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Prognosis prediction and risk 
stratification of breast 
cancer patients based 
on a mitochondria‑related gene 
signature
Yang Wang 1, Ding‑yuan Wang 1, Ke‑na Bu 2, Ji‑dong Gao 1,3* & Bai‑lin Zhang 1*

As the malignancy with the highest global incidence, breast cancer represents a significant threat 
to women’s health. Recent advances have shed light on the importance of mitochondrial function 
in cancer, particularly in metabolic reprogramming within tumors. Recognizing this, we developed 
a novel risk signature based on mitochondrial‑related genes to improve prognosis prediction and 
risk stratification in breast cancer patients. In this study, transcriptome data and clinical features of 
breast cancer samples were extracted from two sources: the TCGA, serving as the training set, and 
the METABRIC, used as the independent validation set. We developed the signature using LASSO‑
Cox regression and assessed its prognostic efficacy via ROC curves. Furthermore, the signature was 
integrated with clinical features to create a Nomogram model, whose accuracy was validated through 
clinical calibration curves and decision curve analysis. To further elucidate prognostic variations 
between high and low‑risk groups, we conducted functional enrichment and immune infiltration 
analyses. Additionally, the study encompassed a comparison of mutation landscapes and drug 
sensitivity, providing a comprehensive understanding of the differing characteristics in these groups. 
Conclusively, we established a risk signature comprising 8 mitochondrial‑related genes—ACSL1, 
ALDH2, MTHFD2, MRPL13, TP53AIP1, SLC1A1, ME3, and BCL2A1. This signature was identified as an 
independent risk predictor for breast cancer patient survival, exhibiting a significant high hazard ratio 
(HR = 3.028, 95%CI 2.038–4.499, P < 0.001). Patients in the low‑risk group showed a more favorable 
prognosis, with enhanced immune infiltration, distinct mutation landscapes, and greater sensitivity 
to anti‑tumor drugs. In contrast, the high‑risk group exhibited an adverse trend in these aspects. This 
risk signature represents a novel and effective prognostic indicator, suggesting valuable insights for 
patient stratification in breast cancer.

According to GLOBOCAN 2020, female breast cancer has now overtaken lung cancer as the most prevalent 
malignant tumor globally, with an estimated 2.26 million new cases  annually1. This alarming statistic high-
lights the urgent need for effective treatment strategies. Recent advancements in imaging  screening2, surgical 
 techniques3,  radiotherapy4, and therapeutic drugs have markedly improved the prognosis for breast cancer 
patients. Nonetheless, the complexity and heterogeneity of breast cancer necessitate personalized treatment 
 approaches5. The development of microarray and next-generation sequencing technologies has enabled poly-
genic testing, providing clinicians with additional clinical  insights6. The significance of polygenic testing in 
breast cancer management has grown considerably, ranging from PAM50 for molecular  typing7, to the 21-gene 
(Oncotype DX Breast Recurrence Score®)8 and MammaPrint™ 70-gene  signature9, both of which are crucial in 
assessing clinical risk and informing treatment decisions in breast cancer cases.
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Mitochondrial dynamics and signaling significantly influence cellular metabolism and are pivotal in numer-
ous  diseases10, including metabolic disorders like diabetes and  obesity11. As central players in the metabolism of 
fatty acids, amino acids, and nucleotides, mitochondria have been found to be crucial in the development and 
progression of  cancer12. The substantial influence of mitochondrial metabolism on various stages of tumorigen-
esis, including malignant transformation, tumor progression, and therapeutic response, is well-established13,14. 
Consequently, numerous strategies have been developed to target abnormalities in mitochondrial metabolism 
between cancerous and normal  cells15,16. For instance, one study revealed that targeting mitochondrial metabo-
lism in breast cancer can increase the sensitivity of these and potentially other tumor types to mitochondrial 
 inhibitors17. In the context of triple-negative breast cancer (TNBC), which has limited treatment options, target-
ing mitochondrial metabolism has also emerged as a promising therapeutic  approach18,19. Moreover, research has 
shown the anti-tumor potential of mitochondrial transplantation in breast cancer cells, which is achieved through 
precise regulation of mitochondrial  function20. In addition to these therapeutic applications, mitochondria play 
a pivotal role in the metabolism and activation of both immune and cancer  cells21. Furthermore, the role of 
mitochondrial acquisition and increased oxidative phosphorylation in cancer progression and chemotherapy 
resistance has also been  identified22.

In this study, we utilized a comprehensive multi-scale bioinformatics approach to develop a breast cancer risk 
signature based on mitochondrial-related genes. The clinical application of this signature was validated through 
various methods, including Kaplan–Meier analysis, Nomograms, DCA Curves, and Calibration Curves, enabling 
the effective stratification of breast cancer patients into high-risk and low-risk groups. To further understand the 
underlying mechanisms, we conducted a comprehensive analysis of genes differentially expressed between these 
risk groups, using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 
Gene Set Enrichment Analysis (GSEA) to identify involved biological pathways. Additionally, we investigated 
the correlation between immune infiltration and our risk signature. In summary, our research provides novel 
insights into mitochondrial related genes in breast cancer, which hold potential for the development of prognostic 
biomarkers for diagnosis and treatment.

