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Impact of climate change 
on potential distribution of Dickeya 
zeae causal agent of stalk rot 
of maize in Sialkot district Pakistan
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Maize (Zea mays) is an influential crop in its production across the world. However, the invasion of 
many phytopathogens greatly affects the maize crop yield at various hotspot areas. Of many diseases, 
bacterial stalk rot of maize caused by Dickeya zeae results in severe yield reduction, thus the need for 
efficient management is important. Further, to produce epidemiological information for control of 
disease outbreaks in the hot spot regions of Sialkot District, Punjab Pakistan, extensive field surveys 
during 2021 showed that out of 266 visited areas, the highest disease incidence ranging from 66.5 
to 78.5% while the lowest incidence was ranging from 9 to 20%. The Maxent modeling revealed that 
among 19 environmental variables, four variables including temperature seasonality (bio‑4), mean 
temperature of the wettest quarter (bio‑8), annual precipitation (bio‑12), and precipitation of driest 
month (bio‑14) were significantly contributing to disease distribution in current and coming years. The 
study outcomes revealed that disease spread will likely increase across four tehsils of Sialkot over the 
years 2050 and 2070. Our findings will be helpful to policymakers and researchers in devising effective 
disease management strategies against bacterial stalk rot of maize outbreaks in Sialkot, Pakistan.

Zea mays belongs to the Poaceae  family1 and it is the 3rd most important crop by its production across the world, 
where rapidly increasing human population has already out-stripped the available food supplies. It plays a major 
role in food security in many developing countries in Asia and Africa. In Pakistan, maize is classified as the 4th 
most influential crop after wheat, rice, and cotton and its yield has increased by 6% during 2019–2020 which 
contributes 0.6% to the gross domestic production of  Pakistan2. The 97% volume of the total maize production 
is achieved from two major provinces of Pakistan where Khyber Pakhtunkhwa (KPK) contributes 57% area and 
produces 68% of the total yield while in Punjab, maize covers 38% area and shares 30% of total maize yield. On 
the other side, Sindh and Balochistan provinces contribute only 2–3% of the total maize  production3.
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In Pakistan, 65% of maize is cultivated on irrigated lands while the rest is grown on  dryland4. Maize, being 
a famous kharif crop (monsoon season crop), is also widely used as forage for domestic animals as well as for 
 poultry5. Maize grains serve as a rich source of vitamins A, and B3, starch, oil, proteins, sugar, fiber, carbohy-
drates, and  ash6. Apart from this, it serves as a raw material to produce corn oil, dextrose, corn syrup, corn flakes, 
wax, and  cosmetics7, ethanol  production8, and serves as a major source of calories in animal ingestion and feed 
 sensationalism9.

Maize has a high economic value after rice and wheat and is grown at a large scale due to its ability to survive 
under various climatic  conditions10. Pakistan offers the right set of conditions to enhance maize production, 
but many limitations impart bad effects on maize production. Many living and non-living factors result in yield 
losses in maize crops. Among various biotic factors, bacterial stalk rot of maize (BSRM) caused by Dickeya zeae 
(syn. Erwinia chrysanthemi pv. zeae) is of major concern and causes significant yield losses in maize, adversely 
affects the quality of the produce if left  untreated11,12. Infected stalks produce an unpleasant smell and topple 
down of plants causing acute yield losses of up to 98.8%13.

Infection caused by D. zeae on maize becomes severe with the change in climatic conditions, and disease 
incidence increases with the increase in temperature and high  humidity14,15. Dickeya zeae has a wide host range 
and spreads through rainwater from individual plants to the whole maize  field16,17. Both high temperature and 
relative humidity favour the physiological and metabolic activities of the pathogen due to which bacterium grow 
well and produce sufficient pectolytic enzymes which degrade the plant  cell13.

Geographic Information Systems (GIS) together with species distribution modeling (SDM) approaches have 
already been used in studying species and/or disease distribution as well as their  forecasting18–22. Both GIS and 
SDM are influential tools for a better understanding of spatial disease  distribution23. Also, the GIS facilitates the 
growers to take appropriate action well in time before the disease  outbreak24. This technology is widely adopted 
as an important tool in epidemiological study of plant diseases. Wetwood disease is one of the most influential 
diseases on elm trees observed in the Northwest of Iran in Tabriz city and become terribly epidemic. The epidemi-
ological assessment of wetwood disease on elm trees was studied by using geographic information system  GIS18.

