes connecting the edge along with the edge 
attributes and returns the updated attributes, i.e. e′ij = χ(e′ij).

The node update module consists of three MLPs, φ , γ and β ; the encoded node attributes of node i, u′i are 
updated as follows:

Between each GN block, a skip connection is added to avoid over-smoothing50. The following equation describes 
the update for two consecutive GN blocks of the network, GNk and GNk+1:

Finally, the updated node attributes, u′ is passed through a decoder to return the nodal deformation or stress 
values. Both the encoder and decoder functions are MLP networks.

Multi‑graph neural network (M‑GNN)
This approach takes inspiration from multigrid solvers and relies on hierarchical learning. The architecture has 
three components: (1) an encoder, (2) an M-Net block, and (3) a decoder (see Fig. 1d). Encoder and decoder 
have the same network architecture and functionality as in EA-GNN; however, for reasons that are clarified later 
in this section, here we do not consider edge attributes.

The M-Net block starts with a single graph network block, m-GN, to update the encoded node attributes 
received from the encoder. The m-GN block uses GraphSAGE  operator55 for the node update. The encoded node 
attributes, u′ , are updated through m-GN block as follows.

where β is a MLP. The updated node attributes, u′ , are then passed through a series of alternating layers of 
down-sampling operations and m-GN blocks. This is followed by a series of alternating up-sampling operations 
and m-GN blocks. The number of down-sampling and up-sampling layers is determined by the multi-graph 
depth hyperparameter, d. The output of the down-sampling layer is added to the output of the corresponding 
up-sampling layer leading to the same mesh refinement (or graph size). Note that all the m-GN block updates 
have the same structure reported in Eq. (3) and that the final up-sampling layer is such that the graph recovers 
its original size.

The down-sampling layer down-samples the data by adaptively selecting a subset of nodes corresponding to 
a coarser mesh; the number of nodes that are down-sampled is determined by the hyperparameter r, indicating 
the down-sampling ratio. For the adaptive selection of nodes, we use the “U-net sub-sampling”  algorithm28. 
Specifically, the node attributes are projected onto the trainable vector p using the scalar projection uTi p and top 
k nodes are selected based on the projected values. Since the scalar product measures the amount of information 
retained by node i when projected onto p , sampling the top k nodes ensures that the smaller graph retains the 
maximum information. The up-sampling operation up-samples the graph by recording the locations of nodes 
selected in the corresponding down-sampling layer and uses this information to place the nodes back to their 
original positions in the graph.

In order to make sure that there are no disconnected nodes after down-sampling, as well as to improve the 
connectivity between the nodes, we compute the lth graph power, similarly  to28, and use the resulting graph. 
This operation builds links between nodes which are at-most l hops away in the graph. This could be done by 
multiplying the adjacency matrix of the graph by itself l times. For the training, we choose l = 3 , and use the 
augmented graph with better connectivity for every down-sampling layer. This step is particularly important in 
mesh-based physics simulations for uninterrupted propagation of information between nodes.

The GraphSAGE  operator55, used in the m-GN block, is a message aggregation algorithm which considers 
only the node attributes. In fact, as nodes are down-sampled, existing edges are lost and new edges are introduced 
to improve the connectivity. This makes updating edge attributes (for existing and newly established edges) a 
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nontrivial task. Since the nodal positions are considered as node attributes, the model can calculate the edge 
attributes such as Euclidean distance and positional difference indirectly from the node attributes. Thus no 
information is lost due to the removal of edge attributes.

Results and discussion
Data generation
The data generation process consists of three steps: (1) mesh generation, (2) finite element simulations, and (3) 
graph transformation. We generate two-dimensional random geometries using Bezier curves to ensure variability 
and nonlinearity in the domains. Few sampled geometries are shown in Fig. 2. Different boundary conditions 
(Dirichlet and Neumann) are assigned at randomly selected locations on the boundary. The length, location, 
magnitude and direction of the boundary conditions are randomly selected for each geometry. We also assign 
a body force at a randomly selected interior location of the domain. A uniform triangulated mesh is generated 
using the Gmsh package in  python56. Using  Abaqus57, we carry out finite element simulations to obtain nodal 
deformation and stress values.

