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Introducing a new approach 
for modeling a given time series 
based on attributing any random 
variation to a jump event: 
jump‑jump modeling
Ali Asghar Movahed  & Houshyar Noshad *

When analyzing the data sampled at discrete times, one encounters successive discontinuities in the 
trajectory of the sampled time series, even if the underlying path is continuous. On the other hand, 
the distinction between discontinuities caused by finite sampling of continuous stochastic process 
and real discontinuities in the sample path is one of the main problems. Clues like these led us to 
the question: Is it possible to provide a model that treats any random variation in the data set as a 
jump event, regardless of whether the given time series is classified as diffusion or jump‑diffusion 
processes? To address this question, we wrote a new stochastic dynamical equation, which includes 
a drift term and a combination of Poisson jump processes with different distributed sizes. In this 
article, we first introduce this equation in its simplest form including a drift term and a jump process, 
and show that such a jump‑drift equation is able to describe the discrete time evolution of a diffusion 
process. Afterwards, we extend the modeling by considering more jump processes in the equation, 
which can be used to model complex systems with various distributed amplitudes. At each step, we 
also show that all the unknown functions and parameters required for modeling can be obtained non‑
parametrically from the measured time series.

The analysis of stochastic processes has been a fundamental problem of interest in many research fields for dec-
ades. Examples of such processes include fluctuations of wind and solar power  systems1, fluctuations in the poros-
ity and permeability of porous  media2, price  fluctuations3 and heart rate  fluctuations4, which range from physics 
to engineering, economics and medicine. The analysis and modeling of such stochastic processes is not only 
aimed at better understanding their physics, but also helps to predict their future state in a probabilistic sense.

In order to model complex systems non-parametrically, it is necessary to determine the properties and 
strength of the fluctuating forces from measured time series. This leads to the question: Given a fluctuating set of 
experimentally measured data, how should one uncover the features of the fluctuations, and construct a dynami-
cal stochastic equation that can describe the random variation of the measured data set? So far, considerable 
progress has been made to answer this question. One of the first steps was taken by presenting the Langevin equa-
tion to describe the random evolution of continuous diffusive  processes5. However, the boundaries of stochastic 
processes extend beyond purely diffusive processes, and often include other processes with jump  discontinuities6. 
In recent years, with the aim of going beyond the limited scope of continuous processes, Langevin modeling has 
been improved. In this regard, by focusing on processes involving jump discontinuities, the classical Langevin 
equation was extended, and discontinuous processes were modeled via the jump-diffusion  equation7,8. A jump-
diffusion equation includes both diffusion contributions as well as random jumps, and is able to describe the 
random evolution of discontinuous  processes9. On the other hand, when dealing with data sampled at discrete 
times, one encounters successive discontinuities along the trajectory of the sampled time series, even when the 
underlying path is  continuous10. Therefore, in such a case, one cannot initially be sure which equation to use for 
modeling, unless the diagnostic criteria presented in this context are used, which also has its own  difficulties11.

The aim of this article is to introduce and discuss a new dynamical stochastic equation in which any vari-
ation in the path of the sampled time series is attributed to a jump event, regardless of whether the given time 
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series belongs to the class of continuous processes or not. We will discuss our dynamical stochastic equation in 
the next sections, but before that, let us first explain how continuous and discontinuous stochastic processes are 
defined mathematically.

By definition, a process x(t) is called continuous if its Kramers-Moyal (KM) conditional moments 
K (n)(x, t) =

〈

[x(t + dt)− x(t)]n
〉

|x(t)=x =
∫

dx′(x′ − x)np(x′, t + dt|x, t) , where �. . .�|x(t)=x denotes averag-
ing over the conditional distribution, satisfy in the following relations for small time increments dt12:

where O(dt) contains all terms above the first-order of dt , which means that O(dt)/dt vanishes when dt → 0 . 
Also M(n)(x, t) are known as Kramers-Moyal (KM) coefficients, and defined by the following relation:

that can be estimated directly from measured data  set13,14. It should be noted that these definitions of KM coef-
ficients differ from common definitions in books or articles by a factor of 1n!