Materials and methods
Application of TCGA and METABRIC and collection of mitochondria‑related genes
The transcriptomic and corresponding survival data of breast cancer patients from the TCGA samples were 
downloaded from the UCSC Xena database (https:// xenab rowser. net/ datap ages/). We selected the TCGA data-
base for its comprehensive genomic data and high-quality, standardized information on breast cancer. We also 
acquired mutation data and clinical characteristics through the “TCGAbiolinks” package. In our study, male 
patients were excluded due to the distinct clinical and molecular characteristics of breast cancer in males, which 
differ significantly from the female cases. Additionally, cases with missing clinical and survival data were omitted 
to ensure the integrity and accuracy of our analysis. After matching the TCGA barcodes, the remaining cases was 
divided into two groups: primary tumor (1036 cases) and adjacent-normal tissues (99 cases).

To identify mitochondrial-related genes (MRGs), we utilized the Molecular Signature Database v7.5 (MSigDB) 
(http:// www. gsea- msigdb. org/ gsea/ msigdb), from which we acquired a dataset (M9577) comprising 450  genes23. 
Within the TCGA database, we matched these 450 genes and yielding 418 MRGs for differential expression 
analysis.

For external validation, RNA-transcriptomic data of breast cancer were downloaded from the METABRIC 
database (https:// www. cbiop ortal. org/ datas ets). The METABRIC database was specifically chosen for its extensive 
clinical data and long-term patient follow-up, providing an ideal resource for external validation of our findings. 
It is important to note that the METABRIC database served solely for external validation in our analysis and 
was not used for other processes like differential analysis or model fitting. We have detailed relevant grouping 
information and clinicopathological characteristics in Table 1.

Construction and clinical application of the risk signature
Differential gene analysis was conducted between tumor and adjacent-normal tissues using the “DESeq2” pack-
age, following criteria of |Log2Fold Change|> 1 and adjusted-P < 0.05. As a result, 64 differentially expressed 
mitochondrial-related genes (DE-MRGs) were identified, including 39 upregulated and 25 downregulated genes. 
Their prognostic significance in breast cancer was determined through univariate Cox regression analysis, lead-
ing to the identification of 9 genes with significant prognostic implications. The approach was then refined by 
the application of LASSO regression, a method known for its efficiency in reducing complexity and enhancing 
precision. Ultimately, a risk signature consisting of 8 genes was established. The risk formula was as follows:

Based on the median riskScore, patients were stratified into high and low risk groups. Survival analysis was 
performed using Kaplan–Meier (K–M) curves and the log-rank test. The predictive power of risk signature was 
assessed by Receiver Operating Characteristic (ROC) analysis, time-dependent ROC, and area under the curve 
(AUC) evaluations. The association between risk groups and clinical characteristic was demonstrated using the 
“ggpubr” package. Moreover, a Nomogram model was constructed based on Cox regression analyses. The model’s 
discriminative ability was evaluated by calculating the concordance index (C-index), and its performance was 
further validated through Decision Curve Analysis (DCA) and Calibration Curves.

risk score (written as riskScore) =

n∑

i=1

Coef (i) ∗ Expr(i)

https://xenabrowser.net/datapages/
http://www.gsea-msigdb.org/gsea/msigdb
https://www.cbioportal.org/datasets
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Differential gene and functional enrichment analyses between risk groups
Differential expression analysis was performed to identify genes that showed significant differential expression 
between high and low risk groups. Functional enrichment analysis of these genes was then conducted to explore 
variations in biological functions across the risk groups. This included Gene Ontology (GO)  analysis24, which 
focused on Biological Processes (BP), Molecular Functions (MF), and Cellular Components (CC). Additionally, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway  analysis25 was utilized to identify specific pathways 
significantly affected in different risk groups. Complementing these, Gene Set Enrichment Analysis (GSEA) 23,26 
was applied to detect predefined gene function terms that exhibited notable differences between the risk groups. 
These analyses were facilitated using the “clusterProfiler27”, “msigdbr” and “fgsea” packages.

Comprehensive analysis of tumor immune microenvironment
The Estimation of Stromal and Immune cells in Malignant Tumor tissues (ESTIMATE) 28 algorithm (https:// 
sourc eforge. net/ proje cts/ estim atepr oject) is designed to deduce tumor cell content and distinguish infiltrating 
normal cells by leveraging unique transcriptional profiles of cancer samples. In our analysis, this algorithm was 
utilized to assess the expression levels of stromal and immune signatures, which facilitating to calculation of 
patient-specific scores. Additionally,  CIBERSORT29 tool (https:// rdrr. io/ github/ singh a53/ amritr/ src/R/ suppo 
rtFunc_ ciber sort.R) was employed to estimate the composition of 22 distinct types of tumor-infiltrating immune 
cells (TIICs) in each tissue sample. Consequently, a correlation analysis was conducted between these cells and 
the riskScore, with the results presented in scatter plots and a significance threshold set at P < 0.05. Further-
more, TCGA breast cancer samples were classified into different immune subtypes based on immune-related 

Table 1.  Clinicopathological characteristics of the BC cases in TCGA and MERABRIC datasets. The TCGA 
cohort was used as training cohort and MERABRIC cohort as the validation cohort. PT, pathological tumor 
stage; PN, pathological node stage; PM, pathological metastasis stage.