Coordinate transformation
As the output values (deformation and stress) are coordinate dependent and every sample in the training set is 
characterized by a different geometry, it is necessary to assign the nodal coordinates as node attributes. How-
ever, this makes the graph translation and rotation variant, i.e. if the mesh is translated or rotated, the network 
would consider it as a different geometry and outputs different deformation and stress values. This makes the 
training process difficult as it requires redundant data in training to make the model invariant to rotation and 
translation. To resolve this issue, we use group equivariance as our inductive bias where we ensure the graph is 
invariant to translation and rotation by transforming the geometry into the principal axis coordinate system. 
As such, the nodal coordinates stay the same when the geometry is rotated or translated, and as a result, the 
transformed domain is invariant to the rotation and translation. From now on, we refer to these coordinates as 
“simulation coordinates” (SC).

Let X ∈ R
N∗2 be the original nodal coordinates of the graph and XSC ∈ R

N∗2 be the corresponding simula-
tion coordinates, where N is the number of vertices in one mesh. First, the coordinates are made translation 
invariant by moving the center of the original coordinate system to the centroid of the graph, i.e, Xc = X − X . 
Here, X is the centroid of the graph calculated as X =

∑N
n=1 Xn/N , where N is the total number of nodes in the 

graph. Further, the coordinates are made rotation invariant by rotating the coordinate system to principal axes. 
This is done by calculating eigenvalues and eigenvectors of the matrix XT

c Xc , denoted by �1, �2, �3 and v1, v2, v3 
respectively, where �1 ≥ �2 ≥ �3 . Let B be a matrix composed of the eigenvectors, B = [v1, v2, v3] . The simulation 
coordinates, XSC can be calculated as XSC = XcB.

Data augmentation
To improve the generalization capability of the model with respect to unseen geometries, we introduce two 
data-augmentation strategies. First, we use both the Delaunay and the “Packing of Parallelograms” algorithms 
for mesh generation. Second, we add noise to nodal coordinates by shifting the nodal coordinates by adding to 

Figure 2.  A few samples of the random geometry generated using Bezier curves for training and validation of 
the models.
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each node a random value sampled from the normal distribution N(0, 0.01) which is equivalent to 10% of edge 
distance on average.

Data conversion
Nodal deformations and stress values are assigned to the node and edge attributes for the mesh-to-graph con-
version outlined in “Edge augmented graph neural network (EA-GNN)”. For GNN with edge augmentation, 
augmented edges are added to the existing edge connections together with an augmentation flag (1 for augmented 
edges and 0 otherwise) as edge attribute. The node and edge attributes along with the edge connections are used 
to generate the graph objects using PyTorch Geometric.

Model architectures
EA‑GNN
During graph creation, edge augmentation is done by sampling nodes from the graph and adding bi-directional 
edges between them, if there are no existing edges. The percentage of augmented edges is determined by the 
hyper parameter, augmented-edge-percentage, Aperc . It is to be noted that Aperc is the percentage of the existing 
edges. Therefore, the total number of edges after augmentation is Ne + Aperc × Ne , where Ne is the total number 
of existing edges. We use Aperc = 20% for our experiments.

