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Interpretable predictions 
of chaotic dynamical systems using 
dynamical system deep learning
Mingyu Wang 1 & Jianping Li 1,2*

Making accurate predictions of chaotic dynamical systems is an essential but challenging task with 
many practical applications in various disciplines. However, the current dynamical methods can 
only provide short-term precise predictions, while prevailing deep learning techniques with better 
performances always suffer from model complexity and interpretability. Here, we propose a new 
dynamic-based deep learning method, namely the dynamical system deep learning (DSDL), to achieve 
interpretable long-term precise predictions by the combination of nonlinear dynamics theory and 
deep learning methods. As validated by four chaotic dynamical systems with different complexities, 
the DSDL framework significantly outperforms other dynamical and deep learning methods. 
Furthermore, the DSDL also reduces the model complexity and realizes the model transparency to 
make it more interpretable. We firmly believe that the DSDL framework is a promising and effective 
method for comprehending and predicting chaotic dynamical systems.

Complex, nonlinear dynamical systems are almost ubiquitous in the natural and human world, such as climate 
systems, ecosystems and financial  systems1–3. Centuries-old efforts to comprehend and predict such systems 
have spurred developments in various fields, but have been hindered by their chaotic  behaviors4, which makes 
it exceptionally difficult to achieve long-term precise  predictions5. Studies revealed that the chaotic time series 
generated by any variable contains abundant dynamical information of the whole  system5,6. How to exploit the 
information hidden in the time series data and establish an effective prediction model to accurately predict the 
future as long as possible, is of great importance in many  disciplines7–9.

After decades of research, various methods have been proposed to reconstruct dynamics and make predictions 
of chaotic dynamical systems, and the phase-space reconstruction is undoubtedly one of the most representative 
dynamical methods. The Takens embedding  theorem10–12 shows how delayed-coordinates of a single time series 
can be used as proxy variables to reconstruct dynamics for the underlying deterministic process. Sauer et al.13 
and Deyle et al.14 further generalized the delayed embedding theorem and demonstrated that multivariate time 
series can also be used in reconstructing dynamics. Ma et al.15 proposed an inverse delayed embedding (IDE) 
method, which is the inverse implementation of the delayed embedding reconstruction. Furthermore,  studies16,17 
combined the delayed embedding theorem with the generalized embedding theorem, but only consider the linear 
relationships of various factors while ignore the nonlinear interactions among them.

In recent years, with rapid developments in computing power and algorithmic innovations of deep learning 
techniques, more and more studies have applied various deep learning methods to predictions of chaotic time 
series, such as long short-term memory  network18–20, reservoir  computing20–22, residual  network23,24, anticipated 
learning  machine25, etc. Despite good performances due to the ability of considering nonlinear interactions 
among variables, deep learning techniques have always been called the “black-box”, which leads to deep learning 
models being untrusted in some key areas for the lack of model  interpretability26,27. In addition, the era of big 
data has witnessed a rapid accumulation of various data, and samples with massive size and high dimensionality 
pose unique computational and statistical challenges for deep learning  methods28,29.

Here, we propose a new dynamics-based deep learning method, namely the dynamical system deep learn-
ing (DSDL), combining dynamical methods with deep learning methods. Several experiments on four chaotic 
dynamical systems with different complexities have significantly demonstrated the superior performances of the 
DSDL over other dynamical and deep learning methods used for comparison in this work. Despite the trade-off 
between model interpretability and  performance30, the DSDL not only greatly improves the model performance, 
but also realizes the model transparency to make it more interpretable.
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DSDL framework
As particularly shown in Fig. 1A, with n dimensional time series data xi(t), i = 1, 2, . . . , n , of one chaotic 
dynamical system (we name it as the target system), every time series can be inputted as one primitive system 
variable into the DSDL framework, and all primitive system variables constitute the primitive variable set X , 
X = {x1, x2, . . . , xn}. In a chaotic dynamical system, due to dissipation, the steady dynamics after a transient 
phase is generally constrained into a  subspace31, which is the attractor ( A ) of the target system. The phase-space 
 technique10–14 makes it possible to have two different dynamical methods of reconstructing an attractor of the 
target system, which are respectively named as the univariate and multivariate way.

