
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports

Mesh‑based GNN surrogates
for time‑independent PDEs
Rini Jasmine Gladstone 1, Helia Rahmani 2, Vishvas Suryakumar 2, Hadi Meidani 1,
Marta D’Elia 3* & Ahmad Zareei 2

Physics‑based deep learning frameworks have shown to be effective in accurately modeling the
dynamics of complex physical systems with generalization capability across problem inputs. However,
time‑independent problems pose the challenge of requiring long‑range exchange of information
across the computational domain for obtaining accurate predictions. In the context of graph neural
networks (GNNs), this calls for deeper networks, which, in turn, may compromise or slow down the
training process. In this work, we present two GNN architectures to overcome this challenge—the
edge augmented GNN and the multi‑GNN. We show that both these networks perform significantly
better than baseline methods, such as MeshGraphNets, when applied to time‑independent solid
mechanics problems. Furthermore, the proposed architectures generalize well to unseen domains,
boundary conditions, and materials. Here, the treatment of variable domains is facilitated by a novel
coordinate transformation that enables rotation and translation invariance. By broadening the range
of problems that neural operators based on graph neural networks can tackle, this paper provides the
groundwork for their application to complex scientific and industrial settings.

Numerical models for solving partial differential equations (PDEs) are crucial to scientific modeling in a broad
range of fields, including physics, biology, material science, and finance. While various techniques, such as finite
element methods, finite difference methods, finite volume methods, etc., have been developed as high-fidelity
solvers, accelerating and reducing their computational cost remains a challenge. Additionally, when the gov-
erning PDEs are unknown, predicting a physical system using classical techniques is not possible even when
observations are available. Recent developments in deep learning have enabled faster and accurate algorithms to
evaluate the response of a physical system by exploiting the governing equations, observational data, or both1,2.

Neural networks trained by adding the governing PDEs and boundary conditions to the loss function, called
physics informed neural networks (PINNs), are a prominent example of using deep-learning-based surrogate
models to learn solutions of physical system3–7. Here, the neural network is used as an approximate representation
of the solution of the PDE. While these surrogates are useful to find the specific solution of a PDE with a given
set of parameters, a slight modification of such parameters, boundary conditions, or domain geometry requires
re-training, making them less attractive in settings such as optimization, design, and uncertainty quantification.

Another class of neural network-based solvers is convolutional neural networks (CNNs) which uses snapshots
of observed data over a discretized domain to predict the physical solution. While such data-driven methods do
not require a priori knowledge of the governing PDE, they are often limited to the specific domain discretiza-
tion and cannot be easily generalized to other domain geometries. CNN-based methods include PDE-inspired
 architectures8, autoregressive dense encoder–decoder networks9, and symbolic multi-layer neural networks10.

In another class of data-driven, deep-learning-based surrogates, neural networks are used to learn a discre-
tization that is then used in classical solvers11–14. Specifically, the neural network learns a field used for interpola-
tion at coarse scales. Although these methods have been shown to improve the accuracy and further accelerate
traditional solvers, it should be noted that they are still limited by the initial discretization.

With the purpose of obtaining resolution invariance, a class of neural network-based PDE solvers focuses
on continuous graph representation of the computational domain15–19. In such representations, the continuous
nature of the network update guarantees the invariance of the architecture with respect to the resolution of the
data and the enhanced interaction among nodes, typical of graph-based networks, improves the accuracy of the
architecture for complex physical systems. Related works have shown that the location of the graph nodes can
be optimized to better learn the solution at different levels of precision20. Furthermore, some of these methods
and their extensions21,22, focus on learning a continuous mapping between input and output of a PDE and are
referred to as neural operators. These and other neural operators, such as DeepONets23, have shown significant
success in accurately predicting the solution of several PDEs and they generalize relatively well with respect

OPEN

1Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA. 2Meta Reality
Labs, Redmond, WA, USA. 3Pasteur Labs, Brooklyn, NY, USA. *email: marta.delia@simulation.science

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-53185-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

to the PDE input parameters. We mention that one advantage of using graph-based representations is that the
system’s dynamics can be recovered with sparse representation18,21,24.

Another class of networks that exploits graph-based representation is given by MeshGraphNet and its exten-
sions. Firstly introduced in25 for time-dependent problems and then extended to a multi-scale setting in26, these
mesh-based GNNs encode, in a connected graph, the mesh information and the corresponding physical param-
eters such as loading and boundary conditions, and model parameters. In addition to mesh-based approaches, it
is worth mentioning that particle-based methods and their graph representation have also been been successfully
used in physics simulations27. Here, the physical system is described using particles in a reduced-order-model
manner; the particles are then identified as nodes of a graph and a message passing neural network is used to
learn and compute the dynamics of the particles. Both these graph-based approaches can accurately approximate
physics simulation and generalize well to different resolutions and boundary conditions.

In this work we explore mesh-based GNN architectures; the latter exploit local (or short-range) interactions
between neighboring nodes to estimate the response. When the nodes of a GNN are associated to a PDE com-
putational domain, interactions between nodes can be interpreted as spatial interactions in the PDE domain.
As most physical systems involve local interactions, GNN-based surrogates are among the best candidates to
serve as effective simulator engines. However, when a physical system requires long-range interactions, such as
in static solid mechanics problems, standard mesh-based, GNN approaches typically fail at capturing the phys-
ics accurately. This happens because in general the exchange of information between distant nodes requires a
large number of message passing steps. This is unfavorable because of the poor scaling behaviors of GNNs with
respect to the number of layers. In the context of graph-based neural operators, this problem has been addressed
by using multi-resolution graphs to allow for faster propagation of information16.

Here, we build on MeshgraphNets and propose two GNN architectures that overcome the challenge of long-
range message passing without using a deep network. We introduce the Edge Augmented Graph Neural Network
(EA-GNN) and the multi-graph neural network (M-GNN). In EA-GNN, we introduce “virtual” edges that yield
faster information propagation resulting in better computational efficiency. In M-GNN we instead pursue a multi-
resolution approach, inspired by the multi-grid method and based on the Graph U-Net architecture28. Contrary
to the work proposed in26 we obtain the low resolution graph by removing nodes from the original mesh and by
adding new edges to second or third order neighbors. In this process, the nodes keep their original coordinate
attributes and the interactions with higher order neighbors are gradually added to the graph. Furthermore, in
order to make GNNs generalizable to different geometries, we introduce an invariant simulation coordinate
space by moving the physical systems to a simulation space that is invariant to translation and rotation (see29 for
a technique that enables the same properties in the context of graph-based neural operators). This process helps
faster training of GNNs and allows for generalization to new geometries.

Our major contributions include:

• A novel coordinate transformation method to make the proposed GNN invariant to rotation and translation,
and generalizable to new domain geometries.

• An edge augmentation strategy that accelerates message passing across the graph, enabling more efficient
training for problems involving long-range interactions.

• A multi-graph approach, where information is passed through different resolution graphs in a hierarchical
manner, resulting in faster propagation of messages across domain.

