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Phenomenon of multiple reentrant 
localization in a double‑stranded 
helix with transverse electric field
Sudin Ganguly 1, Suparna Sarkar 2, Kallol Mondal 3,4* & Santanu K. Maiti 2

The present work explores the potential for observing multiple reentrant localization behavior in a 
double‑stranded helical (DSH) system, extending beyond the conventional nearest‑neighbor hopping 
(NNH) interaction. The DSH system is considered to have hopping dimerization in each strand, while 
also being subjected to a transverse electric field. The inclusion of an electric field serves the dual 
purpose of inducing quasi‑periodic disorder and strand‑wise staggered site energies. Two reentrant 
localization regions are identified: one exhibiting true extended behavior in the thermodynamic limit, 
while the second region shows quasi‑extended characteristics with partial spreading within the helix. 
The DSH system exhibits three distinct single‑particle mobility edges linked to localization transitions 
present in the system. The analysis in this study involves examining various parameters such as the 
single‑particle energy spectrum, inverse participation ratio, local probability amplitude, and more. 
Our proposal, combining achievable hopping dimerization and induced correlated disorder, presents 
a unique opportunity to study phenomenon of reentrant localization, generating significant research 
interest.

The phenomenon of localization has been a vibrant area of research in condensed matter physics ever since its 
prediction by  Anderson1. Over the years, the interest in this topic has grown exponentially with the exploration of 
various fascinating systems across different branches of  physics2–8. Anderson’s seminal work demonstrates a metal 
to insulator transition in a three-dimensional system with uncorrelated (random) disorder, where all the energy 
eigenstates become completely localized beyond a critical disorder  strength1,9. On the contrary, for the lower-
dimensional cases, all the energy eigenstates get completely localized regardless of the strength of the  disorder1. 
Therefore, such an uncorrelated disordered system, in lower-dimensional cases, is considered relatively trivial 
due to the absence of a finite critical disorder strength. By imposing constraints on the site energies, one can 
unveil captivating dynamics and explore more intriguing phenomena within correlated disordered  systems10–14.

To date, a wide range of correlated systems have been employed across various fields, and among them, the 
Aubry–André–Harper (AAH)  model15,16 stands out as the most prevalent and adaptable example. In the nearest-
neighbor tight-binding (TB) framework, the 1D AAH model with an incommensurate potential demonstrates 
a distinct transition between localization and delocalization. Below a critical point, all eigenstates are found to 
be delocalized, while beyond that critical point, they become completely  localized15–17. Recent advancements in 
the field have introduced several generalizations of this model. These include exponential short-range  hopping17, 
flatband  networks18, higher  dimensions19, power-law  hopping20, flux-dependent  hopping21, and non-equilibrium 
generalized AAH  model22, etc. The studies have revealed that beyond the nearest-neighbor TB framework, there 
is typically a single-particle mobility edge (SPME), which represents a critical energy that differentiates localized 
states from extended states within the  system23. AAH systems have also been experimentally realized using cold 
atoms and optical wave-guides24,25.

Based on current understanding, it has been firmly established that following a localization transition, all 
states continue to exhibit localization indefinitely as the disorder strength increases. However, recent studies 
have revealed that under certain constraints or conditions imposed on the system, this characteristic of indefinite 
localization may alter. In more recent findings, an intriguing occurrence of reentrant localization has been dis-
covered in 1D quasi-periodic disordered  systems26–35, which can be attributed to the interplay between hopping 
dimerization and the presence of staggered AAH disorder. In this localization phenomenon, as the strength of 
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the staggered potential increases, certain states that were previously localized undergo a transition and regain 
their extended character. Up to this point, reentrant localization has paved the way for obtaining a comprehen-
sive understanding of Anderson localization theory. As a consequence, it has generated significant interest from 
both the theoretical and experimental domains. Building upon this line of research, we introduce a methodology 
to observe the reentrant behavior in systems that go beyond the nearest-neighbor hopping scenario.