The encoders for the node and edge attributes of the augmented graph are MLPs with a single hidden layer 
and a ReLU activation function. The MLP for node attributes has a network architecture 14− 64− 128 (i.e., 14 
input features, 64 nodes in the hidden layer and 128 output features) and that for edge attributes has network 
architecture 4− 64− 128 . The encoded graph is then passed through a series of alternating layers of Graph 
Net (GN) blocks and MLP layers. A total of 6 GN blocks are added in the network. Each GN block consists 
of (a) Edge update module—the edge update function, χ , is a MLP, with a single hidden layer architecture 
3× 128− 128− 128 , and ReLU activation function. The size of the input is due to concatenating the edge 
attributes (128 features) and the attributes of the two nodes connected by the edge ( 2× 128 features). The output 
consists of the updated edge attributes of size ne × 128 , where ne is the total number of edges. (b) Node update 
module—this module consists of three functions, φ for message passing, γ for message aggregation and node 
update and β for the final node update. All the three functions are MLPs with a single hidden layer and ReLU 
activation functions. The function φ has network architecture 2× 128− 128− 128 , where the input features are 
the concatenation of the attributes of the neighboring node and the corresponding edge attributes. The messages 
from all the neighboring nodes are added and concatenated to the node attributes of the selected node and the 
result is given as the input to γ to calculate the node attributes of the corresponding nodes. Thus, the network 
architecture of γ is 2× 128− 128− 128 . The output from γ is passed to β to get the updated node attributes as 
shown in Eq. (1). The MLP representing β has network architecture 128− 128− 128.

The parameters of all the four functions ( χ , φ , γ , β ) are shared across all the GN blocks. After each GN block, 
a skip connection is added as shown in Eq. (2). The updated node attribute from the final GN block is the input 
to the decoder, a MLP with a single hidden layer, ReLU activation function, and architecture 128− 64− 2 for 
the displacement ( ux and uy ) and 128− 64− 3 for the stress ( σxx , σxy and σyy ). We use a dropout layer after the 
encoder and between each GN block with a dropout percentage of 0.1 to reduce overfitting.

M‑GNN
M-GNN has an encoder architecture similar to that of EA-GNN. However, since edge attributes are not used, 
the encoder is required only for the node attributes. The encoder is a MLP with architecture 14− 64− 128 . The 
encoded graph is passed through a message aggregation block followed by a ReLU activation layer. The message 
aggregation block used here is the GraphSAGE  operator55, which updates the node attributes for the full graph.

This is followed by a series of down-sampling modules consisting of the following operations: (a) connectiv‑
ity enhancement—the connectivity of the graph is enhanced by connecting the nodes that are 3 hops away. This 
is done by multiplying the adjacency matrix, A by itself twice, i.e. Aupd = A× A× A . This ensures that we do 
not have any disconnected nodes i.e., all the nodes are connected to at least one neighbor, allowing for effective 
message exchange. (b) Down‑sampling—a layer that projects the node attributes onto a one-dimensional, train-
able projection vector p , and samples k nodes based on the projected values. The value of k is determined by the 
down-sampling ratio, r. For the experiments, we have set r = 0.6 . (c) Node update—a block consisting of the 
GraphSAGE operator and the function β , as described in Eq. (3).

The number of down-sampling modules is determined by the multi-graph depth hyperparameter, d. After 
tuning of the hyperparameters, we have set this value to be d = 3 . The depth and pool ratio for the network 
are chosen such that our A-3 connected graphs are not overpopulated. These are followed by same number of 
up-sampling modules, consisting of the following operations: (a) skip connection—the node attributes from the 
corresponding down-sampling layer are added to the updated node attributes. (b) Up‑sampling—a layer that 
adds the previously removed nodes back to the graph, with their updated node attributes. (c) Node update—a 
block consisting of the GraphSAGE operator and the function β , as described in Equation 3.

The final pooling module restores the full graph with all the nodes with updated node attributes. This is 
decoded to return the nodal displacement or stress using the Decoder, a network with the same architecture 
used for EA-GNN. Similar to EA-GNN, we use a dropout layer after the encoder and between each GN block 
with a dropout percentage of 0.1 to reduce overfitting.

