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Nuclear and mitochondrial 
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Christian Fuchsberger 2,8, Claudia Lamina 1,8 & Florian Kronenberg 1,8*

Mitochondrial DNA copy number (mtDNA‑CN) is a biomarker for mitochondrial dysfunction associated 
with several diseases. Previous genome‑wide association studies (GWAS) have been performed to 
unravel underlying mechanisms of mtDNA‑CN regulation. However, the identified gene regions 
explain only a small fraction of mtDNA‑CN variability. Most of this data has been estimated from 
microarrays based on various pipelines. In the present study we aimed to (1) identify genetic loci 
for qPCR‑measured mtDNA‑CN from three studies (16,130 participants) using GWAS, (2) identify 
potential systematic differences between our qPCR derived mtDNA‑CN measurements compared 
to the published microarray intensity‑based estimates, and (3) disentangle the nuclear from 
mitochondrial regulation of the mtDNA‑CN phenotype. We identified two genome‑wide significant 
autosomal loci associated with qPCR‑measured mtDNA‑CN: at HBS1L (rs4895440, p = 3.39 ×  10–13) 
and GSDMA (rs56030650, p = 4.85 ×  10–08) genes. Moreover, 113/115 of the previously published 
SNPs identified by microarray‑based analyses were significantly equivalent with our findings. In 
our study, the mitochondrial genome itself contributed only marginally to mtDNA‑CN regulation 
as we only detected a single rare mitochondrial variant associated with mtDNA‑CN. Furthermore, 
we incorporated mitochondrial haplogroups into our analyses to explore their potential impact on 
mtDNA‑CN. However, our findings indicate that they do not exert any significant influence on our 
results.

The intracellular energy-producing mitochondria possess their own DNA, which is a small (~ 16.6 kb in humans), 
circular and multi-copy genome. It encodes 37 genes for proteins of the mitochondrial respiratory complexes, 
mitochondrial transfer RNAs and ribosome-coding RNAs, which are essential components of its own trans-
lational  apparatus1. We and others showed previously that alterations in mitochondrial DNA copy number 
(mtDNA-CN) are associated with various  diseases2–5. Therefore mtDNA–CN has been proposed as a potential 
biomarker for mitochondrial  dysfunction6. However, it is still a matter of debate whether these alterations are a 
cause or consequence of these diseases.

The abundance of mtDNA greatly varies between tissues, developmental stage and  individuals5,7. The precise 
mechanism of its regulation is still unclear. More than 1100 mitochondrial genes are encoded in the human 
nuclear  DNA8, including components of the replication and repair machinery, hence a nuclear contribution to 
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the regulation of mtDNA-CN is strongly  hypothesized9,10. In fact, several nuclear genes have been shown to influ-
ence mtDNA-CN11–18 and interestingly, mtDNA-CN has been further associated with nuclear DNA methylation 
patterns and nuclear gene  expression19,20.

The growing interest in mtDNA-CN regulation has led to an increasing number of genome-wide association 
studies (GWAS) on mtDNA-CN11–18. One of the first major GWAS by Cai et al.12 used the mtDNA-CN extrapo-
lated from low-coverage whole genome sequencing data (mean coverage of mtDNA 100x) in 10,442 Han Chinese 
females, where they identified two variants involved in mtDNA-CN  regulation12. In another study of similar size 
using a quantitative PCR (qPCR)-based approach to measure mtDNA-CN, one of the identified variants was 
partially confirmed, but without reaching genome-wide  significance11. With the availability of larger cohorts 
such as the UK Biobank (UKB), mtDNA-CN estimated from microarray intensity data rather than qPCR data 
are being used more often. Using microarray data, Hägg et al. identified 50 associating SNPs in UKB, 38 of which 
were replicated in another  study15,21. Longchamps and colleagues performed a GWAS for microarray-based 
mtDNA-CN in 465,809 samples from UKB and found even more autosomal SNPs to be associated. The strongest 
association was found for LONP1 (p = 3 ×  10–141)15. Chong et al. showed that the correlation between mtDNA-CN 
estimated from microarray data and qPCR varied between r = 0.53 and r = 0.70, depending on the  ancestry17.

We were interested in identifying loci associated with qPCR-measured mtDNA-CN, and to assess whether the 
findings from microarray-based approaches were equivalent with qPCR-based measurements of mtDNA-CN. In 
the present study, we therefore attempted to identify nuclear and mitochondrial variants modulating mtDNA-
CN. We measured mtDNA-CN using a plasmid-normalized qPCR  assay22 in more than 16,000 individuals in 
three highly standardized, independent studies, the GCKD, CHRIS and AugUR studies, and conducted a GWAS 
meta-analysis to determine variants associated with the trait.

Methods
Study populations
GCKD study
The German Chronic Kidney Disease (GCKD) study is a previously described prospective cohort  study3,23 of 
5217 adult patients with chronic kidney disease (reduced glomerular filtration rate and/or proteinuria) under 
regular care by nephrologists. Trained personnel obtained information on socio-demographic factors, medical 
and family history, medications and health-related quality of life through standardized questionnaires. Data 
were collected and managed using the cloud-based web platform Askimed (https:// www. askim ed. com). In our 
analysis, 4692 unrelated individuals with available mtDNA-CN and genomic data were included.

AugUR study
The AugUR study (Altersbezogene Untersuchungen zur Gesundheit der University of Regensburg) is a popula-
tion-based cohort study of the elderly population of Regensburg (Germany) to investigate age-related traits at the 
genetic and non-genetic levels. Details of the study design and data collection have been described  elsewhere24,25. 
Briefly, 2449 participants with at least 70 years of age at the time of sample and data collection were included. 
Information on sociodemographic data, lifestyle, metabolic parameters, medication intake, and morbidities 
was collected. The recruitment phase was split in two parts, henceforth referred to as “AugUR1” (n = 1133) and 
“AugUR2” (n = 1316) study. Related individuals were excluded for further analysis.

CHRIS study
The Cooperative Health Research in South Tyrol (CHRIS) study is a longitudinal population-based study from 
South Tyrol (Italy) investigating the molecular basis of health and disease in the general population. Detailed 
information about medical history and medication were collected by means of interviews and self-administered 
questionnaires. At the time of this analysis, the study comprised 9778 participants aged 18 to 94 years, with 9320 
included in our GWAS (corrected for relatedness). Further study details are published  elsewhere26,27.