With the purpose of stressing similarities and advantages with respect to the literature we next report on similar
works and highlight substantial differences with the proposed approaches. First, the idea of augmenting a GNN
with new edges is not new. MeshGraphNets25, the architecture that inspires this work, introduces virtual edge
based on spatial proximity; we instead add edges to increase connectivity between nodes that are far apart. A
recent paper focused on cardiovascular applications30 introduces virtual edges that connect all internal nodes
with boundary nodes; although this modification is very powerful in one-dimensional settings, like the one
presented in the paper, it could become prohibitive in case of three-dimensional geometries. More in general,
we mention that edge augmentation is a well-established technique in the context of classification problems31,32.
Second, in the context of both mechanics and fluid dynamics, several authors have considered ideas similar to
ours to coarsen (and refine) the graph while training. For a mechanics application, papers33,34 introduce a network
model with a similar down- and up-sampling process, but a different aggregation step that does not necessarily
guarantee generalization with respect to new geometries. Furthermore, these papers do not guarantee translation
and rotation invariance. The idea of different resolution levels is also used in35 that introduces a multifidelity
GNN where the coarsening and refining operations happen before the graph is passed to the network. This work,
while valuable, has different objectives from ours, i.e. addressing the data generation burden. For fluid mechan-
ics applications, the papers36–39 introduce a down-sampling/up-sampling technique that presents an intrinsic
difference compared to ours, i.e., the down-sampling operation is established manually (based, for example, on
standard mesh coarsening), whereas our down-sampling operation is learned. This guarantees that only nodes
that carry relevant information are selected, making sure that no salient information is lost. In the context of
fluids, but with data compression purposes, a technique similar to ours in encoder–decoder form is proposed in40.

Background
Graph neural networks
Graph neural networks (GNNs) are a class of deep learning methods that operate on graph structures consist-
ing of nodes and edges41. GNNs use message passing between neighboring nodes in the graph to model the
interdependence of features at various nodes. They have been successfully used for prediction and classification

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

tasks at the level of graphs, edges, or nodes. In recent years, variants of GNNs such as graph convolutional net-
works (GCNs)42, graph attention networks (GATs)43, and graph recurrent networks (GRNs)44 have demonstrated
ground-breaking performances on various tasks. The expressive nature and superior performance of GNNs have
led to their application in a variety of domains where data is naturally represented with a graph structure, such
as in particle physics45, high energy physics detectors46, power systems47, etc. Additionally, GNN frameworks
have been able to simulate complex physical domains involving fluids, and rigid solids, and deformable materi-
als interacting with one another27. In MeshGraphNets, the mesh physical domain is represented using a mesh,
which is basically a graph on which GNNs learn to predict physics (see e.g.,25).

Challenges in modeling deformation of elastic and hyper elastic materials with GNNs
In this work, we consider the stationary elasticity and hyper-elasticity problems, with a special focus on the
Mooney–Rivlin hyper-elastic model48, even though our proposed approaches have the potential of performing
well for a broad class of elliptic partial differential equations. We seek to train GNN models that capture the
constitutive behavior of a physical system, rather than approximate the response for a fixed problem setting. To
this end, we expect the proposed GNN surrogates to perform well on varying domain geometries, boundary
conditions, loadings, and material properties.

A challenging aspect of developing surrogates for stationary mechanics problems (and elliptic PDEs in gen-
eral) is the fact that solution at any point depend on points that are farther away in the domain. In fact, the
solution in these problems can be expressed as integrals over the entire domain. This means that the GNN must
include connections between distant points within the network. In a way, the proposed architecture is designed
to enable fast message propagation between any points in the domain.

MeshGraphNet for physics simulations
MeshGraphNets25 take advantage of the mesh representations, which is extensively used for finite element simula-
tions for structural mechanics, aerodynamic problems, etc. With the development of adaptive meshing, accurate,
high-resolution simulations can be carried out for deformation of complex geometries with highly irregular
meshes. MeshGraphNets predict the dynamics of the physical systems by encoding the simulation state in meshes
into a graph structure using an encoder, approximating the differential operators that underpin the internal
dynamics of the physical systems using message passing steps of the graph neural network and using a decoder
to extract the node level dynamics information to update the meshes.

MeshGraphNet learns the forward model of the dynamic quantities of the mesh at time t + 1 given the current
mesh and meshes at previous time steps. The encoder encodes the current mesh into a graph, with mesh nodes
becoming graph nodes and mesh edges becoming bi-directional edges in the graph. They also add extra edges,
known as world edges, to learn external dynamics such as self-collision, contact etc., which are non-local to the
meshes. World edges are created by spatial proximity, within a fixed radius. Once the graph is created, node and
edge attributes are generated and encoded using a learnable encoder network. Next, the processor, consisting of
L graph net (GN) blocks that can do message passing operations, update the world edges, mesh edges and the
node features of the current graph. Finally, to predict the state at time t + 1 from the state at time t, a decoder
network, which is an MLP, is used to transform the updated node features to output features.

MeshGraphNets can accurately and efficiently model the dynamics of the physical systems. It also has good
generalization capability, and can be scaled up at inference time. However, they have not been tested on time-
independent problems such as static solid mechanics problems.

In26, an improved version of MGNs, Multiscale MGN, was proposed with the purpose of recovering the con-
cept of spatial convergence that characterizes mesh based discretizations and improving the training efficiency
when refining the mesh. This work takes inspiration from multigrid approaches from mesh based discretizations,
but its intrinsic architecture and scope are different from the one presented in this paper.

Methods
As explained in the previous section, solving time-independent solid mechanics problems requires fast propaga-
tion of information across all the degrees of freedom, since the deformation, or stress, of every point in space
depends on all the other points. Guaranteeing such propagation becomes computationally challenging as the
resolution of the computational domain increases. To address this challenge, when using GNNs as numerical
solvers, a natural solution is to increase the depth of the network. However, this approach is computationally
very expensive and may result in over-smoothing49, making the model harder to train, or causing vanishing/
exploding gradients50. To achieve fast propagation of information while avoiding these pitfalls, we propose two
approaches: (a) edge-augmentated graph neural network , and (b) multi-graph neural network. In the following
we describe each model separately.

(a) Edge augmentation: we refer to the first approach as “edge augmentation” of the existing graph. As the
graph is generated from a mesh, nodes are only connected to their neighbors; if two nodes are n hops away,
it requires n GN blocks for the message to be passed between these nodes51. Thus, as n increases, a deeper
network is required to achieve broad message propagation. To avoid increasing the depth of the network, we
increase the non-locality of the graph by introducing augmented edges between randomly selected nodes
(see Fig. 1c). This edge augmentation significantly reduces the number of hops required for the nodes to
gather messages from distant nodes, thus resulting in a smaller number of GN blocks for faster message
propagation.

(b) Multi-graph: this approach draws inspiration from multigrid methods for PDEs, whose foundation is a
hierarchy of discretizations (or meshes)52. By performing a series of graph down-sampling operations fol-

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

lowed by up-sampling operations, we apply the multigrid concept to graphs and pass information across
the computational domain in a hierarchical manner. In practice, the down-sampling operations correspond
to mesh coarsening and result in smaller graphs connecting points that are far away in the domain. On the
other hand, during up-sampling the information is redistributed across the entire graph. This approach
resembles the graph U-Net architecture used in28 for image processing tasks such as image classification
and segmentation.

For both approaches, we assume that the computational domain is a triangular mesh which undergoes a trans-
formation into a graph as detailed in “Data generation” and illustrated in Fig. 1.

Edge augmented graph neural network (EA‑GNN)
With the purpose of achieving faster propagation of information between nodes we select a set of nodes from
the graph and, if no edges exist between them, we add a bi-directional edge. We point out that, since this edge is
not similar to other edges, we add an extra feature to the edge attributes to indicate that the edge belongs to the
augmentation set. The number of additional edges in the augmented graph is a hyperparameter that is manually
tuned during the training. Moreover, vertices of augmented edges are selected randomly, by following a uniform
distribution. It is to be noted that edges have not been added based on spatial proximity53 as that would not
improve the message propagation to farther nodes. Instead, sparse and random edges have been added all over
the domain, thus improving the long-range interactions between the nodes. As more sophisticated sampling
methods, such as farthest point sampling54, did not yield significant improvements in the performance of the
model, we employed random sampling of nodes in all of our experiments.