Experimental set up
By using the data generation process detailed in section “Data generation”, we generate the following three data-
sets and carry out data augmentation as explained in “Data generation”. (a) We generate 3000 random geometries 
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and run 10 variations of boundary conditions per geometry assuming a homogeneous and linear elastic material 
with constant Young’s modulus E = 100.0 and Poisson’s ratio ν = 0.3 . This dataset is used to evaluate the ability 
of the model to capture geometrical nonlinearities. (b) We generate 5000 random geometries and assume a non-
linear hyper-elastic material. We again consider 10 different boundary conditions per geometry. The nonlinear 
material model of choice is the Mooney–Rivlin  model58, with material properties C01 = 0.3 and C10 = 0.0359. 
Training with this dataset enables us to test the network performance for system nonlinearities. (c) We generate 
10,000 random geometries with varying hyper-elastic material properties and again consider 10 different bound-
ary conditions per geometry. The material properties for each geometry are randomly selected from a uniform 
distribution, C01 ∼ U (0.034, 0.34) and C10 ∼ U (0.005, 0.05) . We use this dataset to train and test our architec-
ture on generalization with respect to unseen materials. For all the datasets, there are, on average, 1100 nodes per 
graph/mesh. The mesh resolution length (distance between two nodes in the graph) is approximately 0.1. The 
message passing distance which is calculated by the number of hops needed to connect all the nodes is greater 
than 10 for graphs of this size. This implies at least 10 message-passing blocks are needed for complete passing 
of information across the graph for the baseline GNN with no edge augmentation or multi-scale architecture.

For all the experiments, 70%, 10%, 20% of the data is used for training, validation, and testing, respectively. 
For each dataset we train four networks to predict the nodal deformations, ux and uy . As a baseline model (B) 
we consider MeshGraphNet. Since our simulation coordinate transformation plays an important role in the 
generalization properties of our model, we further consider a version of MeshGraphNet trained after such a 
transformation and refer to it as B + SC. We additionally provide results for our edge augmented graph neural 
network using simulation coordinates (EA-GNN + SC), and multi-graph neural network using simulation coor-
dinates (M-GNN + SC). Similarly, the four networks are trained to predict nodal stress values, σxx , σxy and σyy.

While the baseline model is trained using mean squared error loss function as used  in25, we train the networks 
B+SC, EA-GNN+SC and M-GNN+SC with a scaled mean absolute error loss function L. The scaling depends 
on a combination of the boundary conditions associated with each sample; formally,

where y and ŷ are respectively the ground-truth and the predicted outputs and dn and nn are the Dirichlet loading 
and Neumann displacement vectors of the n-th sample.

For all networks we use the Adam optimizer and we train all the networks for 1500 epochs on a Tesla V100-
SXM2. For B, B+SC and EA-GNN+SC, we prescribe a learning rate ranging from 1E−4 to 1.5E−4 and a weight 
decay of 1E−5. The learning rate is decreased using the cosine annealing scheduler with warm  restart60, which 
avoids stagnation in local minima. For M-GNN+SC, we use a learning rate ranging from 2E−3 to 3E−3 with a 
weight decay of 1E−6.

Numerical results
We test our proposed models on three datasets detailed in “Experimental set up” and compare them with the 
baseline models. In order to compare the prediction power of our models, we define relative error as

where f is the variable of interest (either displacement values ux , uy or stress values σxx , σyy , σxy ) and f̂  is the 
predicted value of f using our network.

Table 1 shows the relative errors on the test dataset for the predicted nodal displacement components ( ux 
and uy ) and nodal stress components ( σxx , σyy and σxy ). We have also included the relative errors in the pre-
dicted displacement magnitude (u) and von Mises stress ( σv ). Here, E stands for linear elastic model and HE for 
hyper-elastic (Mooney–Rivilin) material model. Additionally, S stands for single material and it means that a 
single material is used across the entire dataset, whereas V stands for varying material and it means that varying 
materials are used across the data set.