Approval by ethics committees
Participation was based on written informed consent. All studies were carried out in accordance with approved 
guidelines and in compliance with current national and EU regulations, the tenets of the Declaration of Helsinki 
and its later amendments. The GCKD study was approved by the Ethics Committees of all participating insti-
tutions and is registered in the national registry for clinical studies (DRKS 00003971). The AugUR study was 
approved by the Ethics Committee of the University of Regensburg (vote 12-101-0258). The CHRIS study was 
approved by the Ethical Committee of the Healthcare System of the Autonomous Province of Bolzano (protocol 
no. 21/2011). The project “Variazioni del numero di copie del DNA mitocondriale: mutazioni e suscettibilità alle 
malattie” (PI: Andrew A. Hicks) was approved by the same committee (protocol no. 10/2016). The CHRIS Access 
Committee authorized the analysis of data and samples for this project (application no. 69).

DNA extraction and mtDNA copy number measurement
In all three studies, biospecimens were collected following a standard protocol and samples were shipped under 
temperature-controlled conditions for further analyses. DNA was extracted from frozen EDTA-blood samples 
using the Chemagic Magnetic Separation Module I (PerkinElmer Chemagen Technologie GmbH, Germany), 
an automated magnetic beads-based method in GCKD and CHRIS. Within the AugUR study, part of the DNAs 
(> 82% of AugUR1) was extracted with reagents from Puregene (Qiagen, Hilden, Germany) and the other part 
(entire AugUR2) with a similar salting out method to enhance the yield in this elderly study sample. DNA was 
available from 4812, 2439 and 9364 participants in the GCKD, AugUR and CHRIS study, respectively.

https://www.askimed.com
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The mtDNA-CN measurements from all three studies were performed in triplicate with the same method 
and in the same laboratory (Medical University of Innsbruck). No modifications to the original protocol for 
quantification of mtDNA-CN per diploid cell were  made28. Briefly, we applied a duplex quantitative PCR assay 
that allows for simultaneous targeting of the single-copy nuclear gene beta-2-microglobulin (B2M, 86 base pairs) 
and the mitochondrial  tRNALeu gene (108 base pairs). A region of mtDNA-tRNALeu was amplified using the 
forward primer 5′-CAC CCA AGA ACA GGG TTT GT and the reverse primer 5′-TGG CCA TGG GTA TGT TGT 
TA; a region of B2M was amplified using the forward primer 5′-TGC TGT CTC CAT GTT TGA TGT ATC T and 
the reverse primer: 5′-TCT CTG CTC CCC ACC TCT AAGT. Probe sequences were: FAM-5′-TTA CCG GGC TCT 
GCC ATC T-BHQ1 for  tRNALeu and Yakima Yellow-5′-CAG GTT GCT CCA CAG GTA GCT CTA G-BHQ1 for the 
nuclear gene. The qPCR was performed on a QuantStudio™ 6 Flex system instrument (Thermo Fisher Scientific, 
Waltham, MA, USA) using the following conditions: 95 °C for 3 min for initial polymerase activation, 40 cycles 
of 95 °C for 15 s and 60 °C for 1 min. The mtDNA-CN was calculated using the ΔΔCq (quantification cycle) 
method: 2 ×  E−(ΔCq sample−ΔCq plasmid), where “E” is the average mean efficiency of the PCR of the PCR reaction of the 
two  targets29 and “2” is the account for the two copies of nuclear DNA in a cell. In each run, a plasmid contain-
ing both targets was included to correct for inter-assay variability. In each qPCR plate, two DNA samples were 
included and used for monitoring the performance of the assay over the entire project.

Genotyping data and imputation
Genotyping was performed using different platforms: Illumina Human OmniExpressExome and OMNI 
2.5Exome chip array on subjects from the CHRIS study, OMNI 2.5Exome BeadChip in the GCKD study and 
the Illumina Global Screening Array v1/v3 in the AugUR Study. Before imputation, genotype quality control 
was implemented using standard parameters suggested by the calling software GeneCall by Illumina. Genotypes 
of all three studies were imputed based on the Haplotype Reference Consortium (HRC)30 on the genome build 
GRCh37. SNPs with low imputation quality scores (< 0.3) were excluded.

Genome‑wide association studies and meta‑analyses
Quality control and GWAS were performed using our  REGENIE31 based in-house Nextflow pipeline nf-gwas 
(version v0.3.5, available at https:// genepi. github. io/ nf- gwas/)32. The REGENIE algorithm performs two steps: (1) 
fitting a whole genome regression model to account for population structure and relatedness using all included 
genotyped variants pruned for linkage disequilibrium (LD; 1000 variant window, 100 step size,  r2 < 0.9)) and 
(2) single-variant association testing conditioned on predictions made in step  131. Inverse normal transformed 
mtDNA-CN was used as the outcome variable of the regression model with different sets of covariates. In addi-
tion, ß-estimates for top hits are given on the original scale of mtDNA-CN for easier interpretation of results. 
Covariates were selected based on correlation structure with the outcome variable (mtDNA-CN) and among 
themselves. We tested the correlation of age, sex, smoking (current smokers vs. former- or never-smokers) and 
blood counts (erythrocytes, leukocytes, platelets) in each study via Pearson correlation and corresponding cor-
relation plots can be found in Fig. S1. GWAS analysis was performed on HRC-imputed data with additive genetic 
effect in six different adjustment models for each study, stratified by sex and stratified by smoking status (never 
smoker, former smoker and current smoker). Base covariates (model 1) included in the study were age, sex and 
the first four genetic principal components (PC), while model 2 included all covariates from model 1 plus smok-
ing status. GWAS analysis with models 1 and 2 were performed in each study. Model 3–6 (see Fig. 1 for details) 
included additional adjustments for blood cell counts that were not available in the GCKD study—therefore, 
model 3–6 were only performed in the CHRIS and AugUR studies. In CHRIS, we corrected for potential batch 
effects (three different genotyping batches). In AugUR, we analyzed AugUR1 and AugUR2 separately as two 
independent studies since the different DNA extraction methods used in AugUR1 and AugUR2 could have 
influenced mtDNA-CN  measurements28. For each individual study and model, we determined the genomic 
control inflation factor lambda (range: 0.939–1.001) visualized in QQ-plots. Since inflation was hardly present, 
no GC correction was applied. The meta-analysis based on inverse-variance weighted GWAS summary statistics 
was performed using  metal33. Heterogeneity was determined using  I2 measurements. A schematic summary of 
the simplified workflow is depicted in Fig. 1.

Statistical significance level was set at p < 5 ×  10−8. Phenotype data preparation, post-GWAS analysis and other 
additional analyses were performed using R, version 4.2.1 (R Foundation for Statistical Computing, Vienna, 
Austria).

