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Quantizing reconstruction losses 
for improving weather data 
synthesis
Daniela Szwarcman 1, Jorge Guevara 2, Maysa M. G. Macedo 2, Bianca Zadrozny 1, 
Campbell Watson 3, Laura Rosa 4 & Dario A. B. Oliveira 1,5*

The stochastic synthesis of extreme, rare climate scenarios is vital for risk and resilience models aware 
of climate change, directly impacting society in different sectors. However, creating high-quality 
variations of under-represented samples remains a challenge for several generative models. This 
paper investigates quantizing reconstruction losses for helping variational autoencoders (VAE) better 
synthesize extreme weather fields from conventional historical training sets. Building on the classical 
VAE formulation using reconstruction and latent space regularization losses, we propose various 
histogram-based penalties to the reconstruction loss that explicitly reinforces the model to synthesize 
under-represented values better. We evaluate our work using precipitation weather fields, where 
models usually strive to synthesize well extreme precipitation samples. We demonstrate that bringing 
histogram awareness to the reconstruction loss improves standard VAE performance substantially, 
especially for extreme weather events.

The frequency, duration, and intensity of extreme weather events have increased as the climate system warms. 
For example, climate change leads to more evaporation, directly exacerbating droughts and increasing the fre-
quency of heavy rainfall and snowfall  events1. These extreme weather events often result in hazardous conditions 
or impacts, either by crossing a critical threshold in a social, ecological, or physical system or co-occurring 
with other  events2. In this context, impact models can be valuable tools for risk assessment in different climate-
sensitive sectors and for evaluating adaptive measures. However, these models usually require long time series 
of high-resolution weather  data3.

Stochastic weather generators are techniques that can create artificial weather series representing plausible 
climate  scenarios3–5 and have been widely used to provide data to impact  models6. Traditional weather genera-
tors often use latent weather states and resampling methods. Despite their success in generating realistic weather 
data, methods relying on resampling usually require careful tuning of spatiotemporal constraints and struggle 
to scale for large gridded areas or generate diverse samples. Furthermore, traditional weather generators usually 
struggle to generate extreme events.

Recently, with the great success of deep generative models for many  applications7–9, researchers have also 
began investigating these methods in the context of weather field  synthesis10–13, but most of these works explored 
only generative adversarial networks (GANs)14.  PrecipGAN11 simulates the spatiotemporal change of precipita-
tion systems,  ExGAN10 proposes a GAN-based approach to generate realistic extreme precipitation scenarios, 
and the GAN from Klemmer et al.13 generates spatiotemporal weather patterns conditioned on detected extreme 
events. However, while the GAN adversarial training scheme usually derives efficient losses that lead to generators 
producing very realistic samples, such models are difficult to train and often present the mode collapse issue, 
which leads to low diversity  synthesis15,16.

Variational autoencoders (VAE)17 are encoder-decoder generative models that map the training data into 
a latent distribution and enable stochastic synthesis by merely sampling latent codes from a known (simple) 
distribution. In the context of extreme precipitation field synthesis, Oliveira et al.12 showed that it is possible to 
control the extremeness of new samples by choosing areas from the known latent space distribution using VAEs.

The loss function for a standard VAE combines a reconstruction term and a regularization  term17,18. The first 
is related to the reconstruction error, such as the mean squared error, and the second regularizes the latent space 
to a known distribution. Several works have investigated different approaches for the regularization  term18–20, 
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while improvements for the reconstruction term remains mostly underexplored. In regression problems, the 
mean squared error usually leads to models that show good performance for frequent values and poor results for 
less common  values21, especially if the imbalance is severe. However, generating extreme (rare) events is crucial 
in the context of weather generators, as they are precisely the events of interest for climate change.

In this paper, we propose alternatives to the standard VAE reconstruction loss that uses distributional infor-
mation of pixel values to improve the model’s reconstruction quality for rare values. More specifically, we propose 
to penalize the reconstruction loss using histograms of the training data batch and compare the results with 
strategies used for imbalanced regression datasets. We experiment with our approach using precipitation data, 
usually highly imbalanced, where rare precipitation values are often associated with extreme precipitation events. 
We report that our proposed quantized losses substantially improve the reconstruction quality, especially for the 
highest precipitation values. Concretely, our contributions are listed as below:

• Propose quantized reconstruction losses for improving weather field synthesis reconstruction quality for 
extreme events;

• Evaluate the proposed approach synthesis quality comparing with baseline benchmarks for handling very 
imbalanced datasets;

• Report results for reconstruction and stochastic synthesis using real use case data.