The proposed study aimed at estimating the stalk rot disease incidence, and severity on maize crops cultivated 
in the Sialkot district, Pakistan. Data collected on the stalk rot of maize and different bioclimatic layers were 
used in disease predictive modeling and forecasting. Maxent modeling was employed to predict regions with a 
high chance of disease spread based on disease occurrence and bioclimatic data. This model was further used 
to forecast the disease spread in coming  years25,26. Predictive modeling, high risk of potential distribution, and 
high chances of BSRM in new areas could help design and adopt the disease management strategies in advance 
to cope with the potential yield loss due to bacterial stalk rot disease in maize crops. This study is helpful to the 
farmer community (growers) to understand the stalk rot of maize disease occurrence trends in the coming years 
and help them devise preventive disease management strategies before the disease outbreak. As no data on the 
potential distribution of BSRM is available in Pakistan, the current research was carried out to understand the 
potential distribution of D. zeae in maize-growing areas and predictive modeling for the disease outbreak in the 
coming years. To our knowledge, this is the first research study on this stated subject from Pakistan.

Materials and methods
Description of the locations of study
The rural areas in the Sialkot district of Punjab, Pakistan were selected for this research study. It is situated at 
the foot of Kashmir hills, near the river Chenab, in the northeast of Punjab, Pakistan (Fig. 1). Sialkot is bounded 
on the northeast by the Jammu and Kashmir state, on the north-west by two rivers (Ravi and Chenab) which 
separate it from the Gujrat, on the west and southeast by Gujranwala and Narowal districts respectively. Sialkot 
is located at 32.4945° N, 74.5229° E with an elevation of about 840 ft above sea level.

The average monthly temperature in Sialkot ranges from 11.6 °C in January to 32.2 °C in  June27. Monsoon is 
the source of precipitation in this region, and the mean annual rainfall is 957 mm, over half of which falls in the 
summer monsoon which often results in  flooding28. The study area was divided into 159 grid cells of 5 × 5  km2 
(Fig. 1). The major cultivated crops in the district of Sialkot are rice, wheat, and  maize29. Kharif (monsoon) sea-
son is the main growing season of maize crop. However, it may be planted at any time from March to October.

Field survey for bacterial stalk rot of maize disease assessment
A field survey to assess the occurrence of BSRM was conducted from May to July 2021 in Sialkot district, 
Pakistan. All four tehsils in district Sialkot including Daska, Pasrur, Sambriyal, and Sialkot were systematically 
inspected. From each of the selected sites, five fields from every 5  km2 distance were visited. From each field, five 
points (5 m × 5 m area) were randomly inspected, and maize plants were observed for disease assessment. Field 
coordinates from each visited location were recorded by using GPS Essentials ArcGIS 10.4 v and MaxEnt v. 3.3 
software. Names of the visited areas in Sialkot district along with the GPS coordinates in Degrees, Minutes, and 
Seconds (DMS) notation are presented as supplementary material.

Disease incidence (DI) and severity (Ds)30 were recorded from each visited location according to the given 
formulas reported by Tahir et al.30 Disease incidence percentage (DIP) was calculated by using the formula given 
below:

Disease severity was recorded by using the disease severity rating  scale31, and the disease severity percentage 
(DSP) was calculated using the following formula:

DIP% =

Total No. of Infected Plants

Total No. of Observed Plants
× 100



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2614  | https://doi.org/10.1038/s41598-024-52668-2

www.nature.com/scientificreports/

Isolation of Dickeya zeae from infected plant samples
Maize stalks showing the typical browning and necrosis symptoms were sampled for the isolation of bacteria. 
Infected segments were surface disinfected in ethanol (70%) for 5 min and 1% NaClO followed by five consecu-
tive washings in sterilized distilled  water32. Disinfected plant parts were aseptically crushed in distilled water 
and streaked on nutrient agar (NA) containing Petri plates and incubated at 26 ± 2 °C for  48h15. After incuba-
tion, morphological discrete bacterial colonies were picked aseptically and cultured on freshly prepared NGM 
medium (23 g of NA, 10 ml of glycerol (1% v/v), and 0.4 g of 2 mM  MnCl2.4H2O/1000 ml) carrying Petri plates 
for detecting the production of characteristic pigments of D. zeae33. All the bacterial strains were preserved 
at − 80 °C in a solution of NB and 80% glycerol.