Characteristic
TCGA 
(n = 1036)

METABRIC
(n = 1903)

Age (mean (SD)) 58.05 (12.93) 61.09 (12.98)

Status (%)

 Alive 888 (85.7) 801 (42.1)

 Dead 148 (14.3) 1102 (57.9)

PT (%) Tumor size (%)

 T1 269 (26.0)   ≤ 2 cm 820 (43.5)

 T2
 T2 600 7.9)   > 2 cm & ≤ 5 cm 968 (51.4)

 T3 127 (12.3)   > 5 cm 95 (5.0)

 T4 37 (3.6)

 Tx 3 (0.3)

PN (%) Positive nodes (%)

 N0 485 (46.8)  0 nodes 992 (52.1)

 N1 345 (33.3)  1–3 nodes 604 (31.7)

 N2 117 (11.3)  4–9 nodes 204 (10.7)

 N3 72 (6.9)   ≥ 10 nodes 103 (5.4)

 Nx 17 (1.6)

PM (%)

 M0 861 (83.1)

 M1 27 (2.6)

 Mx 148 (14.3)

Stage (%) Stage (%)

 Stage I 173 (16.8)  Stage I 474 (33.8)

 Stage II 589 (57.1)  Stage II 800 (57.1)

 Stage III 238 (23.1)  Stage III 115 (8.2)

 Stage IV 19 (1.8)  Stage IV 9 (0.6)

 Stage X 12 (1.2)  Stage 0 4 (0.3)

Subtype (%)

 BRCA_LumA 484 (46.7)  BRCA_LumA 678 (35.6)

 BRCA_LumB 187 (18.1)  BRCA_LumB 461 (24.2)

 BRCA_Her2 72 (6.9)  BRCA_Her2 220 (11.6)

 BRCA_Basal 165 (15.9)  BRCA_Basal 199 (10.5)

 Unknown 128 (12.4)  Unknown 146 (7.7)

 Claudin-low 199 (10.5)

https://sourceforge.net/projects/estimateproject
https://sourceforge.net/projects/estimateproject
https://rdrr.io/github/singha53/amritr/src/R/supportFunc_cibersort.R
https://rdrr.io/github/singha53/amritr/src/R/supportFunc_cibersort.R
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gene  expression30. This comparison was visualized using column graphs and evaluated using a Chi-square test, 
processed with the “ImmuneSubtypeClassifier” package. Additionally, single-sample GSEA (ssGSEA) 31 was 
performed to define enrichment scores, and the abundance of 28 tumor-infiltrating immune cells (TIICs) in 
each sample was evaluated based on a gene set of 782 genes.

Mutation landscape and weighted correlation network analysis (WGCNA)
After matching with TCGA barcodes, the top 15 most frequently mutated genes in different risk groups were 
visualized using oncoplots. We then delved deeper by examining somatic interactions, and extended our analysis 
to include survival analysis and the calculation of tumor mutational burden (TMB) specific to each risk group. 
These analyses and visualizations were processed using the “maftools” package. Furthermore, to identify the 
genes most significantly associated with immune infiltration and riskScore levels, we employed the “WGCNA” 
package, which allowed for effective screening of relevant module genes.

Treatment response and drug sensitivity
The impact of treatment on prognosis across different risk groups was illustrated using K–M curves with the Log-
rank test. Drug sensitivity training data were downloaded from Genomics of Drug Sensitivity in Cancer (GDSC, 
https:// www. cance rrxge ne. org) 32. These data were then validated with TCGA data, leading to the identification of 
commonly used antitumor drugs for our analysis. The results of this analysis were effectively presented through 
radar plots, utilizing the “oncoPredict” and “ggpubr” packages.

Statistical analysis
All statistical analyses and visualizations in this study were performed using R software (version 4.2.0). Adobe 
Illustrator was employed for image combination. Student’s t test was used for statistical comparisons. The Wil-
coxon test was applied to detect differences in gene expression and immune infiltration scores. Variations in 
riskScore across different clinical features were assessed using the Kruskal‒Wallis’s test. K–M curves in the 
survival analysis were evaluated with the log-rank test. Additionally, correlation plots were generated using 
Spearman’s correlation test. P < 0.05 was considered statistically significant.

Ethical declarations
The current study investigated publicly available data, and no ethical approval was needed. All methods were 
carried out in accordance with the Declaration of Helsinki.

Consent to participate
The current study investigated publicly available data, and no consent to participate was needed.

Results
Preliminary screening of prognostic mitochondrial genes
The analytical process of this study is depicted in Fig. 1. We analyzed 418 mitochondrial-related genes (MRGs) 
for differential expression, identifying 64 differentially expressed MRGs (DE-MRGs). The expression patterns 
of these DE-MRGs are illustrated in a heatmap (Fig. 2A). Subsequently, we prioritized these DE-MRGs based 
on their P values, selecting the top 5 upregulated and downregulated genes for presentation in a volcano plot 
(Fig. 2B). Further, we subjected these 64 DE-MRGs to univariate Cox regression analysis in breast cancer patients, 
revealing 9 genes (MRPL13, BCL2A1, ME3, SLC1A1, TP53AIP1, MTHFD2, ALDH2, ACSL1, TYMP) signifi-
cantly associated with overall survival (OS), as demonstrated in a forest plot (Fig. 2C).

Construction of the risk gene signature by LASSO
In our study, LASSO regression was chosen to construct the risk signature. This method is particularly effective 
in handling high-dimensional data, crucial for genomic studies. It allows for efficient variable selection, reduc-
ing overfitting and enhancing the robustness of the  model33. Applying this technique, we successfully isolated 
the most predictive prognostic genes from an extensive dataset. In particular, our LASSO regression analysis 
was specifically focused on 9 DE-MRGs (Fig. 2D–E), leading to the identification of 8 genes that constitute the 
MRG risk signature.