The proposed EA-GNN has the same high-level network architecture as the MeshGraphNet25 whose building
blocks are: (1) an encoder, (2) m GN blocks, and (3) a decoder. As described in “Data generation”, for the time-
independent problems considered in this work, with the purpose of making the graph translation and rotation
invariant, before the graph is created, the mesh is transformed to be in the principal axis coordinate system
(referred to as simulation coordinate system). Then, the mesh is converted into a graph structure by identifying
the vertices of the mesh as nodes and the connections between the vertices in the mesh as the edges (see Fig. 1a,b).
The node attributes are nodal positions in simulation coordinates (x, y), nodal type (interior or boundary), type
of the boundary condition applied (Dirichlet homogenous and non-homogenous, Neumann), direction and

+

+

+

+

+

Figure 1. (a) Schematic of a 2D time-independent (static) solid mechanics problem. (b) Physical domains are
transferred to a normalized coordinate. (c) Schematic of edge-augmented graph neural networks (agumented
edges are marked as dashed line) where the normalized graph is passed to an MLP encoder and multiple
passes of GN blocks and then a decoder to recover the displacement and stress vectors across the domain. (d)
Schematic of multi-graph neural network, where features after encoding, pass through M-Net block with down-
sampling/upsampling of the mesh.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

magnitude of the boundary conditions, a flag for body forces and its magnitude and direction all in simulation
coordinate system. The edge attributes are the Euclidean distance between the nodes, and positional difference
in x and y directions, i.e., �x = x2 − x1 and �y = y2 − y1.

Once the graph is generated, the node attributes and edge attributes are encoded into a latent space through
an encoder. The encoded nodes and edges attributes are then passed through m GN blocks and updated. Each
GN block consists of an edge update module and a node update module. Let u′i be the encoded node attribute
vector of node i and u′j be the encoded node attribute vector for node j, such that j ∈ M(i) , where M(i) denotes
the neighborhood of node i. Let e′ij be the encoded edge attribute vector for the edge between i and j. The edge
update module, χ , is a MLP that receives the attributes of the nodes connecting the edge along with the edge
attributes and returns the updated attributes, i.e. e′ij = χ(e′ij).

The node update module consists of three MLPs, φ , γ and β ; the encoded node attributes of node i, u′i are
updated as follows:

Between each GN block, a skip connection is added to avoid over-smoothing50. The following equation describes
the update for two consecutive GN blocks of the network, GNk and GNk+1:

Finally, the updated node attributes, u′ is passed through a decoder to return the nodal deformation or stress
values. Both the encoder and decoder functions are MLP networks.

Multi‑graph neural network (M‑GNN)
This approach takes inspiration from multigrid solvers and relies on hierarchical learning. The architecture has
three components: (1) an encoder, (2) an M-Net block, and (3) a decoder (see Fig. 1d). Encoder and decoder
have the same network architecture and functionality as in EA-GNN; however, for reasons that are clarified later
in this section, here we do not consider edge attributes.

The M-Net block starts with a single graph network block, m-GN, to update the encoded node attributes
received from the encoder. The m-GN block uses GraphSAGE operator55 for the node update. The encoded node
attributes, u′ , are updated through m-GN block as follows.

where β is a MLP. The updated node attributes, u′ , are then passed through a series of alternating layers of
down-sampling operations and m-GN blocks. This is followed by a series of alternating up-sampling operations
and m-GN blocks. The number of down-sampling and up-sampling layers is determined by the multi-graph
depth hyperparameter, d. The output of the down-sampling layer is added to the output of the corresponding
up-sampling layer leading to the same mesh refinement (or graph size). Note that all the m-GN block updates
have the same structure reported in Eq. (3) and that the final up-sampling layer is such that the graph recovers
its original size.

The down-sampling layer down-samples the data by adaptively selecting a subset of nodes corresponding to
a coarser mesh; the number of nodes that are down-sampled is determined by the hyperparameter r, indicating
the down-sampling ratio. For the adaptive selection of nodes, we use the “U-net sub-sampling” algorithm28.
Specifically, the node attributes are projected onto the trainable vector p using the scalar projection uTi p and top
k nodes are selected based on the projected values. Since the scalar product measures the amount of information
retained by node i when projected onto p , sampling the top k nodes ensures that the smaller graph retains the
maximum information. The up-sampling operation up-samples the graph by recording the locations of nodes
selected in the corresponding down-sampling layer and uses this information to place the nodes back to their
original positions in the graph.

In order to make sure that there are no disconnected nodes after down-sampling, as well as to improve the
connectivity between the nodes, we compute the lth graph power, similarly to28, and use the resulting graph.
This operation builds links between nodes which are at-most l hops away in the graph. This could be done by
multiplying the adjacency matrix of the graph by itself l times. For the training, we choose l = 3 , and use the
augmented graph with better connectivity for every down-sampling layer. This step is particularly important in
mesh-based physics simulations for uninterrupted propagation of information between nodes.

The GraphSAGE operator55, used in the m-GN block, is a message aggregation algorithm which considers
only the node attributes. In fact, as nodes are down-sampled, existing edges are lost and new edges are introduced
to improve the connectivity. This makes updating edge attributes (for existing and newly established edges) a

(1)

mij = φ(u′i , u
′
j , e

′
ij)

u′i = γ (u′i ,
1

N

∑

j∈M(i)

mij)

u′i = u′i + β(u′i).

(2)

u′
(k)
, e′

(k)
= GNk(u

′(k−1)
, e′

(k−1)
)

u′
(k)

= u′
(k)

+ u′
(k−1)

u′
(k+1)

, e′
(k+1)

= GNk+1(u
′(k), e′

(k)
)

u′
(k+1)

= u′
(k+1)

+ u′
(k)
.

(3)
u′i = GraphSAGE(u′i , u

′
j), ∀j ∈ M(i)

u′i = u′i + β(u′i),

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

nontrivial task. Since the nodal positions are considered as node attributes, the model can calculate the edge
attributes such as Euclidean distance and positional difference indirectly from the node attributes. Thus no
information is lost due to the removal of edge attributes.

Results and discussion
Data generation
The data generation process consists of three steps: (1) mesh generation, (2) finite element simulations, and (3)
graph transformation. We generate two-dimensional random geometries using Bezier curves to ensure variability
and nonlinearity in the domains. Few sampled geometries are shown in Fig. 2. Different boundary conditions
(Dirichlet and Neumann) are assigned at randomly selected locations on the boundary. The length, location,
magnitude and direction of the boundary conditions are randomly selected for each geometry. We also assign
a body force at a randomly selected interior location of the domain. A uniform triangulated mesh is generated
using the Gmsh package in python56. Using Abaqus57, we carry out finite element simulations to obtain nodal
deformation and stress values.

Coordinate transformation
As the output values (deformation and stress) are coordinate dependent and every sample in the training set is
characterized by a different geometry, it is necessary to assign the nodal coordinates as node attributes. How-
ever, this makes the graph translation and rotation variant, i.e. if the mesh is translated or rotated, the network
would consider it as a different geometry and outputs different deformation and stress values. This makes the
training process difficult as it requires redundant data in training to make the model invariant to rotation and
translation. To resolve this issue, we use group equivariance as our inductive bias where we ensure the graph is
invariant to translation and rotation by transforming the geometry into the principal axis coordinate system.
As such, the nodal coordinates stay the same when the geometry is rotated or translated, and as a result, the
transformed domain is invariant to the rotation and translation. From now on, we refer to these coordinates as
“simulation coordinates” (SC).