Related work
Variational autoencoders
VAEs17,22 are a popular framework for deep generative models and formulate learning representations of high-
dimensional distributions as a variational inference  problem23. The VAE objective balances the quality of gener-
ated samples with encouraging the latent space to follow a fixed prior distribution, using a regularization term. 
Efforts to improve the VAE framework have mainly focused on the regularization part of the objective, like 
 InfoVAE18 and Wasserstein  autoencoders19,20.

More recently, vector quantized variational autoencoders (VQ-VAE)7 introduced the quantization of latent 
space delivering synthesis with improved reconstruction quality, even overcoming the results from many popular 
 GANs24. Since the optimized quantized codes are discrete, following a categorical distribution, one cannot use 
them directly to generate new samples or adjust the synthesis towards extreme scenarios. Van Den Oord et al.7 
train a PixelCNN using the codes as priors to generate novel examples, which greatly increases the complexity 
of adjusting stochastic synthesis targets when compared to merely sampling from known areas in the latent dis-
tribution as in the standard VAE. Still, it is worth clarifying that our primary contribution in this paper pertains 
to the utilization of quantized reconstruction losses, rather than promoting a specific VAE architecture.

Regression in imbalanced training sets
Different solutions have been proposed to improve regression or classification performance for less frequent 
values in imbalanced datasets. A traditional approach is to define a relevance function that maps the continu-
ous values in the target domain into a scale of relevance, where the infrequent values are the most  relevant25,26. 
Another popular strategy increases the model’s exposure to less frequent values by combining both over-sampling 
and under-sampling  strategies27,28, even if such strategies can introduce noise or disregard valuable information, 
respectively. Recently, distributional losses (commonly used for classification and reinforcement learning) were 
introduced for regression  problems21,29. Imani et al.29 proposed the Histogram Loss (HL) that derives a target 
distribution that corresponds to a normalized histogram and optimizes the Kullback-Leibler (KL) divergence 
of prediction and target. Besides improving accuracy, the HL loss function reduces over-fitting and improves 
generalization. However, the method implements the loss using an extra layer with nodes corresponding to each 
histogram bin, which limits the loss applicability in any model. Yang et al.21 proposed a distribution smoothing 
strategy that considers the similarity between nearby targets in both label and feature spaces to improve regres-
sion accuracy. While those methods effectively handle imbalanced datasets, they struggle with distributions with 
very long tails, as in precipitation data, and also implements an auxiliary layer to model the histogram. In any 
case, for those losses, it is numerically still more advantageous to the optimization to focus on more frequent 
values and ignore the less common errors from the tails.

Another general approach for handling imbalanced datasets consists of using focal  losses30,31, which are 
functions that often implement a modulating term, commonly the cross-entropy, to enable learning to focus on 
hard negative examples. Lu et al.32 propose a shrinkage loss to enhance control on the focus samples and penalize 
the importance of easy samples while keeping the loss of hard samples unchanged. They report improvements 
compared to the original focal loss that penalizes both the easy and hard samples. Focal losses are very efficient 
in handling class imbalance, but they also struggle to tackle data imbalance within samples, as in precipitation 
data. In this sense, histogram-based and focal losses are not inherently adequate for our problem. We propose 
to address this by quantizing the reconstruction losses, which would take errors on individual quantiles equally 
into account when training the model.

Method
The VAE defines a joint distribution between the input data space x ∈ X  and the latent space z ∈ Z . Commonly, 
we assume a simple prior distribution p(z) over the latent variables, such as a Gaussian N(0, I)18. The data gen-
eration process consists of two steps: (1) a value z is sampled from the prior p(z); (2) a value x is generated from 
a conditional distribution pθ (x|z) (also usually assumed to be Gaussian), which is parameterized by a neural 
network: the decoder17,18. So, given a code z, the decoder produces a distribution over the possible correspond-
ing values of x17.
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The posterior pθ (z|x) = pθ (x|z)p(z)/pθ (x) , on the other hand, is often intractable, as is the optimization of 
the likelihood pθ (x) . The proposed solution in the VAE framework is to approximate the intractable posterior 
with qφ(z|x) , again assumed to be Gaussian. A neural network, the encoder, parameterizes qθ (z|x) : given a sam-
ple x, the encoder produces a distribution over the possible z values from which x could have been  generated17.