Biochemical characterization of Dickeya zeae
The biochemical characterization of D. zeae was carried out following previously reported methodologies: For 
catalase  activity34, a 3%  H2O2 on a glass slide, to show the formation of gas bubbles was performed according to 
Hayward et al.34 The procedure of Dasri et al.35 was followed to test bacterial motility and indole-3-acetic acid 
 production35. Hydrogen sulfide  production36 was tested following the methodology of Warren et al. A nutrient 
gelatin stab method was used for the determination of gelatin  liquefication37. Nitrate reduction was assessed 
with Griess Llosvay  reagents38 following the protocol of Choi, et al.38 Starch  hydrolysis39, urease  activity40, and 
levan  production41 were also tested, for the characterizations of the D. zeae isolates.

Bioclimatic/Environmental variables
A total of 19 bioclimatic layers were obtained from the WorldClim database ver. 1.4 (www. worldclim.org)42. 
These layers are classified into two categories including temperature variables and precipitation which are pre-
sented in Table 1. Future climatic data for the years 2050 and 2070 was downloaded from  CliMond43 based on 
the global climate model, CSIRO-Mk3.0 with the Intergovernmental Panel on Climate  Change44.

Modeling procedure and GIS analyses
A pairwise Pearson correlation analysis was performed to overcome the multicollinearity of the bioclimatic/
environmental variables by using  ENMTools46. Based on percentage contribution, variables with a lower than 
0.8 value were kept for model fitting. However, in the case of variables higher than 0.8 and highest contribution 
was  selected45. The spatial resolution of bioclimatic variables was at 30 arc-seconds (~ 1 km). All these variables 
were clipped to match the dimensions of district Sialkot, Punjab Pakistan, and saved in ASCII grid format for 

DSP% =

Some of the Rating

Total No. of plants observed × Rating scale
× 100

Figure 1.  Map of Sialkot District, Punjab Pakistan. The area in Sialkot District was divided into a total number 
of 159 small grid cells each covering an area of 5 × 5  km2.
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further use in the MaxEnt program. ArcGIS software v. 10 was used for clipping these bioclimatic layers. The 
distributions of D. zeae were produced by using MaxEnt software ver.3.3. This software is most influential because 
it produces and records useful predictions related to species distribution in study  area20. All the variables were 
converted to ASCII files in ArcToolbox 2.0 in  ArcGIS47. Data related to stalk rot of maize distribution was also 
saved in comma-separated value format in an Excel program. The predicted distribution of stalk rot of maize 
was analyzed and reclassified into different groups. Moreover, the area of distribution was estimated in square 
kilometers with a zonal statistical analysis program in ArcGIS software.

Model validation and potential habitat prediction
Of all the methods, an area under the curve (AUC) is the most suitable method for evaluating the model 
 accuracy48,49. Jackknife test was performed using the MaxEnt software to determine the predictive performances 
of all the selected variables by the adopted method from Pearson et al.50. The response curves were generated to 
observe how each bioclimatic layer affects the Maxent prediction, and how the logistic prediction varies under 
varying bioclimatic  variables48. The values for AUC were theoretically set between 0.5 and 1. AUC value closer to 
1.0 indicates a successful model with clear distinction while an AUC value closer to 0.5 reflects a model with no 
clear  distinction51. The model classification index used in this study was: “failure” is 0.50 < AUC < 0.60, “poor” is 
0.60 < AUC < 0.70, “fair” is 0.70 < AUC < 0.80, “good” is 0.80 < AUC < 0.90, and “excellent” is 0.90 < AUC < 1.0052,53. 
Both the curves, such as ROC and AUC were employed for the evaluation of accuracy of the disease distribu-
tion  model54.