As shown in Table 1, both EA-GNN and M-GNN perform significantly better than the baseline models either 
with or without coordinate transformation, i.e., B and B+SC respectively. This shows that both the edge augmen-
tation and the multi-graph modifications have the ability to further improve message passing. We further observe 
that by adding the coordinate transformation, the performance of the baseline model improves significantly, 
however, it is still very large compared to our proposed approaches. This comparison allows us to distinguish 
the improvement brought by the coordinate transformation and the graph modifications. It is interesting to see 
that the edge augmentation technique consistently performs better than all other methods, as highlighted by the 
bold values used for the best performing models. Comparing the rows of single linear elastic material (E,S) with 
single nonlinear hyper-elastic materials (HE,S), we find that the performance of all the models slightly decrease 
and the relative absolute errors increases as expected. The non-linearity introduces new complexities into the 
system which requires more data for the learning. Note that adding further complexity by varying the nonlinear 
material among test cases (i.e., HE, V), we find that the performance stays the same and the proposed model can 
generalize to unseen material properties. The similar test performance of our models on HE, V test-dataset, as 
opposed to the performance of the baseline methods, shows the generalization capabilities of our model, which 
is indeed able to learn the true physics and predict accurate results for unseen nonlinear material properties. 
We also observe that the errors of displacement magnitude and von Mises stress remain closely aligned with the 
component-wise errors for displacement and stress across all the datasets and models. Additionally, in Table 2 

(4)L(θ) =
1

n

N∑

n=1

(�dn�ℓ1 + �nn�ℓ1)�yn − ŷn�ℓ1 ,

(5)e(f ) =
�f̂ − f �ℓ1

�f �ℓ1
,
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we report the maximum relative errors e across the testing dataset and we notice that even the worst-case errors 
are low.

In Tables 3 and 4, we report the relative ℓ∞ error and the corresponding 90th percentile values ( p90 ) over all 
degrees of freedom for the predicted displacement and stress respectively. Although the ℓ∞ norms are significant 
across all the models, it is to be noted that these high errors correspond to areas where the displacement and 
stress values are at least 2 orders of magnitude lower than that of the average values across the dataset. The 90th 
percentile error values reported in Tables 3 and 4 also confirm that the majority of the DOFs have lower error 
values. Moreover, we point out the maximum absolute error for the prediction of the von Mises stress for our 
models is very low. For reference, the absolute errors corresponding to the maximum relative errors for the σv 
prediction for the three datasets using EA-GNN are 0.003, 0.09, 0.08 and using M-GNN are 0.001, 0.07, 0.09. 
Therefore, we argue that these deviations are of less critical concern from an engineering-application perspective 
as they are associated with areas in the domain that undergo very small displacements and stresses.

In addition to error values, we show the loss values for the test dataset in correspondence of all the models for 
both the displacement, ux , uy and the stress values, σxx , σyy , σxy in Fig. 3a,b respectively. The lines represent the 
moving average, while the shadow corresponds to the variance. The sudden jumps in the loss values observed 
in M-GNN and EA-GNN correspond to the annealing process. Overall, we find that the coordinate transforma-
tion, improves the training of the baseline model, however, great boost in performance is only achieved when 
considering Edge Augmentation or Multi-Graph approach.

Next, in order to evaluate the generalization capability of our models and confirm that the models have indeed 
learned the true physics, we test the trained networks on out-of-distribution datasets, i.e. datasets that are not 
from the distribution used in training. To this end, we consider three out-of-sample distributions: (a) smaller/
larger physical domains characterized by half or double the domain size with the same mesh characteristic length. 
The results for scale = 0.5 and 2.0 are shown in Table 5. (b) New Dirichlet and Neumann boundary conditions 
applied at different sections of the boundary. Specifically, Dirichlet and Neumann boundary conditions are 

Table 1.  Relative error in predicting nodal displacement components, ux , uy , and displacement magnitude, u, 
as well as in nodal stress components, σxx , σxy , σyy and von Mises stress, σv , given different linear and nonlinear 
material selection and models.