Specifically, we focus on a DSH system and investigate its response when exposed to a transverse electric 
field. Interestingly, the application of a transverse electric field has the intriguing capability to introduce AAH 
disorder as well as the staggered scenario into the helical  system36,37. This makes the system highly desirable 
from an experimental standpoint. In the context of the geometrical structure of a helical system, the nature of 
hopping interactions can vary, being either short-range or long-range. However, recent  research31 suggests that 
long-range hopping (LRH) can weaken the competition between dimerized hopping and the staggered potential, 
leading to the absence of reentrant behavior. Considering this insight, we focus solely on short-range hopping 
(SRH) interactions in our current work. By exclusively examining short-range hopping, we are able to observe 
and validate the presence of multiple localization phenomena using various numerical techniques. These tech-
niques include analyzing the eigenvalue spectrum, inverse participation ratio, and local probability amplitudes, 
among others. Through these investigations, we gain valuable insights into the behavior and characteristics 
exhibited by the system.

The key aspects of the present work are: (1) establishment of multiple reentrant behavior, (2) appearance of 
truly extend states in the first reentrant region in the thermodynamic limit, (3) observation of quasi-extended 
states in the second reentrant region, and (4) implementation of reentrant phenomenon in realistic biologic 
systems simply by applying an electric field.

The rest of the paper is organized as follows. In “System and theoretical framework”, we describe the helical 
geometry, tight-binding Hamiltonian in presence of transverse electric field, and theoretical formulae for the 
quantities required to study the localization phenomenon. The numerical results and our analysis are presented 
in “Results and discussion”. Finally, in “Conclusion”, we conclude our findings.

System and theoretical framework
Figure 1 depicts the schematic diagram of a right-handed double-stranded helical geometry. The alternating 
bonds, characterized by two different hopping strengths, are denoted by the black (dotted black) and blue (dotted 
blue) lines in strand-I (strand-II). An electric field Eg is applied perpendicular to the axis of the helix. The nature 
of electron hopping beyond usual nearest-neighbor sites is determined by two important helical parameters: 
the stacking distance �h and the twisting angle �φ . When �h is sufficiently small, indicating densely packed 
atoms, long-range hopping becomes significant as electrons can effectively hop over larger distances. In contrast, 
when �h is considerably large, with atoms separated by greater distances, electron motion is restricted to shorter 
distances, resulting in a short-range hopping helix. In practice, two prominent examples that fall into the short-
range hopping and long-range hopping groups are DNA and protein molecules,  respectively38. However, in this 
study, our focus is solely on SRH systems, as mentioned previously.

Figure 1.  Schematic of a right-handed double-stranded helical geometry in presence of an external electric 
field of strength Eg . The blue balls represent the sites in strand-I, and the red balls represent the sites in strand-II. 
R is the radius of the helix and �h is the stacking distance between adjacent sites. φ = n�φ , where �φ is the 
twisting angle between the neighboring sites and n is the site index in each strand. The alternating black (dotted 
black) and blue (dotted blue) lines indicate dimerization of the adjacent hoppings in strand-I (strand-II).
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The tight-binding Hamiltonian for the DSH system in the presence of an external electric field is expressed as

Here j(= I , II) represents the strand index, c†j,n and cj,n are the usual fermionic creation and annihilation 
operators at the nth site of strand-j, respectively.

In the first term of Eq. (1), ǫj,n represents the site energy at site n of strand-j. When an electric field is applied 
perpendicular to the helix axis, the site energies are modified following the  relations36,39,40

where e is the electronic charge and Vg corresponds to the gate voltage associated with the applied electric field. 
The relationship between the gate voltage and the electric field can be expressed as Vg = EgR . The reversal in 
sign observed between the two strands can be attributed to the combined effects of the perpendicular electric 
field and the helix conformation of the  strands36. The phase factor β represents the angle between the positive 
x-axis and the incident electric field. This phase factor can be adjusted or modified by changing the direction of 
the electric field. Equation (2) illustrates that the presence of a perpendicular electric field leads to a harmonic 
modulation of the site energies along the helical strands. Interestingly, such a modulation is identical to the well-
known AAH  model15,16. The factor eVg is analogous to the AAH modulation strength W, �φ can be identified 
with the term 2πb (b an irrational number) and the phase β with the Aubry phase φν in the AAH model. By 
selectively choosing the term �φ , it becomes possible to achieve a deterministic disordered double-stranded 
helical system, where the site energies exhibit a correlated pattern resembling the AAH model. This correlation 
is realized when the DSH system is subjected to the electric field Eg.