The univariate way (Fig. 1B), according to the delayed embedding  theory10–12, is reconstructed by the time-
lagged coordinates of a single variable xk(t) , k ∈ [1, n] (we name it as the target variable), thus we can get a 
“delayed attractor” in the form of D(xk(t), xk(t + τ), xk(t + 2τ), . . . ) with suitable embedding dimension L and 
time delay interval τ . This delayed attractor D is aimed to obtain the temporal information of the target  variable16. 
For the DSDL framework, in order to establish a complete prediction model for the target system, every primitive 

Figure 1.  Architecture of the DSDL framework. (A) The input data is constructed by n-dimensional time series 
data xi(t), i = 1, 2, . . . , n of one chaotic dynamical system, which has an original attractor A . (B) After selecting 
one time series as the target variable xk(t) , k ∈ [1, n] , we can reconstruct a delayed attractor D based on the 
time-lagged coordinates of  xk(t) with suitable embedding dimension and time delay. (C) To take full advantage 
of the nonlinear interactions among variables, we construct a multi-layer nonlinear network and we can get the 
candidate variable set XN . From XN , we can select the key variable set XK ,xk of the target variable xk(t) though 
the CVSR method to reconstruct a non-delayed attractor N . (D) Based on the embedding theorems, both 
reconstructed attracts ( D,N ) are topologically conjugated to the original one ( A ), so there is a diffeomorphism 
map � : N → D . Then we can obtain the DSDL prediction model for the target variable xk(t) . using the 
corresponding training set to fit �.
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system variable needs to be used as the target variable, that is to say, we must separately establish the DSDL model 
for each primitive system variable.

The multivariate way (Fig. 1C), based on the generalized embedding  theorem13–15, is reconstructed by multiple 
variables and we can get a “non-delayed attractor” in the form of N(xi(t), xj(t), xs(t), . . . ), i, j, s, . . . ∈ [1, n] . This 
non-delayed attractor N is aimed to get the spatial information among system  variables14. Ma et al.16 randomly 
chose index tuple l =

(

i, j, s, . . .
)

 from any combinations of primitive system variables, which only consider the 
linear relationships among them. To take full advantage of the nonlinear interactions among system variables, 
we construct a multi-layer nonlinear network in the DSDL framework and get the candidate variable set XN , 
X
Li
NLi

⊂ XN (i ∈ [1,m]) , where m represents the number of layers in the network, Li denotes the ith layer, NLi is 
the sample size of this layer, and XLi

NLi
 is the candidate variable subset of the ith layer constructed by all monomi-

als of ith-order based on X , when i ≥ 2 the monomials are nonlinear. However, we stress that not all variables 
in the set XN have a positive impact on predicting the target variable xk(t) , thus we need to select those variables 
that truly control the evolution of the target variable from XN to construct the key variables set XK ,xk of xk(t) by 
using the cross-validation-based stepwise  regression32 (CVSR) method. In this way, we can efficiently explore 
the crucial information and remove redundant information for the DSDL model to reduce model complexity. 
Thus the non-delayed attractor N in the DSDL framework is constructed by those key variables we selected.

How to determine the embedding dimension L and time delay τ is an important topic in the state space recon-
struction process, and several criteria have been proposed to the time  series33. From the embedding  theorems10–14, 
we must ensure that the dimension L for reconstructing the above attractors ( D , N ) is large enough, i.e. L > 2dA 
where dA is the box counting dimension of the attractor, and let τ be a positive time interval. Here, we use the 
False Nearest  Neighbors34 (FNNs) method to determine the minimal embedding dimension and simply set τ as 
one lag in the time series. However, we find that the dimension L of our DSDL model (also the number of key 
variables selected, as shown in Table S1) is usually much larger than the minimal embedding dimension, which 
meets the requirement of reconstruction.