Let X ∈ R
N∗2 be the original nodal coordinates of the graph and XSC ∈ R

N∗2 be the corresponding simula-
tion coordinates, where N is the number of vertices in one mesh. First, the coordinates are made translation
invariant by moving the center of the original coordinate system to the centroid of the graph, i.e, Xc = X − X .
Here, X is the centroid of the graph calculated as X =

∑N
n=1 Xn/N , where N is the total number of nodes in the

graph. Further, the coordinates are made rotation invariant by rotating the coordinate system to principal axes.
This is done by calculating eigenvalues and eigenvectors of the matrix XT

c Xc , denoted by �1, �2, �3 and v1, v2, v3
respectively, where �1 ≥ �2 ≥ �3 . Let B be a matrix composed of the eigenvectors, B = [v1, v2, v3] . The simulation
coordinates, XSC can be calculated as XSC = XcB.

Data augmentation
To improve the generalization capability of the model with respect to unseen geometries, we introduce two
data-augmentation strategies. First, we use both the Delaunay and the “Packing of Parallelograms” algorithms
for mesh generation. Second, we add noise to nodal coordinates by shifting the nodal coordinates by adding to

Figure 2. A few samples of the random geometry generated using Bezier curves for training and validation of
the models.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

each node a random value sampled from the normal distribution N(0, 0.01) which is equivalent to 10% of edge
distance on average.

Data conversion
Nodal deformations and stress values are assigned to the node and edge attributes for the mesh-to-graph con-
version outlined in “Edge augmented graph neural network (EA-GNN)”. For GNN with edge augmentation,
augmented edges are added to the existing edge connections together with an augmentation flag (1 for augmented
edges and 0 otherwise) as edge attribute. The node and edge attributes along with the edge connections are used
to generate the graph objects using PyTorch Geometric.

Model architectures
EA‑GNN
During graph creation, edge augmentation is done by sampling nodes from the graph and adding bi-directional
edges between them, if there are no existing edges. The percentage of augmented edges is determined by the
hyper parameter, augmented-edge-percentage, Aperc . It is to be noted that Aperc is the percentage of the existing
edges. Therefore, the total number of edges after augmentation is Ne + Aperc × Ne , where Ne is the total number
of existing edges. We use Aperc = 20% for our experiments.

The encoders for the node and edge attributes of the augmented graph are MLPs with a single hidden layer
and a ReLU activation function. The MLP for node attributes has a network architecture 14− 64− 128 (i.e., 14
input features, 64 nodes in the hidden layer and 128 output features) and that for edge attributes has network
architecture 4− 64− 128 . The encoded graph is then passed through a series of alternating layers of Graph
Net (GN) blocks and MLP layers. A total of 6 GN blocks are added in the network. Each GN block consists
of (a) Edge update module—the edge update function, χ , is a MLP, with a single hidden layer architecture
3× 128− 128− 128 , and ReLU activation function. The size of the input is due to concatenating the edge
attributes (128 features) and the attributes of the two nodes connected by the edge (2× 128 features). The output
consists of the updated edge attributes of size ne × 128 , where ne is the total number of edges. (b) Node update
module—this module consists of three functions, φ for message passing, γ for message aggregation and node
update and β for the final node update. All the three functions are MLPs with a single hidden layer and ReLU
activation functions. The function φ has network architecture 2× 128− 128− 128 , where the input features are
the concatenation of the attributes of the neighboring node and the corresponding edge attributes. The messages
from all the neighboring nodes are added and concatenated to the node attributes of the selected node and the
result is given as the input to γ to calculate the node attributes of the corresponding nodes. Thus, the network
architecture of γ is 2× 128− 128− 128 . The output from γ is passed to β to get the updated node attributes as
shown in Eq. (1). The MLP representing β has network architecture 128− 128− 128.

The parameters of all the four functions (χ , φ , γ , β) are shared across all the GN blocks. After each GN block,
a skip connection is added as shown in Eq. (2). The updated node attribute from the final GN block is the input
to the decoder, a MLP with a single hidden layer, ReLU activation function, and architecture 128− 64− 2 for
the displacement (ux and uy) and 128− 64− 3 for the stress (σxx , σxy and σyy). We use a dropout layer after the
encoder and between each GN block with a dropout percentage of 0.1 to reduce overfitting.

M‑GNN
M-GNN has an encoder architecture similar to that of EA-GNN. However, since edge attributes are not used,
the encoder is required only for the node attributes. The encoder is a MLP with architecture 14− 64− 128 . The
encoded graph is passed through a message aggregation block followed by a ReLU activation layer. The message
aggregation block used here is the GraphSAGE operator55, which updates the node attributes for the full graph.

This is followed by a series of down-sampling modules consisting of the following operations: (a) connectiv‑
ity enhancement—the connectivity of the graph is enhanced by connecting the nodes that are 3 hops away. This
is done by multiplying the adjacency matrix, A by itself twice, i.e. Aupd = A× A× A . This ensures that we do
not have any disconnected nodes i.e., all the nodes are connected to at least one neighbor, allowing for effective
message exchange. (b) Down‑sampling—a layer that projects the node attributes onto a one-dimensional, train-
able projection vector p , and samples k nodes based on the projected values. The value of k is determined by the
down-sampling ratio, r. For the experiments, we have set r = 0.6 . (c) Node update—a block consisting of the
GraphSAGE operator and the function β , as described in Eq. (3).

The number of down-sampling modules is determined by the multi-graph depth hyperparameter, d. After
tuning of the hyperparameters, we have set this value to be d = 3 . The depth and pool ratio for the network
are chosen such that our A-3 connected graphs are not overpopulated. These are followed by same number of
up-sampling modules, consisting of the following operations: (a) skip connection—the node attributes from the
corresponding down-sampling layer are added to the updated node attributes. (b) Up‑sampling—a layer that
adds the previously removed nodes back to the graph, with their updated node attributes. (c) Node update—a
block consisting of the GraphSAGE operator and the function β , as described in Equation 3.

The final pooling module restores the full graph with all the nodes with updated node attributes. This is
decoded to return the nodal displacement or stress using the Decoder, a network with the same architecture
used for EA-GNN. Similar to EA-GNN, we use a dropout layer after the encoder and between each GN block
with a dropout percentage of 0.1 to reduce overfitting.

Experimental set up
By using the data generation process detailed in section “Data generation”, we generate the following three data-
sets and carry out data augmentation as explained in “Data generation”. (a) We generate 3000 random geometries

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

and run 10 variations of boundary conditions per geometry assuming a homogeneous and linear elastic material
with constant Young’s modulus E = 100.0 and Poisson’s ratio ν = 0.3 . This dataset is used to evaluate the ability
of the model to capture geometrical nonlinearities. (b) We generate 5000 random geometries and assume a non-
linear hyper-elastic material. We again consider 10 different boundary conditions per geometry. The nonlinear
material model of choice is the Mooney–Rivlin model58, with material properties C01 = 0.3 and C10 = 0.0359.
Training with this dataset enables us to test the network performance for system nonlinearities. (c) We generate
10,000 random geometries with varying hyper-elastic material properties and again consider 10 different bound-
ary conditions per geometry. The material properties for each geometry are randomly selected from a uniform
distribution, C01 ∼ U (0.034, 0.34) and C10 ∼ U (0.005, 0.05) . We use this dataset to train and test our architec-
ture on generalization with respect to unseen materials. For all the datasets, there are, on average, 1100 nodes per
graph/mesh. The mesh resolution length (distance between two nodes in the graph) is approximately 0.1. The
message passing distance which is calculated by the number of hops needed to connect all the nodes is greater
than 10 for graphs of this size. This implies at least 10 message-passing blocks are needed for complete passing
of information across the graph for the baseline GNN with no edge augmentation or multi-scale architecture.