Post‑GWAS analyses
Post-GWAS analyses included QQ-plots (including genomic-control inflation factor lambda values, range of 
meta results 0.960–0.988) and Manhattan plots (custom scripts using R), including variants with minor allele 
frequencies (MAF) > 0.001. Locus regions were defined as ± 250 kb around the lead SNP and regional plots of 
the loci were generated using the LocalZoom  platform34 (available at: https:// statg en. github. io/ local zoom/). 
To identify independent signals per locus, stepwise conditional analyses were performed with GCTA-COJO 
in regions ± 250 kb around the lead  SNP35 and for this, we used CHRIS genotypes as the reference for LD. The 
variance explained by the significantly associated loci (± 250 kb around the lead SNP) was determined using 
GCTA-GREML (version 1.93.2)35. The UCSC Genome  Browser36 and its implementations were used for func-
tional annotation of associated variants. For sex-stratified analyses, we tested differences in effect estimates 
between male and female individuals using a z-test of  difference37 (see Supplement for more details). The same 
approach was applied for smoking-stratified analyses between current smokers, former smokers and never-
smokers (p-value cut-off = 2.5 ×  10–8 due to comparison of three groups).

https://genepi.github.io/nf-gwas/
https://statgen.github.io/localzoom/
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To determine if our top hits are already linked to other traits, we conducted a SNP lookup using 
 PhenoScanner38,39. To further explore the impact of blood cell counts (erythrocyte counts (RBC), white blood 
cell counts (WBC), platelets (PLT)) and smoking on mtDNA-CN, we performed a mediation analysis using the 
mma  package40 for our top hits. Before conducting the mediation analysis, we first assessed whether the neces-
sary conditions for potential mediators were met. Only potential mediators that showed a significant association 
between the SNP and mediator, as well as between the mediator and outcome, were included in the analysis. Vari-
ables that did not meet these conditions were included in the model as covariates. Mediation models were further 
adjusted for age, sex and 4 PCs. Mediation analysis was carried out in studies with available blood cell counts 
separately (CHRIS and AugUR). The proportion mediated was summarized using a sample-size weighted average.

Colocalization analyses were conducted to investigate whether the identified variants associated with mtDNA-
CN also influence gene expression levels. Meta-GWAS p-values were plotted against whole blood eQTL p-values 
of the same SNPs, taken from the eQTLGen  Consortium41 (n = 31,684 from cis-eQTL data). Genes within a 
window ± 250 kB around the GWAS top hit were included, and those showing a false discovery rate (FDR) < 0.05 
in the association with expression are reported. For each region, posterior probability of the five hypotheses 
(H0–H4) was evaluated. Signals with high H4 posterior probability (> 70%) were deemed to have strong evidence 
of colocalization with the same potentially causal variant. Based on the genes identified from the colocalization 
analysis, we investigated protein–protein interactions using the String  database42.

GCKD Study
(n=4,812)

AugUR Study
(n=2,439)

CHRIS Study
(n=9,778)

mtDNA copy number measurements via qPCR 

GCKD Study
(n=4,692)

AugUR Study
(n=2,122)

CHRIS Study
(n=9,320)

Genotyping and QC

Samples with

available DNA

Samples included

in GWAS

Phenotype preparation
(Exclusion criteria: missing mtDNA-CN, not passing QC, ...) 

GWAS (model 1-2,
adjusted for age, sex,

smoking, PCs)

GWAS (model 3-6,adjusted
for blood cell counts)

GCKD Study
(n=4,692)

AugUR Study
(n=2,118)

Post-GWAS analyses

GWAS (model 1-2,
adjusted for age, sex,

smoking, PCs)

GWAS (model 3-6,adjusted
for blood cell counts)

Meta-analysis (model 5: age, sex, PCs, WBC, PLT)

Meta-analysis (model 6: age, sex, PCs,RBC, WBC, PLT, smoking)

Meta-analysis (model 1: adjusted for age, sex, PCs)

Meta-analysis (model 2: adjusted for age, sex, smoking, PCs)

Meta-analysis (model 3: age, sex, PCs, RBC)

Meta-analysis (model 4: age, sex, PCs, RBC, WBC, PLT)

GWAS (model 1-2,
adjusted for age, sex,

smoking, PCs)

Figure 1.  Experimental workflow of GWAS based on mtDNA-CN. DNA samples of 16,615 individuals 
was available for mtDNA-CN measurements via qPCR and genotyping from three studies (GCKD, German 
Chronic Kidney Disease; AugUR, Altersbezogene Untersuchungen zur Gesundheit der University of Regensburg; 
CHRIS, Cooperative Health Research in South Tyrol). After excluding those without determinable mtDNA-CN 
and those not passing the quality control (QC), GWAS was conducted for all three studies and additionally, a 
meta-analysis was performed in 16,130 individuals followed by post-GWAS analyses. Adjustment models are 
described within the flowchart using age, sex, principal components (PCs), erythrocyte counts (RBC), white 
blood cell counts (WBC), platelets (PLT), and smoking as covariates.
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Mitochondrial haplogroup determination and mitochondrial variants
In order to determine the mitochondrial haplogroups, the mitochondrial genotypes were first quality-controlled 
including allele checks against the revised Cambridge Reference Sequence (rCRS; NC_012920.1, 16,569 bp). The 
genotypes from five different microarrays were assessed for their performance of haplogroup classification. Each 
microarray was simulated based on full mtDNA sequences corresponding to all haplotypes present in the global 
human phylogenetic mtDNA tree Phylotree  1743 and masked to keep only the genotypes of the corresponding 
microarrays to calculate its performance for accurate haplogroup assignment. Subsequently the mitochondrial 
haplotypes from 16,130 samples were converted from the PLINK to VCF format with PLINK 2.044 with sub-
sequent quality filtering for missing genotypes in  VCFtools45 (call rate ≥ 95%). We estimated the haplogroups 
using HaploGrep 2 (version 2.4)46 with the “–chip” option in 16,121 samples. The five microarrays cover varying 
mtDNA variants ranging from 140 on the GSAMD v1 Chip to ~ 1400 on the GSAMD v3. Since therefore dif-
ferent haplogroup resolutions are expected, we grouped the samples in five consensus groups: (1) R0 including 
haplogroups R0, H, V and HV (51.6%), (2) JT including macrohaplogroups J and T with all sub-haplogroups 
(20.2%), (3) UK including all U and sub-haplogroups including K (21.5%), other Europeans with haplogroup 
N1, N2, X (6.0%) and non-Europeans containing the remaining 0.7% of haplogroups (A, B, D, G, L, M, N8, R9). 
Given the vast difference in mtDNA variants covered on the five different microarrays, we used  MitoImpute47 
with the Reference Panel v1 0.01 (MAF 1%) to infer missing mtDNA variants. In short, MitoImpute runs the 
chromosome X imputation pipeline via IMPUTE2 with no recombination (thereby artificially considering all 
samples as males) on a globally diverse Reference Panel (n = 36,960). We assessed the results based on haplo-
groups estimated prior and after imputation with HaploGrep 2. Here the phylogenetic distances between the 
haplogroups calculated with the “distance” parameter were analyzed. This imputation step increased the shared 
variants on the five different microarrays from 27 to 413 variants (Fig. S2). The VCF files were normalized by 
splitting multi-allelic sites into separate rows and reference allele mismatches were fixed with  BCFtools48 norm. 
Allele frequencies were compared with Helix’s mitochondrial variant database (available at helix.com/mito) as 
reference (Pearson > 0.9).