We calculated the riskScore using the following formula: riskScore = (0.153 × expr_ACSL1) + (0.022 × expr_
ALDH2) + (0.029 × expr_MTHFD2) + (0.265 × expr_MRPL13) + (− 0.417 × expr_TP53AIP1) + (− 0.086 × expr_
SLC1A1) + (− 0.137 × expr_ME3) + (− 0.302 × expr_BCL2A1). (The detailed descriptions of these 8  MRGs34–50 
are provided in Table 2).

Evaluation and expression pattern of the risk signature in TCGA cohort
A heatmap effectively displayed the correlation between the 8 genes and clinical characteristics, with the riskScore 
arranged from the lowest to highest (Fig. 3A). The overall Area Under the Curve (AUC) was 0.647 (Fig. 3B). 
Notably, the model demonstrated an increasing predictive power for survival over time, reflected in the ascending 
AUC values at 1, 3, 5, and 10 years, which were 0.58, 0.65, 0.67, and 0.76, respectively (Fig. 3C). In the subsequent 
univariate Cox regression analysis, variables such as Age, Pathological Tumor stage (PT), Pathological Node stage 
(PN), AJCC stage, and riskScore were involved. The hazard ratios (HRs) and P values are presented in a forest 
map (Fig. 3D), highlighting their significant prognostic impacts. Remarkably, the riskScore was identified as the 
most significant and effective prognostic factor (HR = 3.496, 95%CI:2.364–5.171, P < 0.001), surpassing others like 
Age (HR = 1.035, 95%CI:1.021–1.049, P < 0.001), PT (HR = 1.559, 95%CI:1.265–1.922, P < 0.001), PN (HR = 1.592, 

https://www.cancerrxgene.org
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95%CI:1.338–1.894, P < 0.001) and AJCC stage (HR = 2.192, 95%CI:1.738–2.765, P < 0.001). In the further mul-
tivariate Cox regression analysis, which adjusted for cofactors, it was established that Age (HR = 1.035, 95% CI: 
1.021–1.049, P < 0.001), AJCC stage (HR = 1.863, 95% CI: 1.242–2.795, P = 0.003), and riskScore (HR = 3.028, 
95% CI: 2.038–4.499, P < 0.001) as independent survival predictors (Fig. 3E).

Concerning the 8 MRGs expression pattern, 4 genes, namely ACSL1, ALDH2, TP53AIP1, and ME3, were 
observed to be downregulated in tumor tissues while being upregulated in adjacent-normal tissues. Conversely, 
the remaining four genes—MTHFD2, MRPL13, SLC1A1, and BCL2A1—showed opposite expression patterns 
(Fig. 3F). Additionally, a boxplot was employed to depict the expression levels of these MRGs across different 
risk groups, classified based on the median riskScore (Supplementary Fig. 1A).

Clinical application of the risk signature
We developed a Nomogram model incorporating independent risk factors (Age, AJCC stage, riskScore) (Fig. 4A). 
This model provides clinicians with a quantitative method to predict patient outcomes more reliably. To assess 
the predictive performance of our Nomogram, we employed the concordance index (C-index), which is a vital 
statistical tool in the evaluation of predictive models, particularly in the context of survival analysis. Our Nomo-
gram achieved a C-index of 0.763 (standard error 0.045), indicating robust predictive power. Furthermore, we 
performed the Decision Curve Analysis (DCA) to evaluate the clinical application of the Nomogram. The DCA 
curve demonstrated a higher net benefit across a range of threshold probabilities when compared to the use of 
single predictors alone (Fig. 4B). Lastly, the Calibration Curve was employed to compare the predicted survival 
with the observed outcomes at 1-year, 3-year, and 5-year intervals (Fig. 4C). This analysis revealed a high level 

Figure 1.  The overall analysis workflow of this study. Schematic flowchart of the workflow performed to build 
and validate the breast cancer prognostic risk signature. Some typical analysis results were shown in reduced size 
(normal-sized pictures are shown later).
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of accuracy in the Nomogram’s ability to predict survival at these time points, underscoring its potential values 
in clinical settings.

Comparative analysis of RiskScore correlation with clinical features in TCGA and METABRIC 
cohorts
Our study utilized the TCGA database exclusively as a training set, while the METABRIC database was employed 
for external validation. Initially, we evaluated patient survival in the TCGA cohort by K–M curves for different 
risk groups. We discovered that patients in the low-risk group demonstrated significantly better prognoses (Log-
rank P < 0.001, Fig. 4D), with their survival status depicted in a scatter plot (Supplementary Fig. 1B). Further, 
we examined the relationship between riskScore and various clinical characteristics, including PT, PN, AJCC 
staging, and PAM50 subtypes. The Kruskal–Wallis’s test identified significant statistical differences among these 

Figure 2.  Differential distribution of MRGs and profile plot of LASSO regression. (A) Differential distribution 
of MRGs between tumor and adjacent-normal tissues in the TCGA cohort. This heatmap was created by R 
software (version 4.2.0) and the “pheatmap” package. (B) Volcano plot of the DE-MRGs. (C) Univariate Cox 
regression identified MRGs significantly related to OS (P < 0.05). (D) LASSO coefficient profile plots of the 
8-MRG risk signature. (E) Penalty plot for the LASSO regression for the MRGs with error bars denoting the 
standard errors. MRG, mitochondria-related genes; DE-MRGs, differentially expressed MRGs; LASSO, least 
absolute shrinkage and selection operator.
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factors in the TCGA cohort, suggesting an association between higher riskScore and more advanced disease 
features, such as T4, N3, Stage IV (Supplementary Fig. 1C–F).