Spatial conservation assessment
The models of current and future distribution were compared with the surveyed areas of BSRM disease in 2021. 
The accuracy and fitting of models between different periods and all the surveyed areas were also analyzed. The 
current distribution of stalk rot of maize with future potential distributions in coming years i.e., 2050 and 2070 
were combined. For calculating the suitable overlapping areas, the raster calculator was used according to the 
recently reported  methods21,55.

Ethics approval and consent to participate
This study does not include human or animal subjects.

Statement on guidelines
All experimental studies and experimental materials involved in this research are in full compliance with relevant 
institutional, national and international guidelines and legislation.

Results
Bacterial stalk rot of maize disease assessment survey
All the tehsils in district Sialkot were inspected for BSRM disease assessment recording. The disease data and 
sampling sites are presented in Fig. 2.

Table 1.  Bioclimatic layers used for predictive modeling of bacterial stalk rot maize disease by Maxent 
 Software45.

Variable Description Unit

bio1 Annual mean temperature °C

bio2 Mean Diurnal Range (Mean of Monthly (max temp-min temp) °C

bio3 Isothermality (bio2/bio7) (*100) –

bio4 Temperature seasonality (standard deviation *100) °C

bio5 Max temperature of the warmest month °C

bio6 Min temperature of the coldest month °C

bio7 Temperature Annual Range (BIO5–BIO6) °C

bio8 Mean temperature of wettest quarter °C

bio9 Mean temperature of driest quarter °C

bio10 Mean temperature of warmest quarter °C

bio11 Mean temperature of coldest quarter °C

bio12 Annual precipitation mm

bio13 Precipitation of the wettest month mm

bio14 Precipitation of the driest month mm

bio15 Precipitation seasonality (Coefficient of variation) mm

bio16 Precipitation of the wettest quarter mm

bio17 Precipitation of the driest quarter mm

bio18 Precipitation of the warmest quarter mm

bio19 Precipitation of the coldest quarter mm
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Symptoms of BSRM were visually recorded from the visited fields. Data on DI and DS showed variations in 
disease occurrence levels within the villages of all districts in the Sialkot region. Out of 226 visited locations, 
the highest DI and DS were recorded from Bhoopal Wala (78.5 ± 4.5), Bangla Chowk (76 ± 2.3), Suraj (74 ± 3.2), 
Bhakhrewali (68.5 ± 2.7), Warsalke (67.5 ± 2.3), Khrolian (67.5 ± 1.8). Whereas, low DI and DS were recorded 
in Pasrur (20 ± 1), Chawinda (15 ± 2.9), Bun (11 ± 1.4), Head Marala (9 ± 1.1), and Boobkanwala (8.5 ± 1.4) 
(Table S2). Areas showing the highest and lowest DI percentages are presented in Fig. 3.

Biochemical characterization of Dickeya zeae
Different tests such as catalase test, motility test, indole formation,  H2S production, gelatin liquefaction, nitrate 
reduction, starch hydrolase, urease activity, and levan production were performed for the biochemical charac-
terization of D. zeae (Table 2). All bacterial isolates (ERCAR-1, ERCAR-2, ERCAR-3, ERCAR-4, ERCAR-5) were 
found positive for motility test, able to perform catalase activity and nitrate reduction, but all strains resulted 
negative for  H2S production and urease activity. For indole formation test results were negative with isolates 

Figure 2.  Pictorial representation of the data collection sites in district Sialkot, Pakistan.

Figure 3.  The highest and lowest maize stalk rot disease incidence and severity were recorded from the 
surveyed locations.
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ERCAR-1, ERCAR-2, ERCAR-5, but this assay was not done for ERCAR-3 and ERCAR-4. Of all the tested bac-
teria displayed gelatin liquefaction ability, except ERCAR-5 which was not tested. Starch hydrolase test results 
were negative for ERCAR-1, ERCAR-3, ERCAR-4, ERCAR-5 while the test was not performed for ERCAR-2. 
Similarly, bacterial isolates such as ERCAR-1, ERCAR-2, ERCAR-3, ERCAR-5 were observed negative for levan 
production while the test was not performed for ERCAR-4.