Besides using the mitochondrial haplogroups as a covariate in the GWAS, we also tested whether the mtDNA-
CN differed between the haplogroups via a linear mixed-effects model accounting for the different studies and 
correcting for age and sex.

GWAS on mitochondrial variants was performed in R using the vcfR package (version 1.13.0)49 and linear 
regression models for each variant were calculated. Results were meta-analyzed using the metafor  package50 
(using random-effects models, fitted by REML estimation). Heterogeneity was tested using I2 measurements. 
Results of 305 mitochondrial variants, which were present in at least two studies, were included. P-values below 
0.00016 (0.05/305) were considered significant.

Genome-wide significant nuclear variants and those close to genome-wide significance (cutoff p < 1 ×  10–7) 
were annotated with MitoCarta3.08. For all models, the results from the meta-analyses were augmented with 
the number of all entries and unique gene names in MitoCarta3 as well as the pathways via an R-script. Addi-
tional mitochondrial sub-compartments were analyzed for all genes with the COMPARTMENTS  resource51 
(see Fig. S3).

Comparison with previous findings
Table S1 provides a summary of the main characteristics and findings from various GWAS conducted on mtDNA-
CN. We selected SNPs, which were identified in the largest study based on array data from Longchamps et al.15. 
SNPs were selected using the following criteria: (1) at least two SNPs within a 1 Mb window showed genome-wide 
significance, (2) the lead SNP was directly genotyped and/or (3) the respective locus was significant in at least 
one of their three complementary analyses. We compared the concordance of these results with our results based 
on qPCR measurements by performing an equivalence  test52 applying a difference margin of 0.5, corresponding 
to 0.5*variance of the phenotype (see Supplement for more details).

Results
Sample characteristics
In total, 16,130 individuals of European ancestry were included in the meta-analyses while correcting for related-
ness. Baseline characteristics of participants from all three studies are presented in Table 1. Half of all participants 
(50.3%) were female. The age-range of all participants was between 18 and 95 years (mean age: 54.3 years). Inter-
assay mtDNA-CN coefficients of variation of the two control samples included in each qPCR plate to monitor 
performance in the 191 independent experiments were 6.0% and 8.3%.

Genome‑wide association study: two loci associated with mtDNA‑CN
We found genome-wide significant variants for the main model (Fig. 2) and further adjusted models (Fig. S4). 
The meta-analysis revealed three significant loci associated with mtDNA-CN based on the main model adjusted 
for age, sex and the 4 PCs. We identified a genome-wide significant locus located on chromosome 6 (lead SNP: 
rs4895440, ß = 0.09, 95%CI = 0.06–0.11, p = 3.39 ×  10–13). The effect on the original scale equals an increase of 
3.31 mtDNA copies per effect allele. The lead SNP is intergenic between the HBS1L and MYB genes with several 
SNPs in LD (Fig. S5a). This variant remained genome-wide significant and showed similar ß-estimates when 
additionally adjusting for smoking and erythrocyte count, but the effect decreased after adjusting for white blood 
cell and platelet count (see Table S2 for more details). A second genome-wide significant locus on chromosome 
17 is represented by a frequent missense variant within the GSDMA gene (rs56030650, ß = − 0.06, 95%CI = − 0.08; 
− 0.04, p = 4.85 ×  10–08; Fig. S5b). On the original quantification scale, this variant was associated with − 2.55 
mtDNA copies per effect allele. This association was genome-wide significant in the age-, sex- and 4 PC-adjusted 
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model, but we noticed a reduction of the ß-estimate only after adjusting for leukocytes and platelets (Table S2). 
However, the estimate remained stable when adjusted for smoking and/or erythrocyte counts. The explained 
genetic variance by these two loci (± 250 kb around the lead SNP) was 2.45% (standard error 0.7%) in the main 
model. In both loci, no heterogeneity between studies was observed (I2 = 0).

A third locus (rs9306373) was identified around TSPO with stable ß-estimates over different adjustment 
models (ß = − 0.15, 95%CI = − 0.20; − 0.10, p = 9.89 ×  10–09 when adjusted for age, sex, PCs, platelets and leukocyte 
counts). However, the effect was mainly driven by the CHRIS study (Table S3). We observed highly different 
MAF in CHRIS (0.07 compared to 0.004–0.005 in the other studies), observed a ß-estimate in the opposite direc-
tion solely in CHRIS and all together, this variant exhibits a high level of heterogeneity (I2 ≥ 50%, p = 0.003). To 
identify the source of possible heterogeneity, we checked the cluster plots for the specific TSPO variant, provided 
by the Illumina GenomeStudio software (Fig. S6), and we found highly noisy cluster distribution of the A/B 

Table 1.  Baseline characteristics and genotyping information of all individuals included in the meta-analysis. 
a n refers to individuals included in the genome-wide association studies. b Mean ± standard deviation.

GCKD AugUR CHRIS

Na 4692 2118 9320

Sex (female) 1862 (39.7%) 1112 (52.5%) 5143 (55.2%)

Ageb 60.2 ± 11.9 78.3 ± 5.0 45.8 ± 16.3

Current Smoker 746 (15.9%) 112 (5.3%) 1632 (17.5%)

Leukocyte count  (103/µl)b NA 6.5 ± 2.0 6.2 ± 1.8

Erythrocyte count  (106/µl)b NA 4.5 ± 0.4 4.9 ± 0.5

Platelet count  (103/µl)b NA 240 ± 62 254 ± 57

Mean mtDNA-CNb 107.3 ± 36.5 150.9 ± 43.9 143.5 ± 51.1

DNA source Whole blood Whole blood Whole blood

DNA extraction Automated magnetic beads-based method Manual salting out method Automated magnetic beads-based method

mtDNA-CN measurement qPCR qPCR qPCR

Genotyping array Illumina  Infinium® OMNI 2.5Exome Illumina  Infinium® Global Screening Array 
(v1/v3)

Illumina  Infinium® Human OmniExpres-
sExome, Omni 2.5Exome

Genotype quality control (exclusion 
criteria)

HWE p < 1 ×  10–5; sample call rate < 0.97, 
SNP call rate prior to imputation < 0.96

HWE p < 1 ×  10–8; call rate < 0.95; mono-
morphic variants

HWE p < 1 ×  10–6; call rate < 0.98; monomor-
phic variants

Imputation HRC HRC HRC

Figure 2.  Manhattan plot illustrating genome-wide autosomal associations for mtDNA-CN in all three studies 
(GCKD, AugUR, CHRIS), adjusted for age, sex, and four principal components (PCs). The red line represents 
the threshold for genome-wide significance (p-value < 5 ×  10−8). The x-axis gives the chromosomes, the y-axis 
shows the –log10 p-values of imputed SNPs.
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normalized intensity, leading to an increase in the genotype call uncertainty for two out of three of the CHRIS 
genotyping batches. We concluded that this finding might thus be a technical artifact, and excluded the locus 
from further consideration.