Mat. Model Param. e(ux) ↓ e(uy) ↓ e(u) ↓ e(σxx) ↓ e(σyy) ↓ e(σxy) ↓ e(σv) ↓

E,S B 7.2e5 0.64 0.63 0.60 0.78 0.79 0.49 0.57

E,S B+SC 7.2e5 0.25 0.26 0.23 0.30 0.30 0.19 0.22

E,S EA-GNN+SC 7.2e5 0.05 0.05 0.04 0.09 0.09 0.05 0.05

E,S M-GNN+SC 2.8e5 0.13 0.13 0.12 0.17 0.18 0.11 0.10

HE,S B 7.2e5 0.81 0.81 0.81 0.88 0.88 0.64 0.62

HE,S B+SC 7.2e5 0.33 0.34 0.32 0.30 0.32 0.29 0.28

HE,S EA-GNN+SC 7.2e5 0.08 0.09 0.07 0.11 0.13 0.09 0.10

HE,S M-GNN+SC 2.8e5 0.16 0.16 0.16 0.18 0.19 0.15 0.15

HE,V B 7.2e5 0.73 0.74 0.72 0.92 0.91 0.85 0.86

HE,V B+SC 7.2e5 0.28 0.29 0.28 0.39 0.39 0.29 0.30

HE,V EA-GNN+SC 7.2e5 0.09 0.09 0.08 0.12 0.12 0.09 0.10

HE,V M-GNN+SC 2.8e5 0.16 0.15 0.14 0.18 0.20 0.16 0.15

Table 2.  Maximum relative error in predicting nodal displacement components ux and uy and nodal stress 
components σxx , σxy , σyy over the testing dataset given different linear and nonlinear material selection and 
models.

Mat. Model |e(ux)|max ↓ |e(uy)|max ↓ |e(σxx)|max ↓ |e(σyy)|max ↓ |e(σxy)|max ↓

E,S B 0.84 0.86 0.90 0.91 0.84

E,S B+SC 0.53 0.59 0.56 0.55 0.49

E,S EA-GNN+SC 0.15 0.17 0.19 0.19 0.17

E,S M-GNN+SC 0.30 0.31 0.35 0.34 0.31

HE,S B 1.10 1.12 1.20 1.20 0.99

HE,S B+SC 0.69 0.70 0.66 0.68 0.63

HE,S EA-GNN+SC 0.21 0.24 0.22 0.22 0.17

HE,S M-GNN+SC 0.35 0.36 0.38 0.37 0.34

HE,V B 0.87 0.90 1.25 1.24 1.03

HE,V B+SC 0.61 0.63 0.70 0.75 0.65

HE,V EA-GNN+SC 0.20 0.23 0.21 0.19 0.17

HE,V M-GNN+SC 0.33 0.34 0.37 0.37 0.32
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Table 3.  Maximum and 90th quartile values of relative error, across all degrees of freedom, in the testing 
dataset, for predicting nodal displacements, ux , uy , given different linear and nonlinear material selection and 
models.

Mat. Model |e(ux)|∞ ↓ |e(uy)|∞ ↓ p90(e(ux)) ↓ p90(e(ux)) ↓

E,S B 92.14 90.78 0.87 0.88

E,S B+SC 65.22 64.29 0.61 0.63

E,S EA-GNN+SC 23.28 25.17 0.21 0.23

E,S M-GNN+SC 40.22 41.57 0.39 0.38

HE,S B 103.45 101.21 1.06 1.12

HE,S B+SC 70.11 69.12 0.72 0.73

HE,S EA-GNN+SC 30.10 31.21 0.26 0.27

HE,S M-GNN+SC 43.44 45.76 0.43 0.45

HE,V B 93.11 92.32 0.88 0.90

HE,V B+SC 67.87 66.39 0.65 0.67

HE,V EA-GNN+SC 32.29 31.65 0.28 0.27

HE,V M-GNN+SC 42.22 40.98 0.40 0.38

Table 4.  Maximum and 90th quartile values of relative error, across all degrees of freedom, in the testing 
dataset, for predicting nodal stress components, σxx , σyy and σxy , given different linear and nonlinear material 
selection and models.