The standard  VAE17,18,23 loss to be minimized has two components, namely, a reconstruction term Lrec and 
a regularization term Lreg:

where DKL is the KL divergence between the approximate posterior qφ(z|x) and the prior p(z). The Lrec term 
maximizes the log likelihood of observing data point x given its inferred latent  variables18. As pθ (x|z) is frequently 
assumed to be Gaussian, Lrec is often the mean squared error (MSE) between samples x and their reconstruc-
tions x̂17,23.

Subsequent  works18–20 have investigated alternative regularization approaches to alleviate the negative impact 
that the KL divergence might have in the decoder reconstruction performance.  InfoVAE18 rewrites the VAE 
objective and explores other divergences, such as Maximum Mean Discrepancy (MMD)33, that presented the 
best results. MMD measures the distance between two distributions by comparing their moments using kernel 
embeddings. We follow this idea and use the MMD as the regularization loss in our experiments.

We describe the proposed quantized reconstruction losses below as well as the focal losses we used as base-
lines for comparison.

Quantized reconstruction losses
In the first approach, we propose penalizing the reconstruction loss according to the observed values’ frequency 
by quantizing the reconstruction loss and averaging the reconstruction losses for each quantile. Formally:

where �j is the set of pixel indices whose values are inside a given bin bj considering the input data histogram h(x).
The second approach slightly differs from the first one and weights the quantized reconstruction losses by the 

inverse likelihood of a given value based on the histogram frequency distribution. We define a histogram-based 
penalty function, ωj , that weights the losses depending on its frequency value. Formally:

where ωj|j ∈ B is the histogram-based penalization function:

Here, h(x) is the normalized histogram of a given input data x considering B bins, where the normalization 
consists of dividing the bin counts by the maximum bin count observed for x. hj(x) ∈ [0, 1] gives the normalized 
frequency for a pixel value regarding a bin bj.

We derive four VAE models for experimenting with these two quantized reconstruction losses by either 
replacing the reconstruction loss with its quantized version or adding the quantized version to the standard MSE 
loss. Formally, the VAE losses we derive are:

Figure 1 shows an example of Lrec and the regions to compute Lrec{qt,wqt} for a given sample. While Lrec considers 
merely the pixel mean squared error between the sample and its reconstruction, Lrec{qt,wqt} define different regions 
to compute the pixel mean squared error and derive the average value comprising all regions evaluated. In this 
sense, errors in less frequent values are equally important for computing the final reconstruction loss.

Reconstruction focal losses ‑ baselines
Although the literature presents some approaches for imbalanced regression, many are not directly applicable to 
the VAE framework, as they require adding an extra  layer21 or a specific format for the output  layer29. However, 
the regression focal loss presented by Yang et al.21 can replace the MSE in the VAE objective without additional 
requirements. The authors propose a regression loss inspired by the focal loss for imbalanced classification 
 problems30. The scaling factor is a continuous function that maps the absolute error into [0, 1]. More specifically, 
the regression focal loss based on the MSE can be written as:

where σ is the sigmoid function, β and γ are hyperparameters. The intuition behind the regression focal loss is 
that samples with minor regression errors will contribute less to the total error than those with higher regression 
errors, which can help training from imbalanced datasets. Here, we propose another focal loss baseline with a 

(1)L(x) = Lrec(x)+ Lreg (x) ≡ −Eqφ(z|x)[log pθ (x|z)] + DKL(qφ(z|x)||p(z))

(2)Lrecqt =

B∑

j

1

|�j|

∑

i∈�j

||xi − x̂i||

(3)Lrecwqt =

B∑

j

1

|�j|

∑

i∈�j

ωj(xi) · ||xi − x̂i||

(4)ωj(xi) = 1− hj(xi)

(5)L{qt,wqt} = Lrec{qt,wqt} + Lreg

(6)L{rec+qt,rec+wqt} = Lrec + Lrec{qt,wqt} + Lreg

(7)FLMSE = σ(β|x − x̂|)γ · ||x − x̂||
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modified modulating term, φhist , that considers histogram imbalance. The idea is to have a baseline that also 
incorporates the histogram to compare with our quantized losses. Figure 1 shows an example of φhist applied to 
a given sample, and we observe higher quantized focus associated with less frequent values and lower quantized 
focus associated with more frequent values.