For all the experiments, 70%, 10%, 20% of the data is used for training, validation, and testing, respectively.
For each dataset we train four networks to predict the nodal deformations, ux and uy . As a baseline model (B)
we consider MeshGraphNet. Since our simulation coordinate transformation plays an important role in the
generalization properties of our model, we further consider a version of MeshGraphNet trained after such a
transformation and refer to it as B + SC. We additionally provide results for our edge augmented graph neural
network using simulation coordinates (EA-GNN + SC), and multi-graph neural network using simulation coor-
dinates (M-GNN + SC). Similarly, the four networks are trained to predict nodal stress values, σxx , σxy and σyy.

While the baseline model is trained using mean squared error loss function as used in25, we train the networks
B+SC, EA-GNN+SC and M-GNN+SC with a scaled mean absolute error loss function L. The scaling depends
on a combination of the boundary conditions associated with each sample; formally,

where y and ŷ are respectively the ground-truth and the predicted outputs and dn and nn are the Dirichlet loading
and Neumann displacement vectors of the n-th sample.

For all networks we use the Adam optimizer and we train all the networks for 1500 epochs on a Tesla V100-
SXM2. For B, B+SC and EA-GNN+SC, we prescribe a learning rate ranging from 1E−4 to 1.5E−4 and a weight
decay of 1E−5. The learning rate is decreased using the cosine annealing scheduler with warm restart60, which
avoids stagnation in local minima. For M-GNN+SC, we use a learning rate ranging from 2E−3 to 3E−3 with a
weight decay of 1E−6.

Numerical results
We test our proposed models on three datasets detailed in “Experimental set up” and compare them with the
baseline models. In order to compare the prediction power of our models, we define relative error as

where f is the variable of interest (either displacement values ux , uy or stress values σxx , σyy , σxy) and f̂ is the
predicted value of f using our network.

Table 1 shows the relative errors on the test dataset for the predicted nodal displacement components (ux
and uy) and nodal stress components (σxx , σyy and σxy). We have also included the relative errors in the pre-
dicted displacement magnitude (u) and von Mises stress (σv). Here, E stands for linear elastic model and HE for
hyper-elastic (Mooney–Rivilin) material model. Additionally, S stands for single material and it means that a
single material is used across the entire dataset, whereas V stands for varying material and it means that varying
materials are used across the data set.

As shown in Table 1, both EA-GNN and M-GNN perform significantly better than the baseline models either
with or without coordinate transformation, i.e., B and B+SC respectively. This shows that both the edge augmen-
tation and the multi-graph modifications have the ability to further improve message passing. We further observe
that by adding the coordinate transformation, the performance of the baseline model improves significantly,
however, it is still very large compared to our proposed approaches. This comparison allows us to distinguish
the improvement brought by the coordinate transformation and the graph modifications. It is interesting to see
that the edge augmentation technique consistently performs better than all other methods, as highlighted by the
bold values used for the best performing models. Comparing the rows of single linear elastic material (E,S) with
single nonlinear hyper-elastic materials (HE,S), we find that the performance of all the models slightly decrease
and the relative absolute errors increases as expected. The non-linearity introduces new complexities into the
system which requires more data for the learning. Note that adding further complexity by varying the nonlinear
material among test cases (i.e., HE, V), we find that the performance stays the same and the proposed model can
generalize to unseen material properties. The similar test performance of our models on HE, V test-dataset, as
opposed to the performance of the baseline methods, shows the generalization capabilities of our model, which
is indeed able to learn the true physics and predict accurate results for unseen nonlinear material properties.
We also observe that the errors of displacement magnitude and von Mises stress remain closely aligned with the
component-wise errors for displacement and stress across all the datasets and models. Additionally, in Table 2

(4)L(θ) =
1

n

N∑

n=1

(�dn�ℓ1 + �nn�ℓ1)�yn − ŷn�ℓ1 ,

(5)e(f) =
�f̂ − f �ℓ1

�f �ℓ1
,

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

we report the maximum relative errors e across the testing dataset and we notice that even the worst-case errors
are low.

In Tables 3 and 4, we report the relative ℓ∞ error and the corresponding 90th percentile values (p90) over all
degrees of freedom for the predicted displacement and stress respectively. Although the ℓ∞ norms are significant
across all the models, it is to be noted that these high errors correspond to areas where the displacement and
stress values are at least 2 orders of magnitude lower than that of the average values across the dataset. The 90th
percentile error values reported in Tables 3 and 4 also confirm that the majority of the DOFs have lower error
values. Moreover, we point out the maximum absolute error for the prediction of the von Mises stress for our
models is very low. For reference, the absolute errors corresponding to the maximum relative errors for the σv
prediction for the three datasets using EA-GNN are 0.003, 0.09, 0.08 and using M-GNN are 0.001, 0.07, 0.09.
Therefore, we argue that these deviations are of less critical concern from an engineering-application perspective
as they are associated with areas in the domain that undergo very small displacements and stresses.

In addition to error values, we show the loss values for the test dataset in correspondence of all the models for
both the displacement, ux , uy and the stress values, σxx , σyy , σxy in Fig. 3a,b respectively. The lines represent the
moving average, while the shadow corresponds to the variance. The sudden jumps in the loss values observed
in M-GNN and EA-GNN correspond to the annealing process. Overall, we find that the coordinate transforma-
tion, improves the training of the baseline model, however, great boost in performance is only achieved when
considering Edge Augmentation or Multi-Graph approach.

Next, in order to evaluate the generalization capability of our models and confirm that the models have indeed
learned the true physics, we test the trained networks on out-of-distribution datasets, i.e. datasets that are not
from the distribution used in training. To this end, we consider three out-of-sample distributions: (a) smaller/
larger physical domains characterized by half or double the domain size with the same mesh characteristic length.
The results for scale = 0.5 and 2.0 are shown in Table 5. (b) New Dirichlet and Neumann boundary conditions
applied at different sections of the boundary. Specifically, Dirichlet and Neumann boundary conditions are

Table 1. Relative error in predicting nodal displacement components, ux , uy , and displacement magnitude, u,
as well as in nodal stress components, σxx , σxy , σyy and von Mises stress, σv , given different linear and nonlinear
material selection and models.

Mat. Model Param. e(ux) ↓ e(uy) ↓ e(u) ↓ e(σxx) ↓ e(σyy) ↓ e(σxy) ↓ e(σv) ↓

E,S B 7.2e5 0.64 0.63 0.60 0.78 0.79 0.49 0.57

E,S B+SC 7.2e5 0.25 0.26 0.23 0.30 0.30 0.19 0.22

E,S EA-GNN+SC 7.2e5 0.05 0.05 0.04 0.09 0.09 0.05 0.05

E,S M-GNN+SC 2.8e5 0.13 0.13 0.12 0.17 0.18 0.11 0.10

HE,S B 7.2e5 0.81 0.81 0.81 0.88 0.88 0.64 0.62

HE,S B+SC 7.2e5 0.33 0.34 0.32 0.30 0.32 0.29 0.28

HE,S EA-GNN+SC 7.2e5 0.08 0.09 0.07 0.11 0.13 0.09 0.10

HE,S M-GNN+SC 2.8e5 0.16 0.16 0.16 0.18 0.19 0.15 0.15

HE,V B 7.2e5 0.73 0.74 0.72 0.92 0.91 0.85 0.86

HE,V B+SC 7.2e5 0.28 0.29 0.28 0.39 0.39 0.29 0.30

HE,V EA-GNN+SC 7.2e5 0.09 0.09 0.08 0.12 0.12 0.09 0.10

HE,V M-GNN+SC 2.8e5 0.16 0.15 0.14 0.18 0.20 0.16 0.15

Table 2. Maximum relative error in predicting nodal displacement components ux and uy and nodal stress
components σxx , σxy , σyy over the testing dataset given different linear and nonlinear material selection and
models.