Ultimately, since both reconstructed attractors are topologically conjugated to the original attractor, there 
is a diffeomorphism map between them, that is, � : N → D13 (Fig. S1). On this basis, we can obtain the DSDL 
prediction model for the target variable xk(t) , with several parameters to be determined, in the form of

Then, we can use the corresponding training data set to fit ϕ and train the model parameters (Fig. 1D). Unlike 
the statistical model, the DSDL model is more similar to the dynamical model, which is aimed to exploit the 
dynamical equations/operators to achieve successive predictions using one model, instead of getting discrete 
predictions using several statistical models.

Results
Model performances of DSDL in four chaotic dynamical systems with different complexities
Firstly, our proposed method is tested on three chaotic dynamical systems with different complexities to demon-
strate its effectiveness and robustness, including the 3-variable Lorenz  system35, 4-variable hyperchaotic Lorenz 
 system36, 5-variable conceptual ocean–atmosphere coupled Lorenz  system37 (SI Appendix). Among them, the first 
two systems are autonomous systems, and the 5-dimensional coupled Lorenz system belongs to a nonautonomous 
system. With multiple time series data outputted by these systems, sources of predictability are believed to come 
from the temporal and spatial information hidden in those time  series15. Here, prediction results of linear models 
(A linear model refers to a prediction model established solely using the primitive system variables themselves 
and without nonlinear monomials) and DSDL models are compared in all three systems (Figs. S2, 2).

As a paradigmatic chaotic dynamical system, the Lorenz system outputs three primitive system variables 
with obvious chaotic oscillations under certain parameter requirements. However, prediction series of the lin-
ear model only exhibit nonlinear characteristics for a very short period of time and converge quickly to a fixed 
point with basically no effective predictions (Fig. S2A). Besides, the prediction trajectory is always off the Lorenz 
attractor (Fig. S2B), which indicates that we cannot effectively reconstruct the dynamics by only considering the 
linear relationships among system variables. Using the same training/test sets as the linear model, the prediction 
series of the DSDL model always maintains the chaotic characteristics of the Lorenz system, accompanied by a 
significant improvement of effective prediction time (EPT, Fig. 2A). More importantly, the prediction trajectory 
is consistently on the Lorenz attractor (Fig. 2B), which demonstrates that the DSDL model is able to successfully 
reconstruct the nonlinear dynamics of the target system. Similar results are also found in the hyperchaotic Lorenz 
system and the conceptual ocean–atmosphere coupled Lorenz system (Figs. 2C, D,  S2C,  D).

Furthermore, we note that the EPTs of different variables in one system are not always the same (Fig. 2C, D). 
For example, the EPT of variable η in the conceptual coupled Lorenz system, representing the ocean pycnocline 
to simulate features of the slow-changing deep ocean, is much longer than other variables. This further indicates 
that prediction results of DSDL models are highly consistent with the actual physical properties and predict-
abilities of various variables in different dynamical processes.

Using the mean EPT (normalized by the Lyapunov time) of 100 different training/test sets to quantify the 
model predictive capability, we compare the DSDL with nine existing dynamical and machine learning methods 
used for predicting chaotic time series (SI Appendix). In order to make the results more rigorous, we also incor-
porate the Mackey–Glass  equation38 for comparison, which is a nonlinear time delay differential equation and has 
a completely different construction from the three systems mentioned above. Clearly, the DSDL method shows 
the best predictive performances in all four chaotic dynamical systems, and is much ahead of other popular deep 
learning methods (Fig. 3). Gauthier et al.39 proposed the next generation reservoir computing (NG-RC) method, 

xk(t + τ) = ϕ
(

xi(t), xj(t), xs(t), . . .
)

.
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Figure 2.  Prediction results of DSDL models in three different chaotic dynamical systems. (A) The prediction 
series of the Lorenz system. The light grey line shows the numerical solutions (true state), the blue line shows 
the training set, the red line represents the effective predictions and the dark grey line represents the invalid 
predictions in the corresponding test set. The vertical black dashed line marks the effective prediction time 
(EPT). Using a training set of  104 time points, only the last  103 time points are shown in this figure. (B) The 
prediction trajectory of the Lorenz attractor. (C) Same as (A), but for the hyperchaotic Lorenz system. (D) Same 
as (A), but for the conceptual ocean–atmosphere coupled Lorenz system.