Environmental variable selection and model performance
Pearson correlation revealed that coefficients between 28 sets of the 19 variables were higher than 0.8. Nineteen 
variables were selected based on the initial model percentage contribution. Pearson correlation value between 
every two variables was < 0.8, and the rate of the total contribution of all other variables was 100%. Currently, 
the most contributing variable bio-16 with a contribution of 25%, followed by bio-2 (11.5%), bio-4 (9.5%), and 
bio-1 (8.6%) while minimal contributing factors were bio-14 (0.3%), followed by bio-12 (0.1%) and bio-7 with 
a contribution of 0%. An omission curve on the training data showed a trend similar to the test data. The AUC 
of the training and test data were 0.871 and 0.765, respectively in the current scenario as shown in Fig. 4a. The 
accuracy of the current distribution model was observed excellent based on the model evaluation index.

For 2050, the most contributing variable was observed in annual precipitation (bio-12) with a contribution 
of 29.1%, followed by bio-8 (20.6%), bio-14 (11.1%), and bio-3 (8.3%) while minimal contributing factors were 
bio-15 (0.3%), followed by bio-7 (0.2%) and the least contributing factor was bio-10 with a contribution of 0.1%. 
The AUC of the training and test values were 0.856 and 0.766, respectively in 2050 as shown in Fig. 4b.

In the case of 2070, the most contributing variable was bio-12 with a contribution of 29.9%, followed by bio-8 
(22.4%), bio-14 (13.6%), and bio-17 (8.6%) while minimal contributing factors were bio-2 (0.3%), and the least 
contributing factors were bio-15 and bio-16 with 0% contribution. The AUC of the training and test values were 
0.853 and 0.784, respectively in the 2070 distribution model as shown in Fig. 4c.

Relationship between the occurrence of Dickeya zeae and bioclimatic variables
Current year
Jackknife analysis displayed that the environmental variable with the highest gain when used in isolation is 
bio-13 among all bioclimatic layers. Similarly, annual precipitation (bio-12), precipitation seasonality (bio-15), 
precipitation of wettest quarter (bio-17), and precipitation of warmest quarter (bio-18), were the most influen-
tial environmental variables that affect the distribution of D. zeae, with a training gain as presented in Fig. 5a. 
Precipitation of the coldest quarter (bio-19) and mean temperature of the warmest quarter (bio-10), were also 
influential bioclimatic variables with training gain. The response curve thresholds of the variables are given in 
Fig. 5b. Bio-16 ranged from 404 to 946 mm, bio-2 ranged from 14.2 to 15.7 °C, bio-4 ranged from 701 to 756 °C, 
bio-1 ranged from 22.6 to 23.3 °C, bio-18 ranged from 231 to 455 mm and bio-3 ranged from 41.5 to 44.7 °C 
while bio-19 ranged from 78 to 182 mm, bio-10 ranged from 30.0 to 31.5 °C, bio-5 ranged from 38.2 to 40.2 °C, 
bio-6 ranged from 4.1 to 5.2 °C, bio-7 ranged from 31.1 to 36 °C, bio-8 ranged from 28.7 to 29.6 °C, bio-9 ranged 
from 18.2 to 18.6 °C, bio-10 ranged from 30.0 to 31.5 °C, bio-11 ranged from 12.9 to 13.5 °C, bio-12 ranged from 
620 to 1361 mm, bio-13 ranged from 175 to 423 mm, bio-14 ranged from 6 to 10 mm, bio-15 ranged from 108.0 
to 119.1 mm, bio-17 ranged from 30 to 69 mm and bio-19 ranged from 78 to 182 mm.