In the external validation using the METABRIC cohort, the risk signature derived from TCGA was applied 
to calculate riskScore. The survival analysis for the METABRIC cohort echoed the TCGA results, showing 
improved outcomes for patients in the low-risk group (Supplementary Fig. 2A, B). Notably, tumor size and posi-
tive lymph node count corresponded to T and N stages in METABRIC cohort. Similar to TCGA, METABRIC 
patients with the higher riskScore often presented with advanced features, like having 10 positive lymph nodes. 
Notably, patients with the more aggressive molecular subtypes such as basal-like and Her2 positive demonstrated 
higher riskScore in METABRIC cohort, while this trend was less apparent in the TCGA cohort. However, in 
both cohorts, patients with the less aggressive Luminal A breast cancer presented the lowest riskScore (Sup-
plementary Fig. 3A–D).

In terms of the prognostic effects of each gene within this signature, our analysis revealed that 3 genes reached 
statistical significance in influencing prognosis in TCGA cohorts. High expression of ME3 and TP53AIP1 was 
associated with a significantly better prognosis (ME3: Log-rank P = 0.013, TP53AIP1: Log-rank P < 0.0001), 
whereas high MRPL13 expression correlated with a worse prognosis (Log-rank P = 0.0017, Supplementary Fig. 4).

Functional enrichment analyses between risk groups
Our risk signature effectively classifies patients into high-risk and low-risk groups, subsequently led us to inves-
tigate potential biological functional differences between these groups. We conducted differential gene expres-
sion analysis for both groups and then performed functional enrichment analyses on the identified genes. This 
approach aimed to elucidate the underlying factors contributing to the prognostic disparities observed in these 
patients. Through analysis using GO and KEGG pathways, we found that the genes differentially expressed 
between the groups were primarily associated with T-cell activation, leukocyte-mediated immunity, and the 
NF-kappa B signaling pathway (Fig. 5A, B). Furthermore, GSEA results indicated that low-risk patients showed 
enrichment in the positive regulation of immune response and immune system processes. In contrast, high-risk 
patients exhibited predominant features in neuronal differentiation and development (Fig. 5C).

Assessment of the ability of the risk signature to distinguish different immune infiltrations
The ESTIMATE analysis revealed that low-risk patients had significantly higher ESTIMATE scores, along with 
elevated immune and stromal scores, and lower tumor purity (Fig. 6A). Following this, we utilized CIBERSORT 
to analyze tumor-infiltrating immune cells, identifying those significantly correlated with riskScore from 22 types 
of immune cells (Supplementary Fig. 5A–L). Furthermore, we classified the breast cancer samples in the TCGA 
cohort into five distinct immune subtypes: C1 (Wound Healing, 32%), C2 (IFN-gamma Dominant 51%), C3 
(Inflammatory, 11%), C4 (Lymphocyte Depleted, 3%), and C6 (TGF-beta Dominant, 3%). Notably, the low-risk 
group showed a lower proportion of C1 subtype but higher proportions of C3 and C6. In contrast, high-risk 
patients exhibited a higher proportion of C1 and lower proportions of C3 and C6 (Fig. 6B). Additionally, the 
ssGSEA results indicated significant differences in immune cell enrichment between the high-risk and low-risk 
groups, except for neutrophils (Fig. 6C).

Risk signature and prognosis of different gene mutation landscape
Patients within the risk groups were matched using sample barcodes, allowing us to illustrate the mutation 
landscape through oncoplots (Fig. 7A, B). Focusing on PIK3CA and its associated genes impacting prognosis, 
CDH1 and KMT2C emerged as the top two genes, ranked by their P values. In our survival analysis, mutations 
in the PIK3CA gene (HR = 2.03, P = 0.0975) and its co-mutation with CDH1 (HR = 8.86, P < 0.001) and KMT2C 

Table 2.  Brief description of 8 MRGs.

Gene Full name Description

ACSL1 Acyl-CoA Synthetase Long-Chain Family Member 1 Exists at the outer mitochondrial membrane and plays an important role in ferroptosis in diverse cancer 
cell types (Ellis et al. 36; Wang et al. 37;  Coleman35; Beatty et al. 34; Wang et al. 37)

ALDH2 Aldehyde Dehydrogenase 2 Aldh2-deficient can activate a variety of carcinogenic pathways and promote the occurrence of hepato-
cellular carcinoma (Seo et al. 39)

MTHFD2 Methylenetetrahydrofolate dehydrogenase 2
Regulates purine synthesis and signal transduction in activated T cells to promote proliferation and 
induces immune invasion of cancer cells by upregulating PD-L1 (Huang et al. 40 ; Shang et al. 41; Sugiura 
et al. 42)

MRPL13 Mitochondrial ribosomal protein L13 Exists in the mitochondria of eukaryotic cells, a poor prognostic factor for BC (Tao et al. 44; Cai et al. 43; 
Ye and Zhang 45)

TP53AIP1 Tumor Protein P53 Regulated Apoptosis Inducing Protein 1 TP53 target, plays a key role in inducing apoptosis in response to UV-induced DNA damage (Benfodda 
et al. 46)