The second and third terms in Eq. (1) represent the nearest-neighbor hopping terms in the Hamiltonian. The 
parameters t1 and t2 indicate that the NNH integrals in the DSH are dimerized.

The fourth term in Eq. (1) is associated with the electron hopping beyond the conventional NNH. tj,(n,m) is 
the hopping integral between the sites n and m in strand-j and reads  as36,41

where lj,(n,m) is the Euclidean distance between sites n and m. With n−m = k , it is expressed as

and l1 represents the distance between neighboring sites in both strands, and its value can be calculated using Eq. 
(4) when k = 1 . On the other hand, lc denotes the decay exponent. In Eq. (3), the first term within the parenthe-
ses, (t1 + t2)/2 , accounts for an average over a unit cell. This average is utilized in the computation of hopping 
integrals beyond the nearest-neighbor interactions.

The final term in Eq. (1) corresponds to the inter-strand coupling, which describes the interaction between 
the two strands and t3 represents the inter-strand hopping integral.

The inverse participation ratio (IPR) serves as a valuable tool for detecting the transition from a localized state 
to a delocalized state. This measure allows us to quantify and analyze the spatial distribution of a wavefunction 
or probability density, providing insights into whether the state is confined to a specific region or spread out 
across multiple locations. By observing changes in the IPR, we can effectively identify and track the transition as 
the wavefunction evolves from a localized state to a more delocalized one or vice-versa. For the nth eigenstate, 
IPR is defined  as42,43
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In the case of a highly extended state, in the thermodynamic limit, the IPR tends to zero. On the other hand, 
for a strongly localized state, the IPR approximately approaches to unity.

A complementary tool to characterize the localization transition is the normalized participation ratio (NPR), 
which for the nth normalized eigenstate is defined  as42,43

where 2N is the total number of sites present in the DSH system. In the case of a highly extended state, the NPR 
tends to unity in the thermodynamic limit. Conversely, for a strongly localized state, the NPR approaches to zero.

The earlier defined IPRn and NPRn can be modified to characterize the parameter space region where localized 
and delocalized states coexist. One defines their average over a subset of states NL as  follows43

When all NL states are localized, 〈IPR〉 tends to unity, while 〈NPR〉 tends to zero when all NL states are delocal-
ized. However, in the regime where both 〈IPR〉 and 〈NPR〉 remain finite, the Hamiltonian’s spectrum features an 
intermediate phase with coexisting spatially extended and localized eigenstates, along with the presence of SPME.

Results and discussion
Let us mention the common parameter values before presenting the numerical results. To implement the short-
range hopping in DSH system, we consider physical parameters analogous to those found in the real biological 
 system44. DNA has been proposed as an ideal and established example of short-range hopping system by vari-
ous research groups. The structural parameters for the said geometry are as follows: the radius is considered as 
R = 8 Å, the stacking distance as �h = 4.3 Å, the twisting angle �φ = π

(√
5− 1

)

/4 , and the decay exponent 
lc = 0.8 Å. From the relation �φ = 2πb , we can determine the value of b for the SRH case, which is incom-
mensurate. All the energies are measured in units of eV. The number of sites in each of the strands is taken as 
N = 500 . Unless stated otherwise, we set the dimerized hopping integrals as t1 = 0.5 , t2 = 2.2 , and the inter-
strand coupling t3 = 1.