For 2050
Jackknife analysis showed that the environmental variable with the highest gain when used in isolation is bio-19 
among all bioclimatic layers, which appears to reflect the most useful information by itself. Jackknife’s analysis 
revealed that the omission of bio-14 decreases the gain the most. Which seems to have maximum information 
that is not present in the other variables.Similarly, mean temperature of wettest quarter (bio-8) annual precipita-
tion (bio-12), precipitation of wettest month (bio-13), precipitation of the driest month (bio-14), precipitation 
of seasonality (bio-15), precipitation of wettest quarter (bio-16), and precipitation of the driest quarter (bio-17), 
were the most influential variables that affect the distribution of D. zeae, with a training gain as presented in 
Fig. 6a. The response curve thresholds of the variables are given in Fig. 6b. The bioclimatic variable values were 
as follows: bio-16 ranged from 391 to 895 mm, bio-2 ranged from 125 to 139 °C, bio-4 ranged from 7045 to 

Table 2.  Biochemical characterization of Dickeya zeae strains from Sialkot District, Pakistan, associated with 
stalk rot of maize. + = Positive test results; − = Negative test results; ND = Not done.

Biochemical Assay ERCAR-1 ERCAR-2 ERCAR-3 ERCAR-4 ERCAR-5

motility test + + + + +

Indole formation − − ND ND −

H2S production − − − − −

Gelatin liquefaction + + + + ND

Catalase activity + + + + +

Nitrate reduction + + + + +

Starch hydrolase − ND − − −

Urease activity − − − − −

Levan production − − − ND −
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7391 °C, bio-1 ranged from 249 to 254 °C, bio-18 ranged from 147 to 417 mm and bio-3 ranged from 36 to 38 °C 
while bio-19 ranged from 91 to 200 mm, bio-10 ranged from 332 to 337 °C, bio-5 ranged from 422 to 427 °C, 
bio-6 ranged from 65 to 84 °C, bio-7 ranged from 341 to 380 °C, bio-8 ranged from 307 to 314 °C, bio-9 ranged 
from 201 to 208 °C, bio-10 ranged from 332 to 337 °C, bio-11 ranged from 146 to 156 ◦C, bio-12 ranged from 
597 to 1279 mm, bio-13 ranged from 176 to 384 mm, bio-14 ranged from 6 to 9 mm, bio-15 ranged from 103 to 
114 mm, bio-17 ranged from 30 to 73 mm and bio-19 ranged from 91 to 200 mm.

Figure 4.  Change in receiver operating characteristic curve for (a) current year, (b) 2050, and (c) 2070.
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For 2070
In the case of 2070, Jackknife’s analysis revealed that the omission of bio-14 decreases the gain the most. Which 
seems to have maximum information that is not present in the other variables. However, annual precipitation 
(bio-12), precipitation of wettest month (bio-13), precipitation of wettest quarter (bio-16), precipitation of driest 
quarter (bio-17), and precipitation of the coldest quarter (bio-19), were the most influential factors affecting the 
distribution of D. zeae, with a training gain as presented in Fig. 7a. Response curve thresholds of the variables 
are presented in Fig. 7b. The bioclimatic variable values were as follows: bio-16 ranged from 401 to 961 mm, 
bio-2 ranged from 128 to 140 °C, bio-4 ranged from 7002 to 7336 °C, bio-1 ranged from 271 to 277 °C, bio-18 
ranged from 147 to 418 mm and bio-3 ranged from 36 to 38 °C while bio-19 ranged from 80 to 169 mm, bio-
10 ranged from 354 to 360 °C, bio-5 ranged from 445 to 450 °C, bio-6 ranged from 83 to 103 °C, bio-7 ranged 
from 344 to 364 °C, bio-8 ranged from 326 to 333 °C, bio-9 ranged from 221 to 229 °C, bio-10 ranged from 354 

Figure 5.  (a) Jackknife test of bioclimatic variables which are influential in the distribution of D. zeae in the 
current year; (b) Response curves of the bioclimatic variables showing how each variable affects the Maxent 
Prediction for the current year.
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to 360 °C, bio-11 ranged from 169 to 179 °C, bio-12 ranged from 602 to 1329 mm, bio-13 ranged from 191 to 
454 mm, bio-14 ranged from 8 to 13 mm, bio-15 ranged from 108 to 123 mm, bio-17 ranged from 34 to 84 mm 
and bio-19 ranged from 80 to 169 mm.