SLC1A1 Solute Carrier Family 1 Member 1
An extracellular glutamine transporter, promotes tumor growth through reprogramming glutamine 
metabolism of natural killer T-cell lymphoma, while rendering tumor cells sensitive to asparaginase 
treatment (Xiong et al. 47)

ME3 Malic Enzyme 3 Catalyzes oxidative decarboxylation of (S)-malate to pyruvate and reverse the decarboxylation reaction. 
Involved in the carcinogenesis of pancreatic cancer (Zhang et al. 48)

BCL2A1 BCL2 Related Protein A1 Bcl-2 family member, regulates endogenous apoptosis and target anti-apoptotic members (Li et al. 49; 
Murthy et al. 50)
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(HR = 5.3, P = 0.0138) were linked to poorer prognosis in high-risk patients (Fig. 7C–E). However, in the low-risk 
group, these same genetic alterations did not demonstrate a significant worse prognosis in survival outcomes 
(Fig. 7G–I). Moreover, we calculated the tumor mutational burden (TMB), finding it to be higher in high-risk 
patients (0.74/MB) compared to low-risk patients (0.58/MB) (Fig. 7F, J).

Weighted gene co‑expression network analysis
In our study, we employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify co-expression 
modules correlated with clinical features in breast cancer. The clustering of individual cases, alongside ESTI-
MATE scores, riskScore, and risk group classifications, was visualized in a sample dendrogram trait heatmap 
(Fig. 8A). Among the identified modules, the turquoise module emerged as particularly significant. It exhibited 
a positive correlation with the ESTIMATE scores, encompassing both stromal and immune scores, indicating 
its potential relevance in the tumor microenvironment. Conversely, this module showed a negative correlation 
with tumor purity, higher riskScore, and categorization into the high-risk group (Fig. 8B). To further explore the 
functional implications of the turquoise module, we performed a comprehensive Gene Ontology (GO) analysis. 
This analysis revealed that variations in immune regulation could be attributed to the genes within the turquoise 
module (Supplementary Fig. 6A,B).

Figure 3.  MRG risk signature and clinical application. (A) 8 MRGs and distribution heatmap of clinical 
features. This heatmap was created by R software (version 4.2.0) and the “pheatmap” package. (B, C) ROC and 
time-ROC analysis of the risk signature. (D, E) Univariate and multivariate Cox regression for the riskScore and 
corresponding clinical features. (F) 8 MRG expression levels between tumor and adjacent-normal tissues. (The 
plot annotations were as follows: * if P < 0.05, ** if P < 0.01, and *** if P < 0.001 and ns if nonsignificant.).
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Treatment response and drug sensitivity
In our study, we utilized data from the TCGA and METABRIC cohorts to evaluate treatment responses and drug 
sensitivity in breast cancer patients. Our analysis revealed that high-risk patients in both cohorts demonstrated 
a significantly worse prognosis in chemotherapy, radiotherapy, and endocrine therapy (Fig. 8C–E and  Supple-
mentary Fig. 6C–E). To further our understanding, we closely examined the sensitivity of various risk groups 
to commonly used clinical treatments. We found that patients classified as high-risk (the red line) consistently 
showed higher IC50 values in both IC50 > 1 and IC50 < 1 groups. This indicates a lower sensitivity to treatment, 
particularly to standard breast cancer chemotherapy drugs like Epirubicin, Docetaxel, and Paclitaxel (Fig. 8F–G).

Discussion
In the past decade, the reprogramming of metabolism has garnered significant  attention51, as evidenced by 
numerous studies highlighting altered mitochondrial metabolism as a key mechanism of therapeutic resistance 
in cancer  treatment52–55. Meanwhile, the development of polygenic models targeting mitochondrial-related genes 
using bioinformatics methods is a promising direction in the diagnosis, treatment, and prevention of breast 
cancer. Recently, Luo et al.56 constructed a gene prediction model using the mitochondrial GOBP term gene set, 
combined with overall survival (OS) analysis. However, it is important to note that this study did not differenti-
ate between tumor and adjacent-normal tissues and lacked an exploration of the link between these genes and 
clinical applications. Another study established a signature based on mitochondrial function-related long non-
coding RNA (lncRNA), offering crucial insights for prognosis and targeted immunotherapy in breast cancer at 
non-coding RNA  level57. Despite these significant contributions, they also highlight areas where further research 
is needed, particularly in transcriptomic and clinical translation.

Figure 4.  Construction and evaluation of the risk signature-based nomogram model. (A) Age, AJCC stage, 
and riskScore (independent risk factors) were enrolled in the Nomogram, and the total score could be used as a 
tool to predict the 1-, 5-, and 10-year prognosis of breast cancer patients. The orange dots and arrows in the plot 
represent the clinical characteristics of a patient and the survival probability of the corresponding year. (B) DCA 
of the Nomogram. (C) Calibration curve of the Nomogram to predict survival at 1 year, 3 years, and 5 years. (D) 
K–M curves for the prognosis analysis between high and low risk groups. DCA, decision curve analysis.
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Our methodology initiated with a differential analysis contrasting tumor tissue against adjacent-normal tis-
sue. Subsequently, we incorporate this analysis with the LASSO-Cox algorithm to establish an 8 Mitochondrial-
Related-Genes risk signature. Our mitochondrial gene-based risk model achieved an overall Area Under the 
Curve (AUC) of 0.647. A detailed examination of the AUC over time intervals of 1, 3, 5, and 10 years revealed 
an increasing trend, from 0.58 to 0.76 (Fig. 3B, C). This trend underscores the signature’s consistent accuracy in 
predicting long-term breast cancer prognosis. This performance surpasses the moderate accuracy of established 
models like BCRAT (Breast Cancer Risk Assessment Tool) and BCSC (Breast Cancer Surveillance Consortium), 
which have a maximum AUC of 0.7158. The integration of mitochondrial genetics into breast cancer risk assess-
ment introduces a novel dimension, potentially enhancing clinical decision-making. The innovation of our 
approach stems from exploiting the complex relationship between mitochondrial dysfunction and tumorigenesis. 