Mat. Model |e(σxx)|∞ ↓ |e(σyy)|∞ ↓ |e(σxy)|∞ ↓ p90(e(σxx)) ↓ p90(e(σyy)) ↓ p90(e(σxy)) ↓

E,S B 110.32 111.97 105.44 0.98 0.98 0.92

E,S B+SC 70.31 68.82 61.55 0.63 0.64 0.60

E,S EA-GNN+SC 29.73 31.85 24.76 0.26 0.26 0.22

E,S M-GNN+SC 45.51 46.11 40.98 0.42 0.44 0.38

HE,S B 120.40 119.71 109.26 1.14 1.15 1.05

HE,S B+SC 68.88 69.12 64.71 0.73 0.73 0.69

HE,S EA-GNN+SC 29.85 30.56 27.90 0.25 0.25 0.23

HE,S M-GNN+SC 46.39 44.11 40.87 0.47 0.47 0.42

HE,V B 123.32 123.89 111.63 1.17 1.17 1.06

HE,V B+SC 70.47 72.39 65.24 0.79 0.84 0.72

HE,V EA-GNN+SC 30.21 29.40 28.10 0.25 0.26 0.24

HE,V M-GNN+SC 45.22 43.98 38.36 0.47 0.45 0.40

Figure 3.  Loss on testing data for predicting (a) deformation and (b) stress for elastic model with single 
material for four models—B, B+SC, EA-GNN+SC and M-GNN+SC.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3394  | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

applied at disconnected sets of boundary nodes as opposed to connected sets. The results for out-of-distribution 
boundary conditions are shown Table 5 with the label BC. (c) A combination of all the above along with random 
rotation and translation, i.e. the graphs from the above data are translated and rotated to a different coordinate 
system to evaluate if the models are rotation and translation invariant. The results for rotation and translation 
are also presented in Table 5 with label Rot + Tra.

The first observation is that the training based on simulation coordinates helps the generalization on all fronts. 
Next, we observe that EA-GNN consistently outperforms other architectures, followed by M-GNN, both evalu-
ated in simulation coordinate system. Both EA-GNN and M-GNN have relative errors close to the in-distribution 
testing errors from Table 1 for half scaling. The models perform worse for the double scaling case, as almost half 
of the graph corresponds to coordinate positions the model has not seen before. The errors for the rotation and 
translation do not change for B+SC, EA-GNN+SC and M-GNN+SC as the graphs are transformed to the simu-
lation coordinate system before they are fed into the model and as expected the models perform well, as long as 
they are trained using simulation coordinates. Across all the cases, the baseline model B consistently performs 
the worst, with errors 1.5–2 times bigger than B+SC. This is the only model which is not invariant to translation 
and rotation, as can be observed from the higher errors for rotation and translation case for B.

Our results indicate that M-GNN consistently under performs compared to EA-GNN. To address this con-
cern, one should consider both the choice of the m-GN block and the pooling/unpooling algorithm. We address 
the former first. We carry out an ablation study to verify if EA-GNN is consistently performing better than 
M-GNN because EA-GNN uses edge attributes in the GNN layer while M-GNN uses a GraphSAGE layer that 
does not involve edge attributes. For this, we trained EA-GNN to predict displacement and stress for elastic 
dataset with GraphSAGE as the message propagation GN block. Since GraphSAGE does not take edge attrib-
utes, the network does not differentiate between real and augmented edges. The results of this experiment can 
be found in Table 6. The results are similar to the reported results for EA-GNN in Table 1. This is an indication 
that the better performance of EA-GNN is due to the addition of the augmented edges, and it is not impacted 
by the selection of the message propagation algorithm.