The quantized focal loss approach replaces the sigmoid term in Eq. (7) by φhist , which depends solely on the 
frequency of values in a batch. Formally:

where φhist(x) is formally defined by:

where �j is the set of pixel indices which values are inside a given bin bj , and ωj histogram-based penalization 
corresponding to bin bj , as defined in Eq. (4).

We then experiment with two additional VAE baseline models by replacing Lrec with each of the baseline 
reconstruction focal losses. Formally:

where � is a factor that controls the relative importance of the focal losses compared to the regularization loss 
Lreg . In our preliminary experiments, we noticed that, for the quantized losses, reconstruction and regularization 
terms had a similar scale, so it was not required to balance them with weights. However, for the focal losses, with 
� = 1.0 , they showed a significantly small signal compared to the regularization term, and convergence was poor. 
Therefore, we set � = 100 in the focal losses experiments.

Experiments
Our experiments examine precipitation field synthesis to evaluate how the proposed reconstruction loss quantiza-
tion helps synthesize very infrequent values better. We highlight that the losses are applicable to other imbalanced 
datasets and encourage the reader to explore them for different applications.

Dataset
We used the Climate Hazards group Infrared Precipitation with Stations (CHIRPS)  dataset34, a global interpolated 
dataset of daily precipitation providing a spatial resolution of 0.05◦ . The data ranges from the period 1981 to the 
present. We experimented with a 2.4◦×2.4◦ bounding box centered in the latitude and longitude coordinates 
(20.5◦ , 75.5◦ ), in Maharashtra state, India, as indicated in Fig. 2a. We used daily precipitation data from 1981 to 
2010 for the training set and from 2011 to 2019 for the test set.

Figure 2b shows the total daily precipitation in the region of interest for two randomly selected years. As 
indicated by the gray area in Fig. 2b, the monsoon period begins around day 150 and continues until about day 
300. We considered sequences of 8 days only in this time range for each year and bounding boxes of 1.6◦×1.6◦ 
to generate training and test samples. More specifically, we use a sliding window mechanism to crop bounding 
boxes of 32× 32 pixels inside the 48× 48 pixels area highlighted in red in Fig. 2a. Therefore, the samples have 

(8)FLhist = φhist(x)
γ ∗ ||x − x̂||

(9)φhist(xi) = ωj(xi)|i ∈ �j , j ∈ B

(10)FL{MSE,hist} = � · FL{MSE,hist} + Lreg

1.0

0.0regions defined 
by histogram

Figure 1.  Illustration to support our quantized loss formulations. At top-left the original input image x, at 
right the reconstructed version x̂ . At bottom-left, the usual mean squared error between x and x̂ . In the center, 
we show different regions defined by the batch histogram from which the MSE is computed for both Lrecqt and 
Lrecwqt . At bottom-right, we observe the φhist focal modulating term used to build quantized focal losses, which 
penalizes regions depending on how frequent the values they hold are.
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32 pixels × 32 pixels × 8 days, as seen in Fig. 2c. The final training set contains 26,100 examples and the test set, 
9000. The datasets are rescaled to the range [0, 1].

As observed in Fig. 2d, the precipitation data is severely imbalanced: while dry days are frequent over the 
year, heavy rain or extreme precipitation events are rare. This intrinsic imbalance characteristic is especially 
challenging for machine learning models: it is difficult to learn the extreme events effectively when only a few 
examples are available. On the other hand, efficient risk analysis for extreme weather events depends on reliable 
data prediction and synthesis.