Stepwise conditional analyses did not reveal any further independent signals at each of the identified loci. 
The results confirmed the two lead variants described above, with no hidden conditioning signal. Details on all 
three genome-wide significant variants are provided in Table 2.

Association with gene expression and colocalization analysis
In the association with expression levels, eight genes were found to have a FDR of < 0.05 with the respective 
GWAS lead SNP, two of them in the chromosome 6 gene region, six on chromosome 17. Colocalization analysis 
thus revealed either high H3 probability, that is, association with both expression and mtDNA, but not the same 
variant that is potentially causal, or H4, with indication for even the same potentially causal variant (summa-
rized in Table S4). For MYB, in the chromosome 6 region, there is strong evidence for colocalization with the 
same potentially causal variant (H4 = 0.98). In contrast, HBS1L shows a H3 probability close to 1, indicating that 
the GWAS and eQTL signals are driven by different genetic variants. In the second region on chromosome 17, 
potential colocalization between the GWAS signals and eQTL signals was observed for GSDMB and ORMDL3. 
Interestingly, the GWAS top hit corresponds to the lead SNP in the eQTL data for both of these genes. For other 
genes, including MED24, results are less conclusive. The H3 probability for MED24 is 0.8, while the H4 prob-
ability is 0.2. However, visually comparing both peaks shows that they are in the same region and that the lead 
SNPs of the eQTL and GWAS are in LD. Results of colocalization analyses for all included genes are visualized 
in Figs. S7 and S8.

Based on the results of the colocalization analysis, we utilized the String  database42 to explore protein–protein 
interactions. As shown in Fig. S9, this investigation indicated the involvement of MED24, PSMD3, GSDMA and 
HBS1L in measured mtDNA-CN. Additionally, several of the genes were found to be associated in some type 
of blood cell composition.

Analysis stratified for sex and smoking status
When we performed each GWAS model stratified for male and female individuals, we identified a genome-wide 
significant locus which was present in only one of both sexes (men n = 8012, women n = 8118). While we could 
not identify genome-wide significant variants in the sex-stratified analysis in the main model, we found a signifi-
cant locus in our cell count-adjusted analysis (without GCKD). In females, a significant association between a rare 
variant in DIPK1B and mtDNA-CN was found (lead SNP: rs186793011, p = 4.21 ×  10–08; ß = 0.70 in women and 
− 0.15 in men; MAF 0.005/0.006). Details are provided in Table S5. A z-test comparing effect estimates between 
male and female individuals found no significant difference between both sexes for any of the variants in any of 
the adjustment models (on genome-wide significance level), though.

When stratified for smoking status (adjusted for age, sex and 4 PCs), we identified no significant difference 
between current smokers, past smokers and non-smokers. In all three groups, ß-estimates for top hits had the 
same effect direction (Table S6). Further, no additional variants were identified in any of the subgroups.

Mitochondrial DNA variants
Meta-analysis of imputed mitochondrial variants revealed one rare genome-wide significant variant (MT:9548_A, 
MAF = 0.0003, ß = − 1.30, p = 5.61 ×  10–06) when adjusted for age, sex and 4 PCs (p = 0.00013 when additionally 
adjusted for smoking status). Several common variants were close to reaching the significance threshold of 
0.00016 (e.g. MT:13708_A, n = 1880, p = 0.00047) as visualized in a solar plot (Fig. 3). All mitochondrial variants 
with p-values below 0.001 are listed in Table 3.

Association between mitochondrial haplogroups and mtDNA copy number
Mitochondrial haplogroups in each study were determined using HaploGrep  246. As expected, the most common 
mitochondrial haplogroups belonged to typical European mitochondrial lineages (see Fig. S10 for haplogroup 
distribution in each study). Considering the different studies, linear mixed-effects models revealed significant 
differences for mtDNA-CN (on original scale) between R0 and JT (ß = 3.05, p = 0.0012) and R0 and UK (ß = 1.91, 
p = 0.039), however, no difference to the other haplogroup clusters was seen. In a sex-stratified analysis, we found 
significant differences between R0 and JT (ß = 5.65, p < 0.001) and R0 and UK (ß = 3.94, p = 0.0016) in males. In 

Table 2.  List of genome-wide significant autosomal top hits from the meta-analysis. a Freq A1 = weighted 
average of frequency for allele 1 across all studies based on our meta-analysis results. b Freq A1 
(1000G) = frequency of the A1 allele based on 1000 Genome Europeans.

Chr Position Lead SNP A1 A2 Freq  A1a
Freq A1 
(1000G)b Effect StdErr

Nearest 
gene Distance BP N Best P-value

Proportion 
of variance 
explained 
by this SNP Adjustment

6 135426558 rs4895440 t a 0.2686 0.2773 0.0855 0.0118 HBS1L 50,522 16,130 3.39 ×  10–13 0.0032 Age, sex, 4 
PCs

17 38131187 rs56030650 a c 0.4305 0.4573 − 0.0573 0.0105 GSDMA 0 16,130 4.85 ×  10–08 0.0018 Age, sex, 4 
PCs
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females, we did not identify a significant difference for mtDNA-CN between any of the haplogroups (see Fig. S11 
for distribution of mtDNA-CN between haplogroups stratified by sex).

Besides comparing mtDNA-CN between haplogroups, we also added haplogroups as covariate in our GWAS 
by setting the most common clade R0 as the reference. This did not change the results of the meta-analysis.

Adjustment for blood cell counts and mediation analyses
It is well investigated that mtDNA-CN measurements in peripheral blood are influenced by the blood cell 
 counts17,53. We performed additional sensitivity analyses by bringing leukocyte and thrombocyte count into the 
equation as described by Hurtado-Roca and  colleagues53. This resulted in similar results without major changes 
and both variables (original mtDNA-CN vs. mtDNA-CN adapted by Hurtado equation) showed high correla-
tion (r = 0.96). Additionally, we applied various adjustment models including adjustment for blood cell count 
parameters (model 3–6). Information on blood cell counts was only available for AugUR and CHRIS, but not for 
the GCKD study, which reduces the sample size to 11,438. In Table S2, we additionally present our main model 
without the GCKD study in order to illustrate the impact of reduced sample size on the estimates. Our findings 
indicate that the exclusion of GCKD, with the subsequent reduction in power, has only a minor influence on 
the effect estimates. When using blood cell counts as covariates in the GWAS, we observed lower effect sizes 
compared to models not adjusted for blood cell composition (exception: sex-stratified analyses).