To study the localization transition, the energy spectrum corresponding to the Hamiltonian in Eq. (1) is 
plotted as a function of gate voltage Vg (in units of Volts) as shown in Fig. 2a. Each energy point in the plot 
is color-coded based on its corresponding IPR value, which is computed according to Eq. (5). To capture the 
localization transition, our colorbar uses purple for the lowest 10% of the maximum IPR value, highlighting the 
extended states and a gradient of increasing gray shades for the rest, reflecting higher degree of localization. 
In Fig. 2a, the purple color extends throughout the entire region below Vg ∼ 1 , indicating that the IPR values 
in this region are significantly below 0.1. This observation strongly suggests that the states within this region 
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Figure 2.  Density plot. (a) The energy spectrum vs gate voltage Vg with t1 = 0.5 , t2 = 2.2 , and t3 = 1 . (b) The 
energy index vs gate voltage Vg . (c) A magnified version of Fig. 2b to provide enhanced clarity. The color map 
shows IPR values of different energy eigenstates.
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exhibit extended behavior. Above Vg ∼ 1 , a mixed phase emerges where some states begin to localize while oth-
ers remain extended, resulting in a combination of both localized and extended states. This mixed phase persists 
until approximately Vg ∼ 2 . However, beyond this critical value, all the states undergo localization, indicating 
a complete transition to a fully localized state. Around Vg ∼ 2.6 , an intriguing phenomenon occurs as a small 
number of states around zero energy undergo a reentrant localization, indicated by a narrow purple patch within 
the predominantly localized region. This region exhibits a transient delocalization, where a few states regain 
their extended nature in contrast to the surrounding localized states. Upon crossing the reentrant zone, all the 
states return to a localized state. However, as we approach Vg ∼ 4 , a noteworthy phenomenon occurs. Several 
small purple spots emerge, indicating the presence of a second reentrant region. Within this region, a few states 
exhibit a transient delocalization before ultimately undergoing localization once again. A better visibility of the 
situation can be obtained by examining the individual eigenstates’ IPR, as depicted in Fig. 2b. This plot provides 
a comprehensive view of the localization behavior and allows for a more detailed analysis of the reentrant regions 
and the transition between extended and localized states. The presence of the first reentrant region, spanning 
from approximately Vg ∼ 2.5 to 2.9, is clearly evident in the plot. Within this range, a significant number of 
eigenstates exhibit delocalization, marked by a distinct decrease in their IPRs. Similarly, the occurrence of the 
second reentrant region around Vg ∼ 3.9 to 4.1 is also observed, with a noticeable deviation from the localized 
behavior as indicated by a cluster of eigenstates displaying lower IPR values. For a more enhanced visualiza-
tion, a magnified section of Fig. 2b is illustrated in Fig. 2c, providing a clear depiction of the aforementioned 
description. In Fig. 2c, we observe the presence of two horizontal lines highlighted in purple color immediately 
following the first reentrant localization. To assess the potential occurrence of another reentrant localization, 
we thoroughly analyze the IPR values and the Vg-window associated with these two lines. Upon investigation, 
it becomes evident that the IPR values associated with these horizontal lines are approximately 0.09, indicating 
the presence of quasi-extended states. However, it should be noted that these horizontal lines appear before the 
completion of the first reentrant localization. Consequently, we can conclude that these two lines do not represent 
another instance of reentrant behavior.

To gain insight into the mixed phase zone, we compute the average IPR and NPR over a subset of states NL 
from the spectrum of Fig. 2,

as defined in Eq. (7). The quantities 〈IPR〉 and 〈NPR〉 are plotted as a function of Vg in Fig. 3. In this analysis, 
NL is considered to be the subset of eigenstates with indices ranging from 400 to 600, taken from Fig. 2b. All the 
system parameters remain unchanged as described earlier. In Fig. 3, both 〈IPR〉 and 〈NPR〉 exhibit finite values 
within the range of 1.1 < Vg < 1.7 , indicating the presence of a critical region where a mixture of extended 
and localized states coexist. For Vg > 1.7 , the system undergoes a transition into a fully localized state, where 
all states become localized. Moreover, in the approximate window of 2.5 < Vg < 2.9 , a dip in the 〈IPR〉 value is 
observed, accompanied by a bump in 〈NPR〉 . This specific region corresponds to the occurrence of the first reen-
trant region. Within the chosen subset of states, the system hosts two SPMEs. Considering the limited number 
of extended states in the second reentrant region, detection of the transition becomes challenging within the 
same plot. Nevertheless, it is important to note that when considering the entire spectrum, the system reveals 
the presence of three distinct SPMEs.