Experimental design
Table 1 presents the encoder and decoder networks we used for the 3D VAE. The encoder architecture is based 
on a  ResNet1835: we replaced the 2D convolutions with the 3D version but kept the same type of residual units 
(see Fig. 3a). We removed the last two residual units compared to the original ResNet18 because our input size is 
much smaller than the 112×112 pixels images used in the original case. After the last residual unit, we have two 
dense layers for optimizing µx and σx , which are used to sample z following a standard normal distribution. The 
decoder receives an input array z with the size of the latent space dimension that is ingested to a dense layer to be 
reshaped into 256 activation maps of size 8× 8× 2 . These maps serve as input to consecutive residual units that 
can be equal to the ones used in the encoder (Fig. 3a) or residual units with upsampling (Fig. 3b), that increase 
the data size by two in the spatial and temporal dimensions. The decoder has a total of two residual upsampling 
units to increase the 8× 8× 2 maps back to the original size of 32× 32× 8 . A convolution using one filter with 
sigmoid activation delivers the final output.

We used the Adam optimizer with beta1 as 0.9, and beta2 as 0.999. We used a learning rate of 5 ·10−5 for the 
quantized losses and 1 ·10−5 for the others. In the loss functions based on histograms, the number of bins was 
experimentally set to 100. We used γ = 1 and β = 0.2 as in the original  paper21.

0 50 100 150 200 250 300 350
day of the year

0

2

4

6

8

10

12

14

to
ta

l p
re

ci
pi

ta
tio

n 
va

lu
e

1e4

1995
2000

(20.5°, 75.5°)

0 20 40 60 80 100 120
precipitation value

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

no
rm

al
iz

ed
 h

is
to

gr
am

(a)

(b)

32 pixels (1.6o)

32
 p

ix
el

s 
(1

.6
o )

8 days

(c)

(d)

Figure 2.  (a) Region of interest in the north of Maharashtra state, India. (b) Total daily precipitation in 
the region of interest for two different years: 1995 and 2000. The gray area highlights the Monsoon period, 
extending from around day 150 and 300. (c) Typical training sample from the Monsoon period, which 
comprises a sequence of 8 days of precipitation data in a 32× 32 pixels tile that corresponds to 1.6◦×1.6◦ . (d) The 
normalized histogram of precipitation values over the region of interest for year 1995; the log scale was used for 
better visualization. The graph shows the severe data imbalance: several days with no rain (first bin) and bins 
extending to very high precipitation values (>120 mm/day).
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We trained the models for 100 epochs, with 32 data samples per batch, and monitored the total validation 
loss to apply early stopping. We set initial seeds for Tensorflow and NumPy libraries to allow a fairer comparison 
between different trained models and enable our tests’ reproducibility. All experiments were carried out using 
V100 GPUs.

Metrics
The VAE learns to generate stochastic samples of precipitation fields from the latent variable z ∼ N(0, I) . To use 
the VAE after training, we can sample from the latent normal distribution and then use the decoder to generate 
precipitation fields. There are two critical aspects to evaluate in a VAE: the quality of the samples (associated 
with the reconstruction loss) and the variability of the synthetic data (associated with the regularization loss). 
In this work, as we propose losses to improve sample quality, especially for rare values, we focus on evaluating 
synthesis quality. A straightforward way to verify that the latent space encodes relevant information that can be 
decoded into meaningful samples is to analyze the reconstruction quality. We take input samples from the real 
data, use the encoder to map them to the latent space, and compare the decoded outputs with the input data. If 
properly trained, the reconstructed samples should be similar to the input data. Notice, however, that one should 
not expect perfect reconstructions, as the regularization term usually indirectly penalizes reconstruction quality 
for allowing regular stochastic sampling and data synthesis.

For reconstruction evaluation, we need metrics that can represent not only the difference between input 
and reconstructed samples but also that can inspect how this difference spreads across precipitation values of 
lower and higher frequencies. We then selected two metrics: quantized mean-squared error and QQ (quantile-
quantile) plots.

The average MSE provides information about the overall reconstruction quality, with lower MSE values 
associated with more similar images or better reconstruction. The quantized MSE is related closely to Lrecqt : we 
compute the average MSE for each histogram bin, i.e. considering only pixels that fall into each particular bin. 
We derive graphs showing the average MSE values for each bin, so one can visually inspect how the reconstruc-
tion quality relates to how frequent the values are in the known data histogram.