Figure 3.  Comparisons between the DSDL and other existing dynamical and machine learning methods 
in four different chaotic dynamical systems. Using the mean EPT (Lyapunov time), we compare the model 
predictive capabilities of different methods in four chaotic dynamical systems. The mean EPT is obtained by 100 
different training/test sets, and the higher the mean EPT, the better the method performs.
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which has certain similarities with DSDL. However, the NG-RC method can accurately predict approximately ~ 6 
Lyapunov time for the x variable of the Lorenz system, while the DSDL method can predict about ~ 14 Lyapunov 
time. Moreover, the modeling time of the DSDL (about 2 min for the Lorenz system) is significantly shorter than 
most of the methods, which further demonstrates the superiority of the DSDL method.

Interpretability of DSDL models
Traditional deep learning models have achieved remarkable performances in many important  domains40. How-
ever, it is often difficult to explain the prediction results due to their over-parameterized “black-box” nature and 
lack of  interpretability41–43. The opposite of “black-box” is transparency, and transparent models convey some 
degree of ante-hoc interpretability by  themselves44. As a dynamics-based deep learning method, all processes 
of the DSDL framework are clearly visible during the establishment. And we can further explore and clarify the 
roles of various components in the DSDL model when we break down a complete DSDL model for one target 
variable into layers.

Chaotic characteristics
The prediction series of adding layer 1 is consistent with the linear model, which also converges quickly to a 
fixed point with basically no effective predictions (Fig. 4A). While the prediction series is immediately able to 
maintain the nonlinear characteristics and greatly improve the predictive ability after adding layer 2 (Fig. 4B). 
This indicates that layer 2, that is, key variables of second-order, plays a very important role in reconstructing 
dynamics of the Lorenz system and provides the necessary chaotic characteristics for the DSDL model.

Informativeness
Although adding layers 3– 5 cannot affect the chaotic characteristics of the DSDL model as much as layer 2, they 
will still change the evolution trajectories, improving prediction performance layer by layer (Fig. 4C– E). There-
fore, the role of high-order key variables is likely to provide more information on nonlinear interactions among 
variables and add more constraints into the modulation of the DSDL model, so as to make model predictions 
follow the underlying evolution rules of the target variable as long as possible.

Robustness
Due to the difficulty in collecting all needful information of the target system in real-world modeling, we assume 
that a critical factor is unexpectedly missing from the prediction model. For example, after removing xz from 
layer 2, the second-order model only exhibits a quasi-periodic evolution (Fig. 4F). However, the DSDL model 
can still provide a certain degree of accurate predictions after adding higher-order layers, demonstrating the 
robustness of the DSDL model (Fig. 4G – I).

Discussion
In summary, we have proposed a new framework to make relative long-term accurate and transparent predictions 
of chaotic dynamical systems, and this DSDL method has been shown to be a successful scheme for dynamics-
based deep learning. According to the embedding theorems, we can establish a prediction model based on the 
map between two kinds of reconstructed attractors. One is the delayed attractor reconstructed by the time-lagged 
coordinates of the target variable, and the other is the non-delayed attractor reconstructed by multiple key vari-
ables selected through CVSR method. The novelty of DSDL models, on the one hand, roots in a full exploitation 
of the nonlinear interactions among the multivariate time series data by constructing the multi-layer nonlinear 
network. On the other hand, using the CVSR method to select key variables that truly determine the evolution 
of the target variable, DSDL not only improves the model predictive capability, but also realizes the reduction 
of model complexity and improvement of model interpretability, that is to open the “black-box”. Notably, our 
DSDL model outperforms other existing dynamical and machine learning methods in four chaotic dynamical 
systems with different complexities.