Figure 3.  Results of meta-analysis on mitochondrial variant associated with mtDNA-CN. In this solar plot, 
mitochondrial variants are colored based on the genomic region (see legend). Mitochondrial base pair location 
is shown as numbers in the inner circle, association p-values (-log10 p-value) are illustrated on the y-axis 
(representing the distance between the inner circle and the outer circles). The threshold for significance (red 
circle) was set at < 0.00016 based on the number of variants included in the analysis (0.05/305).

Table 3.  List of mitochondrial variants with p < 0.001 in the main model of the meta-analysis. a Main model: 
adjusted for age, sex, 4 PCs. b P-values below 0.00016 (0.05/305) were considered significant. Bold font indicates 
significance.

Position Freq Freq (HelixMTdb) Effect (main model) StdErr (main model) I2 N P-value (main model)a,b
P-value (adjusted as main 
model + smoking)b

MT:9548_A 0.002 0.009 − 1.298 0.286 0 12 5.61 ×  10–06 1.00 ×  10–04

MT:13708_A 0.101 0.102 0.091 0.026 0 1880 4.72 ×  10–04 1.12 ×  10–02

MT:11719_A 0.500 0.590 0.053 0.016 0 8899 7.32 ×  10–04 9.00 ×  10–04

MT:73_G 0.520 0.612 0.053 0.016 0 8994 7.57 ×  10–04 7.00 ×  10–04

MT:15784_C 0.007 0.016 − 0.317 0.095 0 112 8.12 ×  10–04 1.16 ×  10–02

MT:12612_G 0.095 0.081 0.087 0.027 0 1779 1.08 ×  10–03 1.23 ×  10–02
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The mediation analysis revealed that the effect of rs56030650 on mtDNA-CN is mediated by white blood cell 
count with a proportion of 41.6% (6.6% in AugUR and 49.6% in CHRIS), meaning that still 58.4% of the SNP-
effect affects mtDNA-CN directly (Fig. 4, panel a). None of the other variables met the criteria for a potential 
mediator for this variant.

Similarly, the mediation analysis for rs48955440 demonstrated that 40.3% of the SNP effect directly affects 
mtDNA-CN. The mediated effect accounted for 59.7% of the total effect and was distributed among WBC, RBC 
and PLT with varying proportions in AugUR and the CHRIS study. Specifically, leukocyte counts, and platelet 
counts made significant contributions to the mediation model, each explaining approximately 25% of the total 
effect (Fig. 4, panel b). Although the estimates for mediated effects and proportions differed between both stud-
ies (Table S7), the mediation models were consistent in the identified mediators for both SNPs and both studies.

Analyses based on mitochondrial annotation
Nuclear variants identified in the meta-analysis were annotated with MitoCarta3.08 to identify nuclear genes 
with mitochondrial localization and mitochondrial pathway contribution. We investigated whether prioritized 
genes associated with mtDNA-CN were enriched for mitochondrial genes/localizations and pathways. Thereby 
six different models where annotated with an average of 28.8 entries, in 24 unique genes identifying TSPO and 
FHIT (only in the main model) in MitoCarta3 Pathways (Lipid metabolism > Cholesterol, bile acid, steroid 
synthesis and Metabolism > Nucleotide metabolism > Nucleotide synthesis and processing respectively) shown 
in Tables S8–S11.

Comparison between published results based on microarray intensity data and our current 
results based on qPCR data
Finally, we aimed to compare the consistency with previous  results15 (n = 465,809, adjusted for age, sex and blood 
cell counts) estimated based on microarray intensity data with our main results measured with qPCR (covariates: 
age, sex, four PCs). Fourteen of the lead variants reported by Longchamps et al.15 were not investigated in our 
study due to low imputation quality, or exclusion of multi-allelic variants during quality control, and therefore, 
115 variants were compared. Due to large differences in samples size, and therefore power, we aimed to evaluate 
the concordance of effect estimates rather than looking at genome-wide significance or replication. In 73 of the 
115 SNPs, we observed consistent ß-estimate directions. A test on equivalence showed significant equivalence of 
ß-estimates for all but two SNPs (rs200957609 (AP5Z1); rs141227171 (LIPC), Table S11). Altogether, correlation 
between effect estimates is quite low  (r2 = 0.14, p = 3.62 x  10-05) with systematically lower effect estimates in our 
study compared to Longchamps et al.15 (Fig. 5), which is expected, though, since SNPs were selected from the 
Longchamps study results (“winners curse”54).

Discussion
Main findings
In this meta-analysis using qPCR-based data from 16,130 individuals of European ancestry, we identified two 
nuclear gene regions, near HBS1L/MYB and in the GSDMA gene, associated with mtDNA-CN in all participants, 
and two loci in sex-specific analyses. We further found one rare mitochondrial variant associated with mtDNA-
CN. The regulation of mtDNA-CN by genetic variants in the mitochondrial genome probably does not play a 
major role, since the only mitochondrial variant associated with mtDNA-CN was very rare.

To the best of our knowledge, this is the largest GWAS meta-analysis on mtDNA-CN measured by a highly 
standardized qPCR performed in the same laboratory for all three studies. The first genome-wide significant 
identified locus (rs4895440, an intergenic variant located between HBS1L and MYB) was reported to be associ-
ated with erythrocyte, platelet, and monocyte counts as well as erythrocyte volume and hemoglobin content and 
with sickle cell  disease55–59. This variant was no longer significant after adjusting for white blood cell counts and 
platelets, which indicated an indirect association with mtDNA-CN primarily based on blood cell composition.

The second genome-wide significant locus was within the GSDMA gene (rs56030650, p = 4.85 ×  10–08). This 
locus was significantly associated with mtDNA-CN when adjusted for age, sex and 4 PCs but was no longer 

rs56030650 mtDNA-CN

WBC

rs4895440 mtDNA-CN

PLT

RBC

WBC

58.4% direct effect

41.6% mediated effect

59.7% mediated effect

40.3% direct effect

a b

Figure 4.  Visualized results of the mediation analysis examining the influence of the two GWAS top hits on 
mtDNA-CN through mediator variables: erythrocyte counts (RBC), white blood cell counts (WBC), platelets 
(PLT). Two studies, AugUR and CHRIS study, were included and the shown percentages are based on weighted 
means by sample size. The arrows in the plot represent the direction and magnitude of the effects.
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significant when we adjusted for smoking and blood cell counts. However, the ß-estimate remained stable when 
adjusted for smoking and the effect decreased only when adjusting for platelets and leukocytes. This variant has 
been associated with phosphatidylcholine  levels60. The gene is mainly expressed in human skin and is known to 
regulate mitochondrial homeostasis, including mitochondrial oxidative  stress61.