A QQ plot is a graphical method for comparing probability distributions with a reference distribution. In QQ 
plots, distribution quantiles are plotted against each other, which means that a point in the graph corresponds 

Table 1.  Encoder and decoder architectures.

Encoder Decoder

Layer Output shape Layer Output shape

Conv s=1 32× 32× 8× 64 Dense 32, 768

ReLU 32× 32× 8× 64 Reshape 8× 8× 2× 256

Res s=1 32× 32× 8× 64 Res s=1 8× 8× 2× 256

Res s=1 32× 32× 8× 64 Res s=1 8× 8× 2× 256

Res s=2 16× 16× 4× 128 Res s=1 8× 8× 2× 128

Res s=1 16× 16× 4× 128 Res up 16× 16× 4× 128

Res s=2 8× 8× 2× 256 Res s=1 16× 16× 4× 64

Res s=1 8× 8× 2× 256 Res up 32× 32× 8× 64

Flatten 32, 768 Conv s=1 32× 32× 8× 1

Dense µx 30 Sigmoid 32× 32× 8× 1

Dense σx 30

Conv (k=3, s)

+

ReLU

ReLU

Conv (k=3, s=1)
F

(a) (b)

Conv (k=3, s=1)

+

ReLU

ReLU

Up 2x
Up 2x

Conv (k=3, s=1)

Upsampling 2x

Figure 3.  (a) Residual unit, similar to ResNet18 units; kernels (k) have size 3. F can be the identity function 
when feature map shapes for addition match or a 1 ×1× 1 convolution when the shapes are different. The 
first convolutional layer can have stride (s) 1 or 2, while the second always has s = 1. (b) Residual unit with 
upsampling. The Up 2x function comprises a 2 × upsampling (nearest neighbor interpolation) followed by a 
convolution with k = 3 and s = 1.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3396  | https://doi.org/10.1038/s41598-024-52773-2

www.nature.com/scientificreports/

to one quantile from a given distribution plotted against the same quantile in another distribution. In our case, 
the pixel values of the input samples represent the reference distribution (x-axis), and the pixel values of their 
respective reconstructions define the other distribution (y-axis). If these two distributions are similar, the points 
will fall approximately on the line where the x-axis equals the y-axis (45◦ straight line). If the distributions are 
linearly related, the quantiles will fall approximately on a straight line but not necessarily on the 45◦ line.

Results and discussion
In total, we evaluated seven VAE models, each of them with a different loss configuration. In our results, we 
name the models according to their losses, as presented in the Method section, meaning that L_rec corresponds 
to the model trained using L , L_qt using Lqt , FL_hist using FLhist and so on.

Although we adopted an encoder-decoder based on a standard architecture (ResNet18), in order to verify its 
stability, we conducted the following experiment: we trained the model using the baseline loss L_rec five times, 
using different random seeds and the configuration detailed in the previous section. Figure 4 depicts the training 
losses of these five runs and shows that the model converges to very similar values in all of them.

We can observe from Fig. 5a that reconstruction of very infrequent values in the training set is challenging 
for most trained models. However, models using Lrecqt or Lrecwqt (blue lines) performed much better than the 
other models for the higher quantiles, which indicates a significant benefit in quantizing the losses considering 
the values’ frequency. On the other hand, the focal loss models performed marginally better than the standard 
VAE (L_rec) for the higher quantiles. Considering the extreme values (right side of the graph in Fig. 5a), the 
difference between the MSE of the quantized losses and the reference can reach two orders of magnitude ( 10−3 
for quantized losses and 10−1 for L_rec).

Regarding the reconstruction of unseen test samples, the performance is, as expected, worse than that 
observed for the training set (see Fig. 5b). Still, the models with quantized losses show a significant quality 
improvement for infrequent values compared to the others, in this case, with a difference of around one order 
of magnitude in MSE compared to L_rec in the highest bins. Figure 5 also shows that models L_qt and L_wqt 
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Figure 4.  Training loss for five runs of the model trained with the baseline loss L = MSE +MMD . Each run 
corresponds to a different random seed, keeping the training configuration unchanged.
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(solid blue lines) presented higher MSE values for the lower and higher quantiles than the other quantized models 
(dashed blue lines). This result indicates that combining the quantized losses with the original MSE loss can 
improve the quality of rare values while keeping good performance for the frequent values.