However, we have to admit that the DSDL method still has certain limitations at present. In this study, we 
only focus on the prediction of ordinary differential equation systems, and we will continue to test the predictive 
performance of the DSDL model in partial differential equation systems. And we only focus on those chaotic 
dynamical systems whose equations are known. On this basis, we will further investigate those complex systems 
with uncertain structures and unknown equations. In addition, our study only considers data generated by noise-
free numerical simulations, but noise is also inevitable in practical applications, thus the impact of noise on the 
DSDL model is also one of our focuses in the future. In this work, we simply set τ as one lag in the time series, 
and we still need to discuss the impact of time delay τ on the DSDL model in future work. Last but not least, Li 
and  Chou45 proved the existence of the atmospheric attractor and the global analysis theory of climate  system46 
indicates that there exists a global attractor in the dynamical equations of climate, and any state of climate system 
will evolve into the global attractor as time increases. Therefore, this means that we may be able to apply the DSDL 
method to predict real-world systems in future work, but this requires more effort and validation.

Methods
Construction of multi-layer nonlinear network
Before describing the specific construction of the multi-layer nonlinear network in detail, we need to clarify 
some useful definitions. Suppose that there is a power function xa(a = 0, 1, 2, 3, . . .) , its order is denoted as 
O(xa) = a . On this basis, we can define a nonlinear monomial F constructed by the product of power functions 
of primitive system variables, denoted as
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where 
n
∑

i=1

ai = k , and the order of this monomial is

(1)F = Fk(X) = Fk(x1, . . . , xn) =

n
∏

i=1

xaii ,

(2)O
(

Fk(X)
)

=

n
∑

i=1

ai = k.

Figure 4.  The roles of different layers in the DSDL model for the Lorenz system. (A–E) The prediction series 
of variable x in the Lorenz system resulted from adding layer 1–5 into the DSDL model, respectively. (F–I) The 
prediction series of variable x after removing one key variable from the second-order to fifth-order prediction 
model, respectively. The light grey line shows the numerical solution (true state), the blue line shows the 
training data set, the red line represents the effective predictions while the dark grey line represents the invalid 
predictions. The vertical black dashed line marks the EPT. Using a training set of  104 time points, only the last 
 103 time points are shown in this figure.
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Therefore, we can eventually give the definition of the ith layer of the multi-layer nonlinear network 
X
Li
NLi

, i ∈ [1,m] , that is, containing all ith-order monomials Fi(X) , which can be expressed as

What’s more, we need to further clarify some properties of the multi-layer network:

1. The number of nonlinear layers ( m ) varies with different chaotic dynamical systems, which will be deter-
mined by corresponding training/test data sets.

2. There is no intersection between two different nonlinear layers, which can be expressed as

3. Suppose that the target variable is xk(t) , the key variables set of xk(t) selected from the ith layer is named as 
X
Li
KLi ,xk

, i ∈ [1,m] . Key variables selected in the previous layer will be input to the next layer and continue to 
join the selection procedure, denoted as,

After all those procedures, we can achieve the final result of key variable set XK ,xk = X
Lm
KLm ,xk

.

Selection method of key variables
After the construction of multi-layer nonlinear network, we need to select the key variables that play a deci-
sive role in the time evolution of the target variable. Guo et al.32 proposed the cross-validation-based stepwise 
regression (CVSR) approach, which is a “forward” stepwise screening procedure to select the optimal predictors 
from the potential predictor set. The criteria for selecting key variables no longer rely on the fitting ability of the 
regression equation to be evaluated, but rather on the hindcast ability of the prediction model in cross valida-
tion. It employs k-fold cross validation to improve the robustness of selecting and avoid over-fitting effectively, 
and k in this work is equal to 10. The root-mean-square error between real data and cross-validation estimates 
is taken as the criterion to evaluate the performance of potential predictors.

Assessments of model predictive capability
In order to quantify the performances of different models, we use the effective prediction time (EPT) to represent 
the model predictive capability, defined as the elapsed time before the corresponding prediction error E(t) first 
exceeds an error threshold ε , and we have

where X̃(t) represents the prediction series obtained by the model and ε is equal to one standard deviation of 
the predicted time series X(t) in this paper. The higher the EPT, the stronger the model predictive capability. 
Here, we denote the EPT in terms of model time units (MTUs), where 1 MTU = 100 �t . In order to make the 
results more robust, we use the mean EPT in assessing the model predictive capability, which is the average EPT 
of models in 100 different training/test sets. And we normalize the mean EPT by each attractor’s Lyapunov time.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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