To explore the extension of states within the reentrant regions, we analyze the local probability amplitudes 
of different states at varying gate voltages. This analysis provides insights into the robustness of state extension 
or localization within the system as the gate voltage, Vg changes. The results are presented in Fig. 4. Firstly, we 
calculate the local probability amplitude |ψ i

n|
2 for the state n = 500 under zero-field condition, as illustrated in 

Fig. 4a. In this disorder-free case, as expected, the local probability amplitudes |ψ i
n|
2 for all sites exhibit extended 

behavior. This is evident from the smooth sinusoidal curve and the relatively lower values of probability ampli-
tudes throughout the system. Next, we examine the case where Vg = 1 and focus on the state n = 500 , with the 
corresponding result depicted in Fig. 4b. Notably, the envelope of the local probability distribution maintains 
the characteristics observed in the disorder-free scenario. Consequently, the state remains within the extended 
region. Subsequently, we raise the gate voltage to Vg = 2.3 and examine the state n = 249 . As depicted in Fig. 4c, 
the probability amplitudes for all sites, except for site index i = 500 , become vanishingly small. Notably, at this 

Figure 3.  〈IPR〉 and 〈NPR〉 as a function of Vg for a subset of states ranging from 400 to 600 of Fig. 2b. The 
shaded regions indicate the critical zones. All the system parameters remain the same as described in Fig. 2.
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specific site, the probability amplitude assumes a relatively large value of approximately 0.8. This observation 
indicates that the chosen Vg value indeed induces a fully localized state within the system. In Fig. 4d, we exam-
ine the case where Vg is fixed at 2.65, corresponding to the first reentrant localization region. We consider the 
state n = 436 , and observe that the probability amplitudes range from 0 to 0.02, indicating relatively low values. 
Therefore, it is evident that within the first reentrant region, the considered state regains its extended nature. 
Upon further increasing Vg to 3.5 and examining the state n = 249 , it is evident from Fig. 4e that the system 
transitions into a fully localized phase once again. To investigate the second reentrant localization, we examine 
the case where Vg = 4 and focus on the state n = 332 . Interestingly, we observe two broad peaks in the distribu-
tion of |ψ i

n|
2 , as shown in Fig. 4f. The values of the probability amplitude for these peaks are relatively low. Upon 

closer inspection, we find that these peaks are spread over a span of approximately 40–50 sites, as demonstrated 
in the two insets of Fig. 4f. Consequently, this region exhibits a quasi-extended behavior. In Fig. 4g, we set the gate 
voltage to Vg = 5 and examine the state n = 249 . Notably, the probability amplitude is localized predominantly 
at site n = 500 with a value of approximately 0.8, while the amplitudes at all other sites are vanishingly small. 
This observation confirms the presence of a fully localized state within the system.

To address and account for any potential finite size effects, we examine the relationship between the minimum 
IPR value and the system size in the two reentrant regions as shown in Fig. 5. The minimum IPR value for a given 
system size is determined by identifying the lowest IPR among all states,

achieved at a specific value of Vg . We plot IPRn as a function of the inverse of the system size 1/2N in the first 
reentrant region, namely at Vg = 2.65 as shown in Fig. 5a. As the system size increases, the IPRn value decreases 
following a scaling behavior of O(1/L) , where L represents the system size. Consequently, in the thermodynamic 
limit, the states within the first reentrant region display a tendency towards a true extended nature. In contrast, 
the results shown in Fig. 5b for the second reentrant region do not exhibit a scaling behavior similar to the first 
reentrant region. Instead, the IPRn value decreases with increasing system size in a step-like fashion. In the limit 
of large system sizes, it converges to a finite value of approximately 0.055. Considering the lower values of IPR 
and its behavior with respect to system size, it becomes evident that the states within the second reentrant region 
do not exhibit a genuine extended nature in the thermodynamic limit. Instead, these states can be characterized 
as quasi-extended, as observed in Fig. 4f, where they demonstrate a partial spreading throughout the system.