The QQ-plot between input and generated samples provides information about how well the model respects 
the original distribution. Figure 6a shows the QQ-plot for the training data reconstruction, where the x-axis 
represents the quantiles of the input samples. The model with standard MSE loss (green line) presents quantiles 
similar to the reference distribution until the value of 80mm/day, from which the model underestimates the 
quantiles considerably. This behavior shows that, with this loss, the model cannot represent the entire training 
distribution, failing to generate the more extreme samples. The focal loss models demonstrate a similar behavior 
but with marginally better performance for higher quantiles. The models with quantized losses overestimate the 
quantiles in the lower region (more frequent values) and show quantile matching for the higher values. Specifi-
cally, model L_wqt overestimates the quantiles over almost the entire range, while L_qt has higher discrepancies 
only in the region around zero. Again, the models that combine the quantized losses and regular MSE (dashed 
blue lines) present the best results for the higher quantiles with only a small overestimation for lower values, 
indicating that this combination can lead to more robust models. We highlight that the models that fail to gen-
erate higher precipitation are not adequate in the weather generator context, as the extreme events are usually 
the ones of more interest.

We observe similar behaviors for the unseen test data reconstruction (Fig. 6b): the quantization significantly 
improved the performance over the standard VAE in the higher and less frequent precipitation values. The focal 
losses, however, present equal (FL_hist) or lower (FL_MSE) performance than the standard VAE.

Finally, we present a visual comparison of randomly selected input samples and their respective reconstruc-
tion for each model to help illustrate the discussion above. In Fig. 7a, one can see five different days selected from 
the training dataset in each row and their reconstructions in the columns. The models using quantized losses 
present the most appealing visual results, with reasonable outputs even in the case of a low-quality input sample 
(second row). It is also important to notice that the spatial characteristics are reasonably represented: the location 
of higher precipitation events is preserved. The standard VAE and focal loss models show smoother reconstruc-
tions and fail to reproduce higher values, confirming the previous observations on the quantized MSE charts.

Figure 7b shows a similar comparison for test samples, also randomly selected. As expected, the results are 
worse for all models (smoother reconstructions) than for the training set case. However, the quantized models 
still perform significantly better than the focal losses or standard VAE, preserving some higher precipitation 
values.

We report improvements when using quantized losses over standard reconstruction losses for VAE, handling 
the reconstruction quality from an imbalanced data perspective. Considering focal losses were designed to 
improve models in imbalanced datasets, one would expect competitive performance in our experiments, and 
conversely, we observed that they are, in best cases, only marginally better than L_rec. We argue that, in reality, 
focal losses are not very fit for datasets composed of samples with highly imbalanced histograms, such as ours. 
More specifically, FL_MSE further penalizes the error by powering the error value itself, assuming that samples 
with rare values will have high associated errors. However, in our dataset, even days with rare, heavy precipitation 
events contain several points with values close to zero (see Fig. 7). Considering that our sample is a 3D volume 
of pixels and that the associated error is an average computed over all the pixels, pixels with low precipitation 
values smoothen out the smaller amount of pixels with high error values associated with rare events. In that case, 
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Figure 6.  QQ-plots for reconstruction of training and test samples, considering the data in the original scale.
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the difference between the average MSE of common and rare samples will be relatively small, and the focal loss 
penalization will not distinguish those errors properly. Concerning FL_hist, it uses the histogram to penalize 
the MSE, but the same effect happens, as the error is computed over the entire 3D sample. On the other hand, 
the quantized losses calculate the MSE for each bin (with penalization) in a given sample and then average those 
errors, which prevents smoothening rare event pixel errors for each individual sample.

Stochastic synthesis
We further present a qualitative analysis for stochastic data synthesis, considering the model L_rec + L_wqt, 
which delivered good results for the quantized MSE and QQ-plots.

As mentioned in the Metrics section, one can generate stochastic samples from a trained VAE by random 
sampling from the normal distribution in the latent space and ingesting such data into the decoder to create 

Figure 7.  Examples of reconstructions of samples from the training set (a) and test set (b), where precipitation 
is lower in blueish pixels and higher in yellowish ones. Rows represent different weather fields selected at 
random between the samples with higher maximum precipitation, and columns represent the various models 
tested.
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the corresponding synthetic data. In Fig. 8, we show five random precipitation samples from the model L_rec 
+ L_wqt, obtained as described above, and observe they present some noticeable variability, which points to suc-
cessful training. Additionally, some samples show high precipitation values (at the order of 0.4, which is relevant 
considering the precipitation range value and the normalization between 0 and 1.0). Random samples generated 
using the trained L_rec model do not present such high precipitation values.