The results from the co-localization analysis revealed additional gene regions on chromosome 17, namely 
GSDMB, ORMDL3, PSMD3, MED24 and IKZF3. GSDMB (Gasdermin B) is part of the gasdermin family, as is 
GSDMA, both playing an important role in pyroptotic activity and both were reported in childhood  asthma62–64. 
Analyzing functionally similar genes obtained by  Genemania65 indicates a central role for the gasdermin pro-
tein domain (see Fig. S12) showing genetic interactions with HBS1L, MYB and co-expression of ORMDL3. 
In general, proteins of the gasdermin family are closely connected and they possess a two-domain structure, 
comprising a well-preserved N-terminal domain responsible for pore formation and a C-terminal inhibitory 
 domain63. Recent work indicates that mtDNA is released through pores on the outer mitochondrial membrane 
formed by GSDMD-NT binding to cardiolipin. Subsequently the cytosolic mtDNA can trigger inflammation, 
which can result in  pyroptosis66. A recent investigation could show the increase of cytosolic mtDNA-CN in 
odontoblasts suggesting that mtDNA-GSDMD-STING signaling is involved in the regulation  process67. Miao 
et al68. found correlations between GSDMD activation in neutrophils and mtDNA plasma content in systemic 
lupus erythematosus patients. Similarly, a recent work also found a role of GSDMA in cell death, by targeting 
mitochondrial membranes, resulting in higher ROS generation, mitochondrial dysfunction as well as mtDNA 
release into the  cytosol69.

ORMDL3 has also been associated with asthma and was shown to regulate mitochondrial calcium  influx70,71. 
It is thought to be involved in endoplasmic reticulum stress, oxidative stress and mitochondrial  dysfunction72. 
PSMD3 (Proteasome 26S Subunit, Non-ATPase 3) is involved in protein degradation and has previously been 
found to regulate mtDNA-CN in the cluster together with MED24 (Mediator Complex Subunit 24), both of 
which are associated with neutrophil  count11.

Lastly, analysis of protein–protein interactions with the String database indicated the involvement of MED24, 
PSMD3, GSDMA and HBS1L with the measured mtDNA-CN.

Integration of results in the context of available literature
Several GWAS on mtDNA-CN have been published and the main characteristics and findings are summarized 
in Table S1. Due to the heavy workload of qPCR-based measurements of mtDNA-CN, the largest studies are 
based on array-based estimates. Smaller studies have measured mtDNA-CN mainly by qPCR which is still the 
most widely used approach.

The first GWAS was conducted by Lopez and colleagues in 386 Spanish subjects and mtDNA-CN was meas-
ured in buffy coat by  qPCR13. The authors did not find any genome-wide significant SNP. Cai and  colleagues12 
extracted DNA from saliva of 10,442 Chinese women and retrieved mtDNA-CN from low-coverage whole 
genome sequencing data. The GWAS identified two loci influencing mtDNA-CN: one in the TFAM gene 
(rs11006126, p = 8.73 ×  10–28) and one in intron 1 of the CDK6 gene (rs445, p = 6.03 ×  1016). The two variants 
were not genome-wide significant in our study, but nominally significant into the same direction (p = 0.018 and 
p = 0.003). Notably, mtDNA-CN is tissue-specific, and DNA was derived from saliva in Cai et al.12 and from blood 
in our study. Our top hits were not present in their list of SNPs with p <  10–06. Guyatt et al. conducted a GWAS 
in two population-based cohorts with a total of 11,253 individuals based on qPCR-measured mtDNA-CN11. In 
meta-analyses performed in different groups, no SNP reached genome-wide significance. However, two loci 
(p <  10−06) were identified from the main meta-analysis of all adult females (n = 6799) and these loci were associ-
ated with white blood cell  counts11. Especially in these smaller studies, many different covariates were used (e.g. 
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Figure 5.  Comparison of ß-estimates ± 95% confidence interval (CI) from our study and the study by 
Longchamps and  colleagues15. The ß-estimates for the two SNPs highlighted in dark blue are not equivalent 
using an equivalence test. Dashed line indicates line of agreement with slope 1, dotted line a linear regression 
line between the two estimate vectors.
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age, sex, smoking behavior and oral contraceptives in Lopez et al.13 or age and sequencing batch in Cai et al.12) 
and therefore, results are hardly comparable.

Besides these smaller, mostly qPCR-based studies, several GWAS on mtDNA-CN estimations via microar-
ray intensity data using UKB data and additional studies have been  published15–17, 21. For instance, Hägg et al. 
found 50 significantly-associating SNPs in UKB (n = 295,150), and 38 of those were validated by Longchamps 
and colleagues as genome-wide significant in an even larger sample set including the UKB and the CHARGE 
consortium (n = 465,809)15,21. Longchamps and colleagues found 129 SNPs to be associated with mtDNA-CN, 
the strongest one being LONP1 (rs11085147, p = 3.00 ×  10–141). Interestingly, neither this exact variant (p = 0.003) 
nor another variant (p ≥ 0.003) in this locus was significant in our studies. In their GWAS, they also identified 
TFAM (rs12247015, p-value = 1 ×  10–55), which, however, also did not reach genome-wide significance in our 
study (p-value = 0.0004). However, we also did not find major differences, as equivalence tests between our 
results and Longchamps et al.15 only highlighted two SNPs as not being equivalent. In a recent study utiliz-
ing whole-genome sequencing data (n = 30,666)73, no variants of genome-wide significance were identified. 
However, Zaidi et al. also conducted a comparison with the findings of Longchamps et al., where only three 
variants showed significant replication. Similar to our own equivalence test, the effect sizes observed in their 
study correlated to those reported by Longchamps et al. Another large GWAS identified new loci and revealed 
the involvement of SAMHD1 mutation status on mtDNA copy numbers as well as an association with genes 
of mtDNA depletion  disorders17. Gupta et al. performed a GWAS using blood cell-adjusted and non-corrected 
mtDNA-CN (n = 274,832)18. They identified 92 nuclear loci associated with mtDNA-CN. While our two main 
loci showed high significance in their unadjusted mtDNA-CN GWAS, the significance of these signals weakened 
after covariate adjustment including blood cell counts. Furthermore, Hägg et al.21 provided a list of genes found 
to be significantly accumulated with mtDNA abundance associated variants (provided in their Supplementary 
Table S6). Within each of the top four genes of that list (MED24, CSF3, PSMD3 and GSDMA), we also found at 
least one SNP with p-values < 3 ×  10–7. Therefore, differences compared to previous studies might most likely be 
explained by less power. However, generally smaller effect sizes in qPCR measurements compared to array-based 
estimations have also been  shown74.

So far, only a few publications are available on mitochondrial variants that regulate the variation of mtDNA 
 levels12,15. Cai et al. investigated mitochondrial variants and identified position 513 (p = 3.27 ×  10−9) as significantly 
associated with mtDNA-CN which was not significant in our study (p = 0.09)12. Longchamps et al. used mitochon-
drial variants to investigate the relations between mitochondrial function and mtDNA-CN associated  traits15.