Modeled distribution and conservation assessment of Dickeya zeae
High suitability areas out of 226 visited locations in the Sialkot region were Bhoopal Wala, Bangla Chowk, Suraj, 
Bhakhrewali, Warsalke, Khrolian, and Bopal Wala showed the highest DI and DS. Moderate suitability was located 

Figure 6.  (a) Jackknife test of bioclimatic variables which are influential in the distribution of D. zeae for 2050; 
(b) Response curves of the bioclimatic variables showing how each variable affects the Maxent Prediction for 
2050.
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in Kobay Chak, Sohedrik, Bajwat, Sialkot Airport Road, and Bdyana. While low-suitability areas were located in 
Pasrur, Chawinda, Bun, Head Marala, and Boobkanwala. The total suitability area trend increased over time from 
the current to the 2050s and 2070s. The current distribution of D. zeae increased in the low suitability area, as 
well as the moderate suitability areas while the trend in the 2050s and 2070s will also increase as shown in Fig. 8.

The overlapping suitability regions were also studied by overlapping the present and future (2050s and 2070s) 
potential distributions of D. zeae as shown in Fig. 9. The overlapping map indicated that there are chances that 
the area of BSRM disease progression will increase over the years. The green color indicates a very high risk at 
the current stage, the blue color indicates a very high risk in the 2050s while the red color indicates a very high 
risk in the 2070s. Bhoopal wala, Bangla Chowk, Suraj, Bhakhrewali, Warsalke, Khrolian, and Bopal wala were 

Figure 7.  (a) Jackknife test of bioclimatic variables which are influential in the distribution of D. zeae in 2070; 
(b) Response curves of the bioclimatic variables showing how each variable affects the Maxent Prediction for 
2070.
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the high suitability areas, with high DI and DS 70–80%. Kobay Chak, Sohedrik, Bajwat, Sialkot Airport Road, 
and Bdyana were the moderate suitability areas, with 30–50% DI and DS. Pasrur, Chawinda, Bun, Head Marala, 
and Boobkanwala were the low suitability areas, with 10–20% DI and DS.

Figure 8.  Risk of bacterial stalk rot of maize disease distribution: (a) current, (b) 2050, and (c) 2070.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2614  | https://doi.org/10.1038/s41598-024-52668-2

www.nature.com/scientificreports/

Discussions
Maize production is vulnerable to the attack of various pathogens resulting into severe yield losses. Of all the 
major diseases, BSRM caused by D. zeae is of great concern because of significant yield losses. D. zeae is the most 
destructive plant pathogen that infects maize plants at any growth stage. A comprehensive field survey reflected 
that out of 226 visited sites in the district Sialkot region, DI ranged from 8.5 to 76% and this variation in the level 
of disease occurrence could be due to the cultivation of a wide variety of maize hybrids, environmental conditions 
prevailing in the region, crops rotation and disease management and cultural  practices56. Similarly, in another 
related study, Sharma et al.57 recorded that the grain yield losses due to BSRM ranged from 21 to 98%57. In a study, 
Kumar et al.13 narrated that under favorable conditions, D. zeae could result in 98.8% crop yield losses, and the 
wide prevalence and survival of the bacterium is due to the wide host range, high temperature, and moisture 
(rainy season)13. Our results are similar to the study of Tahir et al.30 where eight maize-growing districts in central 
and south Punjab, Pakistan were surveyed for  BSRM30. Results demonstrated that all the surveyed areas showed 
100% prevalence and the highest DI and DS up to 53% and 30.2% respectively.

In the present study, the biochemical attributes of D. zeae, our results contrast with the findings of Jatoth et al.56 
where all the tested bacterial strains displayed positive responses for  H2S production and indole  formation56, 
meanwhile the strains from the present study, resulted negative in the production of these compounds. Similarly, 
Kaur et al.58 subjected bacterial isolates to various biochemical tests and found them to show different reactions 
for utilization of starch and other sugars, gelatin liquefication, and growth at high salt  levels58. Biochemical 
characterization helps to identify bacterial species based on the differential biochemical activities; nevertheless, 
various strains of D. zeae might demonstrate differences in various biochemical characteristics because of altera-
tions in specific enzymatic  activities58.

The Maxent algorithm modeling was employed to predict areas at high risk of disease outbreaks based on 
occurrence and environmental data in Sialkot; the model was further used to forecast the disease outbreaks in 
the coming years. In our study, results showed that a total of nineteen bioclimatic variables were selected that 
were slightly different from the variables used in other  studies59–61.