Finally, we examine the parameter space between the gate voltage Vg and the hopping integrals in terms of 
average IPR (〈IPR〉) to identify the regions where the phenomenon of reentrant localization emerges. Here, our 

Figure 4.  Local probability amplitude |ψ i
n|
2 vs site index i for the nth eigen state. (a) Vg = 0 and n = 500 , 

(b) Vg = 1 and n = 500 , (c) Vg = 2.3 and n = 249 , (d) Vg = 2.65 and n = 436 , (e) Vg = 3.5 and n = 249 , (f) 
Vg = 4 and n = 332 , and (g) Vg = 5 and n = 249.
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focus is solely on the first reentrant region, and we do not investigate the second reentrant region due to the 
aforementioned reasons. In Fig. 6a, we plot the color-coded 〈IPR〉 as functions of Vg and t2/t1 . All other physical 
parameters are the same as described in Fig. 2. We calculate 〈IPR〉 using the

same method as described in Fig. 3. The maximum IPR value in the corresponding color bar is 0.7, and the 
extended nature is attributed to the range from 0 to 0.07, which corresponds to 10% of the maximum IPR value. 
Based on the plot, we observe that the reentrant region emerges for values of t2/t1 ranging approximately from 
2.9 to 4.5 and for Vg within the range of 1.3 to 2.8. By adjusting the inter-strand coupling t3 , it is also feasible to 
alter the extent of the reentrant region. To visualize this, we plot the color-coded 〈IPR〉 as functions of Vg and 
t3/t1 in Fig. 6b. We observe an approximate reentrant window occurring for t3/t1 values ranging from 2.2 to 
4 and for Vg within the range of 1 to 2.6. It is important to note that the parameter space considered is based 
on the selected subset of eigenstates, as mentioned earlier. The specific values might slightly vary if we were to 
consider the entire spectrum.

To explore the influence of the decay constant on reentrant localization phenomena, we present a color-coded 
plot illustrating the average IPR in relation to both Vg and decay constant lc as shown in Fig. 7. All the relevant 
parameters remain the same as Fig. 2, and the computation of IPR follows Eq. (5) as previously explained.

The decay constant lc is systematically varied from 0.5 to 8.5, leading to a gradual transition from a short-range 
hopping regime to a long-range hopping scenario. Form the phase diagram, we find that starting from lc = 0.5 , 
the reentrant signature persists up to lc ∼ 7.5 beyond which the system makes a direct transition from delocalized 
to localized states for disorder strength Vg ∼ 3.2 . The presence of reentrant behavior for wide range of lc value, 
underscores the robustness of the reentrant signature, indicating its persistence regardless of the nature of the 
interaction, be it short-range or long-range. For low values of decay constant lc (SRH) within the range of 0.5 
to 4, the Vg window associated with the reentrant region remains nearly constant and it expands as lc increases. 
Beyond lc = 7.5 , the reentrant region disappears.
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mentioned in Fig. 3. All the other relevant parameters remain the same as taken in Fig. 2.
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Conclusion
We have focused on the localization behavior of a DSH system under the influence of a transverse electric field. 
Each strand of the DSH system is assumed to possess dimerized hopping. The introduction of a transverse electric 
field gives rise to the emergence of correlated disorder within the system, accompanied by a strand-wise staggered 
arrangement of site energies. Notably, we have observed a distinctive multiple reentrant behavior, specifically 
characterized by two instances of reentrant localizations. This observation has been made by examining the 
behavior of the IPR of individual eigenstates within the single-particle spectrum. Each localization transition 
is accompanied by an SPME, and our system exhibits a total of three SPMEs, two of which are associated with 
the two reentrant regions. By examining the local probability amplitude and scaling behavior of IPR, we have 
found that the states corresponding to the first reentrant region demonstrate genuine extended characteristics in 
the thermodynamic limit. However, states within the second reentrant region display a quasi-extended nature. 
Our investigation reveals that the reentrant region can be influenced and adjusted by modulating both the gate 
voltage and hopping integrals.

Considering the ongoing progress in experimental feasibility to achieve hopping  dimerization45–50 and the 
potential for inducing correlated disorder (AAH) through a transverse electric field, our proposal is highly 
compelling and is expected to generate significant interest within the research community. The incorporation 
of these factors in our study presents a valuable opportunity to observe and study the reentrant localization 
behavior using different kinds of other helical systems as well.

Data availibility
Derived data supporting the findings of this study are available from the corresponding author on request.
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