Mat. Model |e(ux)|max ↓ |e(uy)|max ↓ |e(σxx)|max ↓ |e(σyy)|max ↓ |e(σxy)|max ↓

E,S B 0.84 0.86 0.90 0.91 0.84

E,S B+SC 0.53 0.59 0.56 0.55 0.49

E,S EA-GNN+SC 0.15 0.17 0.19 0.19 0.17

E,S M-GNN+SC 0.30 0.31 0.35 0.34 0.31

HE,S B 1.10 1.12 1.20 1.20 0.99

HE,S B+SC 0.69 0.70 0.66 0.68 0.63

HE,S EA-GNN+SC 0.21 0.24 0.22 0.22 0.17

HE,S M-GNN+SC 0.35 0.36 0.38 0.37 0.34

HE,V B 0.87 0.90 1.25 1.24 1.03

HE,V B+SC 0.61 0.63 0.70 0.75 0.65

HE,V EA-GNN+SC 0.20 0.23 0.21 0.19 0.17

HE,V M-GNN+SC 0.33 0.34 0.37 0.37 0.32

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

Table 3. Maximum and 90th quartile values of relative error, across all degrees of freedom, in the testing
dataset, for predicting nodal displacements, ux , uy , given different linear and nonlinear material selection and
models.

Mat. Model |e(ux)|∞ ↓ |e(uy)|∞ ↓ p90(e(ux)) ↓ p90(e(ux)) ↓

E,S B 92.14 90.78 0.87 0.88

E,S B+SC 65.22 64.29 0.61 0.63

E,S EA-GNN+SC 23.28 25.17 0.21 0.23

E,S M-GNN+SC 40.22 41.57 0.39 0.38

HE,S B 103.45 101.21 1.06 1.12

HE,S B+SC 70.11 69.12 0.72 0.73

HE,S EA-GNN+SC 30.10 31.21 0.26 0.27

HE,S M-GNN+SC 43.44 45.76 0.43 0.45

HE,V B 93.11 92.32 0.88 0.90

HE,V B+SC 67.87 66.39 0.65 0.67

HE,V EA-GNN+SC 32.29 31.65 0.28 0.27

HE,V M-GNN+SC 42.22 40.98 0.40 0.38

Table 4. Maximum and 90th quartile values of relative error, across all degrees of freedom, in the testing
dataset, for predicting nodal stress components, σxx , σyy and σxy , given different linear and nonlinear material
selection and models.

Mat. Model |e(σxx)|∞ ↓ |e(σyy)|∞ ↓ |e(σxy)|∞ ↓ p90(e(σxx)) ↓ p90(e(σyy)) ↓ p90(e(σxy)) ↓

E,S B 110.32 111.97 105.44 0.98 0.98 0.92

E,S B+SC 70.31 68.82 61.55 0.63 0.64 0.60

E,S EA-GNN+SC 29.73 31.85 24.76 0.26 0.26 0.22

E,S M-GNN+SC 45.51 46.11 40.98 0.42 0.44 0.38

HE,S B 120.40 119.71 109.26 1.14 1.15 1.05

HE,S B+SC 68.88 69.12 64.71 0.73 0.73 0.69

HE,S EA-GNN+SC 29.85 30.56 27.90 0.25 0.25 0.23

HE,S M-GNN+SC 46.39 44.11 40.87 0.47 0.47 0.42

HE,V B 123.32 123.89 111.63 1.17 1.17 1.06

HE,V B+SC 70.47 72.39 65.24 0.79 0.84 0.72

HE,V EA-GNN+SC 30.21 29.40 28.10 0.25 0.26 0.24

HE,V M-GNN+SC 45.22 43.98 38.36 0.47 0.45 0.40

Figure 3. Loss on testing data for predicting (a) deformation and (b) stress for elastic model with single
material for four models—B, B+SC, EA-GNN+SC and M-GNN+SC.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

applied at disconnected sets of boundary nodes as opposed to connected sets. The results for out-of-distribution
boundary conditions are shown Table 5 with the label BC. (c) A combination of all the above along with random
rotation and translation, i.e. the graphs from the above data are translated and rotated to a different coordinate
system to evaluate if the models are rotation and translation invariant. The results for rotation and translation
are also presented in Table 5 with label Rot + Tra.

The first observation is that the training based on simulation coordinates helps the generalization on all fronts.
Next, we observe that EA-GNN consistently outperforms other architectures, followed by M-GNN, both evalu-
ated in simulation coordinate system. Both EA-GNN and M-GNN have relative errors close to the in-distribution
testing errors from Table 1 for half scaling. The models perform worse for the double scaling case, as almost half
of the graph corresponds to coordinate positions the model has not seen before. The errors for the rotation and
translation do not change for B+SC, EA-GNN+SC and M-GNN+SC as the graphs are transformed to the simu-
lation coordinate system before they are fed into the model and as expected the models perform well, as long as
they are trained using simulation coordinates. Across all the cases, the baseline model B consistently performs
the worst, with errors 1.5–2 times bigger than B+SC. This is the only model which is not invariant to translation
and rotation, as can be observed from the higher errors for rotation and translation case for B.

Our results indicate that M-GNN consistently under performs compared to EA-GNN. To address this con-
cern, one should consider both the choice of the m-GN block and the pooling/unpooling algorithm. We address
the former first. We carry out an ablation study to verify if EA-GNN is consistently performing better than
M-GNN because EA-GNN uses edge attributes in the GNN layer while M-GNN uses a GraphSAGE layer that
does not involve edge attributes. For this, we trained EA-GNN to predict displacement and stress for elastic
dataset with GraphSAGE as the message propagation GN block. Since GraphSAGE does not take edge attrib-
utes, the network does not differentiate between real and augmented edges. The results of this experiment can
be found in Table 6. The results are similar to the reported results for EA-GNN in Table 1. This is an indication
that the better performance of EA-GNN is due to the addition of the augmented edges, and it is not impacted
by the selection of the message propagation algorithm.

Regarding the choice of the pooling/unpooling algorithm, the method used in this paper has been successfully
used for coarsening GNNs’ graphs for fluid dynamics simulations40. While this suggests that this choice is very
promising for PDE regression problems, one alternative to a learned pooling selection is to consider the relative
spatial distance between vertices in the parent graph. This approach has been considered in33,38,61. We stress that
a complete comparison with state-of-the-art methods is fundamental to fully understand our model’s capabili-
ties; given this limitation in the presented comparison studies, the integration of distance-based approaches is
the subject of our current studies.

From all these experiments, we can infer that both EA-GNN and M-GNN are able to successfully learn the
underlying physics of the data and generalize well to unseen domains, geometries, and boundary conditions,
which the baseline MeshGraphNet model fails at. Training and evaluating the models in simulation coordinate
system enables them to be invariant to rotation and translation, which makes these models an effective tool for
faster and accurate physics simulations specially for time-independent physics simulations that require long-
range interaction between different parts of the domain. In terms of computational time, Abaqus takes on an

Table 5. Relative error in predicting nodal deformation for various out of sample distributions of data.