Although, the distribution and presence of pathogens may depend upon many factors, here we only focused 
on bioclimatic factors, because, these factors are biologically meaningful in defining the species  distribution62. 
In many previous studies, these factors were selected for studying the habitats and their implications for the 
conservation of species as well as for the development of  policies20,21, 44. Bioclimatic variables used for modeling 
by Maxent software have already  reported45. Certain variables play a significant role in the distribution of stalk 
rot of maize. Currently, the precipitation of the wettest quarter, mean diurnal range, temperature seasonality, 
and annual mean temperature made significant contributions to the model. The AUC of the training and test 
data were 0.871 and 0.765, respectively in the current distribution model. Jackknife analysis revealed that the 
environmental variable with the highest gain when used in isolation was bio-13 among all bioclimatic layers.

Figure 9.  Overlapping map of the ranges of very high risk of BSRM in the current scenario, 2050 and 2070 
predictions.
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In the coming years in 2050 the variables of annual precipitation, mean temperature of the wettest quarter, 
precipitation of the driest month, and isothermality will be crucial. In the 2070s, it was predicted that certain 
variables such as annual precipitation, mean temperature of wettest quarter, precipitation of driest month, and 
precipitation of driest quarter would be influential in a disease outbreak. A similar study explained the connec-
tion between bioclimatic variables and the potential distribution of Haemaphysalis spinigera associated with 
Kyasanur forest disease. The study concluded that the average temperature of the warmest quarter, average 
diurnal temperature range, precipitation of the wettest period, and annual precipitation contribute to affecting 
the spatial distribution of H. spinigera63.

High suitability areas were Bhoopal wala, Bangla Chowk, Suraj, Bhakhrewali, Warsalke, Khrolian, and Bopal 
wala showed the highest DI and DS. Moderate suitability was in Kobay Chak, Sohedrik, Bajwat, Sialkot Airport 
Road, and Bdyana. While low suitability areas were in Pasrur, Chawinda, Bun, Head Marala, and Boobkanwala. 
The total suitability area trend increased over time from the current to the 2050s and 2070s. The current distri-
bution of D. zeae increased in the low suitability area, as well as the moderate suitability areas while the trend in 
2050s and 2070s will also increase. The suitability regions were also identified by overlapping current and future 
(2050s and 2070s) potential distributions of D. zeae. The overlapping map indicated that there are chances that 
the area of BSRM disease progression will increase over the years. In another study, environmental conditions 
linked with the Fusarium solani optimum inoculum density for disease occurrence were accessed and a strong 
convergence on the environmental requirements of both the host and the disease progress was observed. Among 
different variables, precipitation and temperature variables were found important for explaining the disease 
 spread64. These results were also similar to the findings of Sallam et al.65 where ecological niche modeling and land 
cover risk regions for rift valley fever vector, Culex tritaeniorhynchus Giles in Jazan, Saudi Arabia were  identified65. 
Another study in Saudi Arabia on ecological distribution modeling of two malaria mosquito vectors by GIS 
showed similar  results19. The same parameters were used for working with climate data and niche  modeling66.

Here, we constructed the maps on the potential distribution of BSRM in Sialkot, Pakistan and these maps 
can effectively be used in furcating and disease management strategies development. Moreover, our work may 
be used as a reference to predict other phytopathogenic diseases in major crops and ensure food security.

Conclusion
Bacterial stalk rot of maize caused by D. zeae causes significant yield losses. In this work, isolates of D. zeae 
from the Sialkot region in Pakistan, were characterized biochemically. During extensive fields surveys, disease 
incidence was recorded, ranging from 43.5 to 78.5%. Maxent algorithm modeling revealed the areas at risk of 
disease outbreaks, which also predicted a high risk of BSR outbreak in 2050 and 2070. These results are very 
important for predicting the spatial distribution trends of BSRM in accordance with the climatic conditions in the 
coming years. Our findings will be useful in developing and adopting integrated disease management programs 
to prevent the spreading and control of BSR disease in maize crops.

Data availability
The datasets analysed during this study are included in this manuscript.
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