Relevance of covariate adjustment
As age and sex definitely influence mtDNA-CN in blood, we adjusted for these two parameters in all models. 
Moreover, we chose smoking as an adjustment variable which often is shown to influence mtDNA-CN75, however, 
in our study it had only minor effects on ß-estimates. In contrast, the role of blood cell counts on mtDNA-CN is 
not completely clear, but has been shown several times in the past as one of the most important factors affecting 
mtDNA-CN. We therefore chose additional models adjusting for blood cell composition. While adjusting for 
different blood cells had an effect on our outcomes, applying the suggested formula by Hurtado et al. did not 
influence our results.

Several of the studies listed in Table S1 did not incorporate the blood cell counts in their final analyses, which 
makes comparison of results difficult. On one hand, GWAS studies are usually adjusted only for age, sex and 
principal components, since confounding is usually not an issue for typical GWAS. Further adjustments are often 
performed only as sensitivity analyses. On the other hand, for mtDNA we might have a special situation which is 
sometimes discussed controversially since blood cell counts are covariates of interest, as the composition of blood 
cells can potentially cause misinterpretation of results if not accounted for. Particularly in studies examining 
associations between mtDNA-CN and specific phenotypes, it is advisable to adjust especially for leukocytes as 
they may act as a potential mediator. Different blood cell types possess varying levels of mtDNA. For instance, if 
a specific blood sample contains a higher proportion of leukocytes with elevated mtDNA-CN, it could artificially 
inflate the overall measurement of mtDNA copy number. The same applies to high levels of thrombocytes, as 
these cells lack a nuclear genome. However, by adjusting for blood cell counts we might miss genes which have 
an influence on blood cells and secondarily on mtDNA. Performing a two-step approach using first the typical 
GWAS adjustments followed by an adjustment for blood cell count might contribute to a better understanding 
how the final measurement of mtDNA-CN is influenced. Regardless, it is still a controversy whether blood cell 
composition has to be considered as covariate in GWAS on mtDNA-CN since GWAS are very unlikely to be 
prone to confounding.

While there may be a debate regarding the necessity of adjusting for blood cell counts in GWAS, we wanted 
to assess the extent of which the effect truly originated from mtDNA-CN. Thus, in the present study, we inves-
tigated the mediation effects through leukocytes, erythrocyte counts, and platelets on the relationship between 
our two top hits and mtDNA-CN. Our findings revealed that even though a substantial proportion of the total 
effect was mediated through blood cell composition, rs56030650 and rs4895440 exerted a significant direct effect 
of 58.4% and 40.3% on mtDNA-CN, respectively. The observed direct effect suggests that both variants have a 
direct impact on mtDNA-CN independent of its influence through mediators. Additionally, the identification 
of these mediators provides valuable insights into the underlying mechanisms through which these variants 
influence mtDNA-CN and once again, highlights the complex nature between mtDNA-CN, its genetic regula-
tion and blood cell composition.

These findings from the mediation analysis were in line with a SNP lookup in a GWAS on various blood cell 
traits including > 170,000  individuals76, confirming that both of our lead SNPs have previously been associated 
with blood cell count traits. In this study, rs4895440 on chromosome 6 was primarily associated with RBC, 
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platelet counts and WBC. rs56030650 showed associations primarily with WBC, while neither red blood cell 
counts, nor platelet counts were associated with this variant.

Strengths and limitations
Over the last few decades, qPCR has been the gold standard for quantification of mtDNA-CN. However, in large 
studies including several hundreds of thousands of participants, this approach is no longer considered feasible. 
Therefore, alternatives based on whole exome/genome sequencing and microarray-based methods for mtDNA-
CN estimation were  developed74. The correlation between array-based mtDNA-CN estimates and qPCR-derived 
copy numbers varies between pipelines used for data analysis: e.g. the  MitoPipeline77 shows a correlation coef-
ficient of ~ 0.5 whereas  AutoMitoC17 was validated in almost 5800 samples using our qPCR  approach28 and 
found a higher correlation between both methods (r = 0.64; p < 2.23 ×  10–308). Although there are several practical 
reasons to choose array-based mtDNA-CN estimates, we argue that our qPCR assay is highly reliable due to 
plasmid-normalization, use of standard curves, and a high level of standardization in the experimental assembly. 
Additionally, direct comparison of array based mtDNA-CN shows more pronounced associations with traits 
(mean ß-effect is 5.8 times higher) than qPCR-measured mtDNA-CN74.

This project has numerous other advantages: all mtDNA-CN measurements were conducted in a standardized 
way in the same laboratory guaranteeing a consistant high quality. We handled samples of all studies uniformly, 
measured in triplicate and performed the standardized assay with plasmid normalization and included two 
additional reference DNA samples on each plate to control the inter-assay variability. Furthermore, we were able 
to apply various models with different covariate adjustment including smoking and/or blood cell counts into the 
model. By this, we were able to dissect whether a genetic variant’s association with mtDNA-CN was mitigated 
by blood cell count and additionally, this enabled the precise determination of the impact each covariate has 
on the identified variants. Finally, the highly automated nf-gwas pipeline ensured validation of input data and 
further quality  control32. The pipeline enhances the reproducibility of the analysis, limiting the influence of error 
prone procedures in QC and genetic data preparation. All steps are controlled through a configuration file where 
the analysis parameters are defined, avoiding custom scripting for each step. Limitations of the study include 
the much smaller sample size compared to the recently published GWAS (e.g. Longchamps et al.15 with UKB 
data). Nevertheless, to our knowledge our study is so far the largest GWAS on qPCR-measured mtDNA-CN. 
Unfortunately, blood cell counts were only available for 11,438 participants from the CHRIS and AugUR studies 
(~ 70% of total sample size). An issue for investigating mt variants is the use of different genotyping arrays. The 
five platforms cover different SNPs and therefore the overlap of available mitochondrial SNPs over the entire 
studies was not ideal, however, was improved by imputation via MitoImpute.

Conclusion
Our meta-analysis of 16,130 individuals revealed two significant loci associated with mtDNA-CN based on the 
main model adjusted for age, sex and 4 PCs. We did not find major differences, as equivalence tests between 
our results and the largest available GWAS only highlighted two SNPs as not being equivalent. Since we only 
identified one rare mitochondrial variant, we believe this demonstrates that the mitochondrial genome itself 
contributes only marginally to mtDNA-CN regulation.

Data availability
GWAS summary statistics of the main model are available at the address: https:// genepi. i- med. ac. at/ data/ mtdna- 
cn- meta- gwas/. Further summary statistics and datasets generated and/or analyzed during within the project 
at hand are available from the corresponding author on reasonable request and after approval of the involved 
studies.
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