Model B B+SC EA-GNN+SC M-GNN+SC

Scale = 0.5

e(ux) 0.87 ± 0.56 0.47 ± 0.29 0.09 ± 0.07 0.20 ± 0.11

e(uy) 0.96 ± 0.64 0.47 ± 0.33 0.09 ± 0.07 0.20 ± 0.11

Scale = 2

e(ux) 1.09 ± 0.67 0.85 ± 0.41 0.22 ± 0.12 0.29 ± 0.11

e(uy) 0.95 ± 0.51 0.76 ± 0.33 0.21 ± 0.10 0.28 ± 0.09

BC

e(ux) 0.87 ± 0.55 0.57 ± 0.42 0.11 ± 0.08 0.22 ± 0.10

e(uy) 0.95 ± 0.65 0.60 ± 0.43 0.13 ± 0.09 0.24 ± 0.10

Rot + Tra

e(ux) 0.91 ± 0.69 0.57 ± 0.42 0.11 ± 0.08 0.22 ± 0.10

e(uy) 1.04 ± 0.78 0.60 ± 0.43 0.13 ± 0.09 0.24 ± 0.10

Table 6. Ablation study using GraphSAGE as the GN block for EA-GNN in predicting nodal deformation and
stress.

Model e(ux) e(uy) e(σxx) e(σyy) e(σxy)

EA-GNN 0.05 0.05 0.09 0.09 0.05

EA-GNN with graph-SAGE 0.06 0.06 0.10 0.09 0.06

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

average 20 seconds in a single CPU machine with 64-bit Intel® Xeon® Processor, 2.50 GHz and 256 GB Memory
and GNN models take on an average 0.10 s on Tesla V100 GPU with 5120 cores and 16 GB HBM 2 for inference.

Conclusion
In this paper, we propose improved GNN architectures for modeling static mechanics behavior by efficiently
capturing long-range interactions. We show that Edge augmented GNNs and Multi-GNNs can capture accurately
and efficiently the constitutive behaviour of static elastic and hyper elastic materials thanks to their enhanced
connectivity. Furthermore, by learning the physics in a reference coordinate system, our models are automatically
rotation and translation invariant. With several numerical tests, we show that both our proposed architectures
learn time-independent solid mechanics efficiently and generalize well to unseen materials, boundary conditions
and domains. We note that the proposed approach for coordinate transformation can be easily used in any graph-
based architecture, as we demostrate for MeshGraphNets. Our approach represents an easily implementable
solution for learning challenging time-independent physical systems using deep learning and, as such, it is a
good candidate for simulating complex static systems in science and engineering.

Data availability
The simulation data generated and utilized in this manuscript is not readily available for distribution. However,
the methods and the procedures for data generation are disclosed in the manuscript. The authors are willing to
assist and provide support to generate data from the disclosed methods/procedures.

Received: 9 May 2023; Accepted: 29 January 2024

References
 1. Thuerey, N. et al.Physics‑based Deep Learning (WWW, 2021).
 2. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
 3. Lagaris, I. E., Likas, A. & Fotiadis, D. I. Artificial neural networks for solving ordinary and partial differential equations. IEEE

Trans. Neural Netw. 9, 987–1000 (1998).
 4. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).
 5. Sirignano, J. & Spiliopoulos, K. Dgm: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375,

1339–1364 (2018).
 6. Yu, B. et al. The deep ritz method: A deep learning-based numerical algorithm for solving variational problems. Commun. Math.

Stat. 6, 1–12 (2018).
 7. Khoo, Y., Lu, J. & Ying, L. Solving parametric pde problems with artificial neural networks. Eur. J. Appl. Math. 32, 421–435 (2021).
 8. Ruthotto, L. & Haber, E. Deep neural networks motivated by partial differential equations. J. Math. Imaging Vis. 62, 352–364 (2020).
 9. Geneva, N. & Zabaras, N. Modeling the dynamics of pde systems with physics-constrained deep auto-regressive networks. J.

Comput. Phys. 403, 109056 (2020).
 10. Long, Z., Lu, Y. & Dong, B. Pde-net 2.0: Learning pdes from data with a numeric-symbolic hybrid deep network. J. Comput. Phys.

399, 108925 (2019).
 11. Bar-Sinai, Y., Hoyer, S., Hickey, J. & Brenner, M. P. Learning data-driven discretizations for partial differential equations. Proc.

Natl. Acad. Sci. 116, 15344–15349 (2019).
 12. Kochkov, D. et al. Machine learning-accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. 118, e2101784118 (2021).
 13. Zhuang, J., Kochkov, D., Bar-Sinai, Y., Brenner, M. P. & Hoyer, S. Learned discretizations for passive scalar advection in a two-

dimensional turbulent flow. Phys. Rev. Fluids 6, 064605 (2021).
 14. Han, J., Jentzen, A. & Weinan, E. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad.

Sci. 115, 8505–8510 (2018).
 15. Li, Z. et al. Neural operator: Graph kernel network for partial differential equations. arXiv: 2003. 03485 (arXiv preprint) (2020).
 16. Li, Z. et al. Multipole graph neural operator for parametric partial differential equations. Adv. Neural. Inf. Process. Syst. 33, 6755–

6766 (2020).
 17. You, H., Yu, Y., D’Elia, M., Gao, T. & Silling, S. Nonlocal kernel network (nkn): A stable and resolution-independent deep neural

network. J. Comput. Phys. 469, 111536 (2022).
 18. Iakovlev, V., Heinonen, M. & Lähdesmäki, H. Learning continuous-time pdes from sparse data with graph neural networks. arXiv:

2006. 08956 (arXiv preprint) (2020).
 19. Belbute-Peres, F. D. A., Economon, T. & Kolter, Z. Combining differentiable pde solvers and graph neural networks for fluid flow

prediction. In International Conference on Machine Learning, 2402–2411 (PMLR, 2020).
 20. Alet, F. et al. Graph element networks: Adaptive, structured computation and memory. In International Conference on Machine

Learning, 212–222 (PMLR, 2019).
 21. Li, Z. et al. Fourier neural operator for parametric partial differential equations. arXiv: 2010. 08895 (arXiv preprint) (2020).
 22. Li, Z., Huang, D. Z., Liu, B. & Anandkumar, A. Fourier neural operator with learned deformations for pdes on general geometries.

arXiv: 2207. 05209 (arXiv preprint) (2022).
 23. Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning nonlinear operators via deeponet based on the universal approxi-

mation theorem of operators. Nat. Mach. Intell. 3, 218–229 (2021).
 24. Poli, M. et al. Graph neural ordinary differential equations. arXiv: 1911. 07532 (2019) (arXiv preprint).
 25. Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A. & Battaglia, P. W. Learning mesh-based simulation with graph networks. CoR‑

Rabs/2010.03409 (2020). arXiv: 2010. 03409.
 26. Fortunato, M., Pfaff, T., Wirnsberger, P., Pritzel, A. & Battaglia, P. Multiscale meshgraphnets. arXiv: 2210. 00612 (arXiv preprint)

(2022).
 27. Sanchez-Gonzalez, A. et al. Learning to simulate complex physics with graph networks. In Proceedings of the 37th International

Conference on Machine Learning, Vol. 119 of Proceedings of Machine Learning Research (III, H. D. & Singh, A., eds), 8459–8468
(PMLR, 2020).

 28. Gao, H. & Ji, S. Graph u-nets. In International Conference on Machine Learning, 2083–2092 (PMLR, 2019).
 29. Liu, N., Yu, Y., You, H. & Tatikola, N. Ino: Invariant neural operators for learning complex physical systems with momentum

conservation. arXiv: 2212. 14365 (arXiv preprint) (2022).
 30. Pegolotti, L. et al. Learning reduced-order models for cardiovascular simulations with graph neural networks. arXiv: 2303. 07310

(arXiv preprint) (2023).

http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2006.08956
http://arxiv.org/abs/2006.08956
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2207.05209
http://arxiv.org/abs/1911.07532
http://arxiv.org/abs/2010.03409
http://arxiv.org/abs/2210.00612
http://arxiv.org/abs/2212.14365
http://arxiv.org/abs/2303.07310

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

 31. Wang, B. & Gong, N. Z. Attacking graph-based classification via manipulating the graph structure. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2023–2040 (2019).