Figure 5.  Functional enrichment analyses of the different risk groups. (A–C) GO, KEGG, and GSEA analyses 
of the DEGs between the high- and low-risk groups. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; GSEA, Gene set enrichment analysis.
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Figure 6.  Immune infiltration of the risk groups. (A) The ESTIMATE algorithm presented the immune 
infiltration scores across risk groups, including the ESTIMATE score, immune score, stromal score and tumor 
purity. (B) Immune subtype of TCGA breast cancer cases based on immune-related gene expression and the 
different subtype proportions in risk groups. (C) ssGSEA demonstrated the abundance of 28 tumor-infiltrating 
immune cells in individual tissue samples by a heatmap ranked from the lowest to the highest riskScore. (This 
heatmap was created by R software (version 4.2.0) and the “pheatmap” package. The plot annotations were 
as follows: * if P < 0.05, ** if P < 0.01, and *** if P < 0.001 and ns if nonsignificant). ESTIMATE Estimation of 
Stromal and Immune cells in Malignant Tumor tissues using Expression.
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This offers a unique perspective in cancer risk prediction and highlights our model’s cutting-edge contribution 
to the dynamic field of cancer biology.

Recognizing the signature’s effective predictive power, we constructed a Nomogram model by amalgamating 
the results of multivariate Cox regression analysis. Decision Curve Analysis (DCA) is an established method for 
evaluating nomograms, tailored to address the practical requirements of clinical decision-making59. Additionally, 
a Calibration Curve serves as another means to assess the alignment between predicted outcomes and actual 
observations. These methodologies collectively affirmed the efficacy of our nomogram model, which is rooted 
in the risk signature. Moreover, our findings indicate that high-risk patients experience markedly poorer prog-
noses, with a higher riskScore being positively associated with more aggressive clinical attributes. These results 
were further substantiated through verification in the METABRIC validation cohort (Supplementary Figs. 1–3).

Within the 8 Mitochondrial-Related Genes (MRGs) analyzed, ACSL1, MTHFD2, and MRPL13 were nota-
bly overexpressed in both the high-risk group and tumor tissues. Conversely, TP53AIP1 and ME3 exhibited 
higher expression in the low-risk group and adjacent-normal tissues. Specifically, a higher expression of ME3 
and TP53AIP1 was associated with significantly better prognosis, whereas elevated MRPL13 levels correlated 
with worse outcomes. This suggests that TP53AIP1 and ME3 may function as tumor suppressors, and MRPL13 
might act as an oncogene in breast cancer. Aligning with our findings, one study confirmed TP53AIP1 as a novel 
tumor suppressor gene in breast cancer, potentially offering a new therapeutic  target60. Additionally, another 
study identified high MRPL13 expression as a poor prognostic factor in breast cancer, proposing its use both as 
a prognostic marker and a potential therapeutic  target43,44.

To understand the prognostic differences between high and low-risk groups, we conducted a detailed analysis 
of differentially expressed genes (DEGs) between these groups, followed by functional enrichment analyses. In 
GO analysis, most BP terms were linked to immune responses. In addition, KEGG analysis revealed that Th17-
cell differentiation and the NF-kappa B signaling pathway, along with most other terms, were intimately linked 
to immune responses and oncogenesis. Complementing these findings, GSEA highlighted the up-regulation of 
several immune-related elements in the low-risk group. This suggests that a lower riskScore, potentially influ-
enced by the mitochondria’s involvement in immune response and cell  death45,61, may be indicative of a more 

Figure 7.  Mutation landscape analysis between risk signatures. (A, B) Oncoplots for the different mutation 
landscapes of risk groups. (C–E & G–I) K–M curve for the most frequently affected gene and combination of 
associated genes affecting prognosis in the high and low risk groups. (F, J) The calculated TMB in high and low 
risk groups. TMB, Tumor mutational burden.
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robust immune response. Conversely, in the high-risk group, terms associated with neuron differentiation were 
predominant. This aspect may be attributed to the role of nerve growth factor in the proliferation, invasion, and 
metastasis of breast cancer cells, especially in  TNBC62–64.

Therefore, we further analyzed the relationship between immune infiltration and our risk signature. In our 
analysis, we initially applied the ESTIMATE algorithm to quantify the proportions of tumor cells, infiltrating 
immune cells, and stromal cells within the tumor immune microenvironment. In line with prior observations, 
patients classified as low-risk demonstrated elevated ESTIMATE scores, indicative of increased immune and 
stromal cell presence and reduced tumor purity. This suggests a more significant degree of immune infiltration in 
these patients, typifying a “warmer” tumor status. Furthermore, using CIBERSORT, we assessed the infiltration 
levels of 22 immune cell types (Supplementary Fig. 5). Notably, a significant negative correlation was observed 
between the riskScore and CD8 T cells (R = − 0.26, P < 2.2e−10), which play a vital role in tumor  destruction65. 
In contrast, M2 macrophages, known for facilitating angiogenesis and  neovascularization66, showed a significant 
positive correlation with the riskScore (R = 0.19, P = 2e−10). These M2 macrophages are implicated in stromal 
activation and  remodeling67, contributing to tumor-promoting activities including  immunosuppression68, thus 
potential correlating with poorer prognosis in breast cancer patients. Additionally, the riskScore was negatively 
correlated with M1 macrophages, recognized for their role in enhancing antitumor inflammatory responses and 
as key elements in proinflammatory  reactions69.