Regarding the choice of the pooling/unpooling algorithm, the method used in this paper has been successfully 
used for coarsening GNNs’ graphs for fluid dynamics  simulations40. While this suggests that this choice is very 
promising for PDE regression problems, one alternative to a learned pooling selection is to consider the relative 
spatial distance between vertices in the parent graph. This approach has been considered  in33,38,61. We stress that 
a complete comparison with state-of-the-art methods is fundamental to fully understand our model’s capabili-
ties; given this limitation in the presented comparison studies, the integration of distance-based approaches is 
the subject of our current studies.

From all these experiments, we can infer that both EA-GNN and M-GNN are able to successfully learn the 
underlying physics of the data and generalize well to unseen domains, geometries, and boundary conditions, 
which the baseline MeshGraphNet model fails at. Training and evaluating the models in simulation coordinate 
system enables them to be invariant to rotation and translation, which makes these models an effective tool for 
faster and accurate physics simulations specially for time-independent physics simulations that require long-
range interaction between different parts of the domain. In terms of computational time, Abaqus takes on an 

Table 5.  Relative error in predicting nodal deformation for various out of sample distributions of data.

Model B B+SC EA-GNN+SC M-GNN+SC

Scale = 0.5

e(ux) 0.87 ± 0.56 0.47 ± 0.29 0.09 ± 0.07 0.20 ± 0.11

e(uy) 0.96 ± 0.64 0.47 ± 0.33 0.09 ± 0.07 0.20 ± 0.11

Scale = 2

e(ux) 1.09 ± 0.67 0.85 ± 0.41 0.22 ± 0.12 0.29 ± 0.11

e(uy) 0.95 ± 0.51 0.76 ± 0.33 0.21 ± 0.10 0.28 ± 0.09

BC

e(ux) 0.87 ± 0.55 0.57 ± 0.42 0.11 ± 0.08 0.22 ± 0.10

e(uy) 0.95 ± 0.65 0.60 ± 0.43 0.13 ± 0.09 0.24 ± 0.10

Rot + Tra

e(ux) 0.91 ± 0.69 0.57 ± 0.42 0.11 ± 0.08 0.22 ± 0.10

e(uy) 1.04 ± 0.78 0.60 ± 0.43 0.13 ± 0.09 0.24 ± 0.10

Table 6.  Ablation study using GraphSAGE as the GN block for EA-GNN in predicting nodal deformation and 
stress.

Model e(ux) e(uy) e(σxx) e(σyy) e(σxy)

EA-GNN 0.05 0.05 0.09 0.09 0.05

EA-GNN with graph-SAGE 0.06 0.06 0.10 0.09 0.06
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average 20 seconds in a single CPU machine with 64-bit  Intel®  Xeon® Processor, 2.50 GHz and 256 GB Memory 
and GNN models take on an average 0.10 s on Tesla V100 GPU with 5120 cores and 16 GB HBM 2 for inference.

Conclusion
In this paper, we propose improved GNN architectures for modeling static mechanics behavior by efficiently 
capturing long-range interactions. We show that Edge augmented GNNs and Multi-GNNs can capture accurately 
and efficiently the constitutive behaviour of static elastic and hyper elastic materials thanks to their enhanced 
connectivity. Furthermore, by learning the physics in a reference coordinate system, our models are automatically 
rotation and translation invariant. With several numerical tests, we show that both our proposed architectures 
learn time-independent solid mechanics efficiently and generalize well to unseen materials, boundary conditions 
and domains. We note that the proposed approach for coordinate transformation can be easily used in any graph-
based architecture, as we demostrate for MeshGraphNets. Our approach represents an easily implementable 
solution for learning challenging time-independent physical systems using deep learning and, as such, it is a 
good candidate for simulating complex static systems in science and engineering.

Data availability
The simulation data generated and utilized in this manuscript is not readily available for distribution. However, 
the methods and the procedures for data generation are disclosed in the manuscript. The authors are willing to 
assist and provide support to generate data from the disclosed methods/procedures.
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