 32. Zhao, T. et al. Data augmentation for graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
35, 11015–11023 (2021).

 33. Deshpande, S., Lengiewicz, J. & Bordas, S. Magnet: A graph u-net architecture for mesh-based simulations. arXiv: 2211. 00713
(arXiv preprint) (2022).

 34. Deshpande, S., Sosa, R. I., Bordas, S. & Lengiewicz, J. Convolution, aggregation and attention based deep neural networks for
accelerating simulations in mechanics. Front. Mater. 10, 1128954 (2023).

 35. Black, N. & Najafi, A. R. Learning finite element convergence with the multi-fidelity graph neural network. Comput. Methods Appl.
Mech. Eng. 397, 115120 (2022).

 36. Lino, M., Cantwell, C., Bharath, A. A. & Fotiadis, S. Simulating continuum mechanics with multi-scale graph neural networks.
arXiv: 2106. 04900 (arXiv preprint) (2021).

 37. Lino, M., Fotiadis, S., Bharath, A. A. & Cantwell, C. Towards fast simulation of environmental fluid mechanics with multi-scale
graph neural networks. arXiv: 2205. 02637 (arXiv preprint) (2022).

 38. Lino, M., Fotiadis, S., Bharath, A. A. & Cantwell, C. D. Multi-scale rotation-equivariant graph neural networks for unsteady eulerian
fluid dynamics. Phys. Fluids 34, 25 (2022).

 39. Yang, Z., Dong, Y., Deng, X. & Zhang, L. Amgnet: Multi-scale graph neural networks for flow field prediction. Connect. Sci. 34,
2500–2519 (2022).

 40. Barwey, S., Shankar, V. & Maulik, R. Multiscale graph neural network autoencoders for interpretable scientific machine learning.
arXiv: 2302. 06186 (arXiv preprint) (2023).

 41. Zhou, J. et al. Graph neural networks: A review of methods and applications. AI Open 1, 57–81 (2020).
 42. Yao, L., Mao, C. & Luo, Y. Graph convolutional networks for text classification. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 33, 7370–7377 (2019).
 43. Veličković, P. et al. Graph attention networks. arXiv: 1710. 10903 (arXiv preprint) (2017).
 44. Seo, Y., Defferrard, M., Vandergheynst, P. & Bresson, X. Structured sequence modeling with graph convolutional recurrent net-

works. In International Conference on Neural Information Processing, 362–373 (Springer, 2018).
 45. Shlomi, J., Battaglia, P. & Vlimant, J.-R. Graph neural networks in particle physics. Mach. Learn. Sci. Technol. 2, 021001 (2020).
 46. Ju, X. et al. Graph neural networks for particle reconstruction in high energy physics detectors. arXiv: 2003. 11603 (arXiv preprint)

(2020).
 47. Donon, B., Donnot, B., Guyon, I. & Marot, A. Graph neural solver for power systems. In 2019 International Joint Conference on

Neural Networks (Ijcnn), 1–8 (IEEE, 2019).
 48. Bergström, J. 5—elasticity/hyperelasticity. In Mechanics of Solid Polymers (ed. Bergström, J.) 209–307 (William Andrew Publishing,

2015). https:// doi. org/ 10. 1016/ B978-0- 323- 31150-2. 00005-4.
 49. Zhao, L. & Akoglu, L. Pairnorm: Tackling oversmoothing in gnns. arXiv: 1909. 12223 (arXiv preprint) (2019).
 50. Wu, Z. et al. Representing long-range context for graph neural networks with global attention. Adv. Neural. Inf. Process. Syst. 34,

13266–13279 (2021).
 51. Hamilton, W. Synthesis lectures on artificial intelligence and machine learning. Graph Represent. Learn. 20, 20 (2020).
 52. Briggs, W., Henson, V. & McCormick, S. A Multigrid Tutorial, 2nd Edition (2000).
 53. Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A. & Battaglia, P. W. Learning mesh-based simulation with graph networks. arXiv:

2010. 03409 (arXiv preprint) (2020).
 54. Eldar, Y., Lindenbaum, M., Porat, M. & Zeevi, Y. The farthest point strategy for progressive image sampling. IEEE Trans. Image

Process. Publ. IEEE Signal Process. Soc. 6, 1305–15. https:// doi. org/ 10. 1109/ 83. 623193 (1997).
 55. Hamilton, W., Ying, Z. & Leskovec, J. Inductive representation learning on large graphs. In Advances in Neural Information Process‑

ing Systems Vol. 30 (eds Guyon, I. et al.) (Curran Associates Inc., 2017).
 56. Geuzaine, C. & Remacle, J.-F. Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J.

Numer. Methods Eng. 79, 1309–1331 (2009).
 57. Manual, A. U. Abaqus user manual. Abacus (2020).
 58. Liu, I.-S. et al. A note on the Mooney–Rivlin material model. Contin. Mech. Thermodyn. 24, 583–590 (2012).
 59. Kumar, N. & Rao, V. V. Hyperelastic Mooney–Rivlin model: Determination and physical interpretation of material constants.

Parameters 2, 01 (2016).
 60. Loshchilov, I. & Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv: 1608. 03983 (arXiv preprint) (2016).
 61. Suk, J., Haan, P. d., Lippe, P., Brune, C. & Wolterink, J. M. Mesh convolutional neural networks for wall shear stress estimation in

3d artery models. In International Workshop on Statistical Atlases and Computational Models of the Heart, 93–102 (Springer, 2021).

Acknowledgements
R.G., M.D., and A.Z. would like to thank Prajjwal Jamdagni for the great and detailed discussions on FEM
numerical simulations. A.Z. and V.S. extend their gratitude to Abhishek Sharma who provided encouragement
and support in the initiation of this project, and whose guidance and mentorship will always be appreciated.
All authors would like to sincerely thank the reviewers whose contributions made this paper more complete
and rigorous.

Author contributions
A.Z. and V.S. initiated the concept for this study. R.G. and H.R. were responsible for conducting the finite element
method simulations necessary for training the AI models. R.G., M.D., and A.Z. devised the AI architectures and
R.G. implemented and carried out the AI model training and testing. All authors contributed to analysis of the
results, writing of the manuscript, and reviewing the final version.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2211.00713
http://arxiv.org/abs/2106.04900
http://arxiv.org/abs/2205.02637
http://arxiv.org/abs/2302.06186
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2003.11603
https://doi.org/10.1016/B978-0-323-31150-2.00005-4
http://arxiv.org/abs/1909.12223
http://arxiv.org/abs/2010.03409
http://arxiv.org/abs/2010.03409
https://doi.org/10.1109/83.623193
http://arxiv.org/abs/1608.03983
www.nature.com/reprints

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:3394 | https://doi.org/10.1038/s41598-024-53185-y

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Mesh-based GNN surrogates for time-independent PDEs
	Background
	Graph neural networks
	Challenges in modeling deformation of elastic and hyper elastic materials with GNNs
	MeshGraphNet for physics simulations

	Methods
	Edge augmented graph neural network (EA-GNN)
	Multi-graph neural network (M-GNN)

	Results and discussion
	Data generation
	Coordinate transformation
	Data augmentation
	Data conversion

	Model architectures
	EA-GNN
	M-GNN

	Experimental set up
	Numerical results

	Conclusion
	References
	Acknowledgements