Figure 8.  WGCNA, treatment responses and drug sensitivity. (A) Dendrogram trait heatmap for the overall 
situation between individual cases after WGCNA clustering and ESTIMATE, riskScore, and risk group. This 
heatmap was created by R software (version 4.2.0) and the “WGCNA” package. (B) Three color module genes 
clustered by WGCNA and corresponding statistical correlation. (C–E) K–M curves for the prognostic analysis 
of patients with chemotherapy, radiotherapy and endocrinotherapy among different risk groups in the TCGA 
cohort. (F–G) Radar plots for drug sensitivity between different risk groups among IC50 < 1 & IC50 > 1. 
WGCNA, weighted gene co-expression network analysis.
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In our extended immunotyping analysis, we observed that C1 subtype prevalence was higher in high-risk 
patients (38% vs. 26%), while C3 subtype was more prevalent in low-risk patients (16% vs 7%). The C1 subtype, 
characterized as “Wound Healing immune”, exhibits high expression of angiogenic genes and Th2 cells. This 
subtype is associated with high tumor cell proliferation and significant intratumoral heterogeneity, often leading 
to less favorable outcomes. Conversely, the C3 subtype, known as “inflammatory”, is defined by elevated Th17 and 
Th1 gene expressions. It typically shows low to moderate tumor cell proliferation and minimal intratumoral het-
erogeneity, correlating with the best prognosis among the subtypes. Aligning with these findings, a low riskScore 
correlates with increased immune cell infiltration, indicative of a “warmer” immune microenvironment in low-
risk patients. Hence, it is plausible to infer that our risk signature can distinguish patients with varying immune 
responses, and this diverse tumor immune status may explain the differences in prognosis.

We also investigated the mutational landscape differences between the risk groups. Notably, TP53 mutations 
were predominantly observed in high-risk patients (37%), whereas PIK3CA mutations were more common 
in low-risk patients (42%). The TP53 mutation is linked with high mutation frequencies in TNBC and HER2-
positive subtypes, at 80% and 70% respectively, and considerably lower in luminal A and B types, at 10% and 30% 
 respectively7,70–72. Conversely, the PIK3CA mutation, recognized as a genomic marker of breast  cancer73, exhibits 
lower mutation rates in TNBC (16%) compared to HR + /HER2- (42%) and HER2 + (31%) breast  cancer74. These 
patterns partially elucidate the variations in riskScore across molecular subtypes. Furthermore, the same gene 
mutation status is associated with a significantly worse prognosis in high-risk patients, potentially linked to their 
generally poorer prognosis. The increased TMB observed in high-risk patients may be attributable to the higher 
prevalence of TP53 mutations and the greater proportion of  TNBC75. We employed WGCNA to elucidate genes 
linked to prognostic variations in breast cancer and discovered that the gene expression trends in the turquoise 
module closely mirrored our hypotheses. Further GO analysis of these genes indicated that differences in immune 
regulation might be a contributing factor (Supplementary Fig. 6A, B).

In our final examination focusing on the therapeutic aspects of breast cancer, we observed significant prog-
nostic disparities between different risk groups. Specifically, patients classified in the high-risk cohort exhib-
ited poorer outcomes across three types of treatments, a trend consistent in both the TCGA and METABRIC 
cohorts. Building on these findings, we further analyzed drug sensitivity, revealing that the low-risk group 
showed greater sensitivity to a range of chemotherapy drugs commonly used in breast cancer treatment, such 
as paclitaxel, docetaxel, and Epirubicin. This enhanced responsiveness to chemotherapy in the low-risk group 
could help explain the variations in treatment outcomes, illustrating the utility of our gene signature in guiding 
therapeutic decisions.

However, there are some limitations to our study. Firstly, while our risk signature is valuable for assessing 
patient survival and identifying individuals at high risk of breast cancer, its utility in early diagnosis should be 
approached with caution. Additionally, considering the hormone-dependent characteristics of breast cancer, it is 
crucial to investigate the applicability of our findings to other hormone-related female cancers, such as ovarian 
and cervical cancers, in future research. Furthermore, the predominance of white individuals (70%) in the large 
databases used for our analysis underscores a limitation in racial diversity, emphasizing the need for developing 
localized data sets to more comprehensively validate our risk signatures. Lastly, although experimental studies 
have confirmed the involvement of certain genes in our risk signature, future research should continue to focus 
on basic experiments to unravel their interactions and underlying mechanisms in the progression of breast cancer.

Conclusion
In this study, we developed a novel risk signature based on eight mitochondrial-related genes. Its prognostic 
accuracy has been validated through various clinical evaluation methods. Additionally, this signature can effec-
tively distinguish between high-risk and low-risk groups among breast cancer patients, thereby suggesting its 
potential value in clinical applications.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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