We also experimented with latent space interpolation, a qualitative test to verify if the latent space has proper 
regularization. We first select two random samples from the latent space normal distribution. Then, we create a 
regular grid between them, generating three samples in between the first two points, with each dimension regu-
larly spaced. For example, if for the first dimension of z , the two random samples were 0.1 and 0.5, respectively, 
then the other three samples for this dimension would be 0.2, 0.3, and 0.4. Each latent code in the regular grid 
is then decoded with the trained decoder. Figure 9 shows this experiment for the model L_rec + L_wqt, and we 
can see that sample 1 (top row) gradually transforms into sample 5 (bottom row), which is the expected behavior 
for a well-regularized latent space.

In Fig. 10, we compare the values distribution of random and reconstructed samples with higher precipitation 
values. The idea is to compare whether the distribution of values in samples with higher precipitation values for 
random samples is comparable to the reconstructed ones. For this analysis, we considered only samples with 
at least one pixel higher than the quantile 0.99 of the training set (0.2219). To generate the QQ-plots, we then 
selected the 2 000 samples from each set with the highest sums of precipitation values. We use this selection 
scheme to compare only samples with extreme values (localized in one pixel or spread across the region). Next, 
we use the trained L_rec + L_wqt model to reconstruct the selected samples from the train and test sets (x-axis 
in Fig. 10a and b, respectively). We use the decoder to generate 10,000 random precipitation samples and the 
scheme above to select 2000 for comparison. One can observe that Fig. 10 presents a very consistent distribution 
of random and reconstructed precipitation values, especially when the reconstruction involved the test set. The 
fact that the QQ-plots are more consistent for the test set than for the training set is probably due to the first 
being composed of samples with slightly lower precipitation values than the latter (in our dataset the last 10 years 
were less rainy). Most importantly, higher quantiles seem to be well represented in the stochastically generated 
samples regarding the real samples’ distributions observed in both training and testing sets.

Conclusions
This paper introduced new quantized reconstruction losses to help variational auto-encoders better synthesize 
extreme weather fields. We proposed embedding histogram-based penalization into commonly used reconstruc-
tion loss to modify the loss depending on how probable a value is. We also explored focal losses using a similar 
conceptualization to modify the focus-modulating term and privilege loss in less frequent values.

Our results show that including quantization in regular and focal losses improved trained models’ perfor-
mance for reconstructing extreme weather fields consistently compared to those not using histogram-based 
penalization.

Evaluating the mean-squared error between the input and its corresponding reconstruction pointed to a 
solid improvement of models using quantized losses. Compared to regular VAEs for regression, models using 

Figure 8.  Random samples. Columns represent each day in the 8-day samples and each row represent a 
different sample.
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a combination of quantized and standard reconstruction losses presented overwhelming results by penalizing 
errors associated with less frequent values and, at the same time, sticking to the standard MSE to reduce point-
wise errors.

Future work involves testing different regularization terms combined with quantized reconstruction losses 
to evaluate VAE-based stochastic data synthesis with very imbalanced histograms. Considering the specific use 

Figure 9.  Latent space interpolation. We selected 2 random latent space points (sample 1 and sample 5) and 
other 3 samples in between them in a regularly spaced grid. Columns represent each day in the 8-day samples 
and each row represent a different sample.

Figure 10.  QQ-plots of random samples against reconstructed samples from the (a) train set and from the (b) 
test set. We only considered samples that have at least 1 pixel with precipitation value above the quantile 0.99 of 
the training set.
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case of weather generators, we envisage exploring different architectures for encoders and decoders to improve 
the reconstruction towards sharper outcomes.

Data availability
The datasets generated and/or analysed during the current study are available in the Climate Hazards group 
Infrared Precipitation with Stations (CHIRPS)34 repository, https://www.chc.ucsb.edu/data/chirps.
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