12,15.
It is evident from (1) that for a continuous process only two KM coefficients M(1)(x, t) and M(2)(x, t) are non-

vanishing when dt → 0 . As a result, with vanishing higher-order KM coefficients, especially M(4)(x, t) , one can 
ensure that x(t) is continuous in the statistical sense. (indeed according to the Pawula theorem when M(4)(x, t) 
vanishes, all other KM coefficients M(n)(x, t) for n ≥ 3 will also  vanish12,16).

The Langevin equation
The Langevin Equation is a widely used equation for modeling a continuous diffusion process. The Langevin 
dynamics produces a continuous sample path, and has the following expression using the Itô’s calculus for sto-
chastic  integrals17,18:

In this equation, x(t) is the state variable of the process, and {W(t), t ≥ 0} is a scalar Wiener process. Addi-
tionally, D(1)(x, t) and D(2)(x, t) denote the first and second-order KM coefficients that are known as the drift 
and diffusion terms, respectively, and are obtained from Eq. (2) as follows:

These coefficients are estimated directly from measured time series.

The jump‑diffusion equation
Many stochastic processes are not classified as continuous  processes19–22, and therefore the use of the Langevin 
equation is not justified for them. In general, non-vanishing M(4)(x, t) means that there are discontinuities in the 
trajectory of the time series, and jump events have a very important role in the underlying process. It is therefore 
necessary to improve Langevin equation to model discontinuous processes. One of the best generalizations of 
the classical Langevin equation that can create a discontinuous sample path is written as  follows8,10:

where again {W(t), t ≥ 0} is a scalar Wiener process, while D(1)
j (x) and D(2)

j (x) are the deterministic drift, and 
the diffusion coefficients (the j index denotes jumpy behavior, and is used to distinguish these KM coefficients 
from those defined in continuous processes), and  J(t) is a Poisson jump  process23. The jump has rate �(x, t) 
and size ξ , which can have any symmetric distribution with finite even-order statistical moments, e.g. Gaussian 
distribution. It is shown that all the coefficients and parameters required in this modeling can be found directly 
from the measured time series by estimating the KM coefficients as  follows8,10:

Assuming that ξ is a random variable with a Gaussian distribution, i.e.ξ ∼ N(0, σ 2
ξ ) as well as using the rela-

tion 
〈

ξ 2l
〉

= 2l!
2l l!

〈

ξ 2
〉l for the Gaussian random variables in the last relation in Eq. (6) for n = 4 and n = 6 , the 

amplitude of the jump σ 2
ξ (x, t) , and the rate of the jump �(x, t) are estimated to be as follows:

(1)

K (1)(x, t) = M(1)(x, t)dt +O(dt)

K (2)(x, t) = M(2)(x, t)dt +O(dt)

K (n)(x, t) = O(dt)forn ≥ 3,

(2)D(n)(x, t) = M(n)(x, t) = lim
dt→0

1

dt
K (n)(x, t),

(3)dx(t) = D(1)(x, t)dt +
√

D(2)(x, t)dW(t).

(4)
D(1)(x, t) = M(1)(x, t) = lim

dt→0

1

dt

〈

[x(t + dt)− x(t)]1
〉

|x(t)=x

D(2)(x, t) = M(2)(x, t) = lim
dt→0

1

dt

〈

[x(t + dt)− x(t)]2
〉

|x(t)=x

(5)dx(t) = D
(1)
j (x, t)dt +

√

D
(2)
j (x, t)dW(t)+ ξdJ(t),

(6)

M(1)(x, t) = D
(1)
j (x, t)

M(2)(x, t) = D
(2)
j (x, t)+ �(x, t)

〈

ξ2
〉

M(n)(x, t) = �(x, t)
〈

ξn
〉

forn > 2
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By obtaining the jump parameters σ 2
ξ (x, t) and �(x, t) and using them in the second relation of Eq. (6), the 

diffusion coefficient D(2)
j (x, t) is determined. In addition, the first relation in Eq. (6) gives D(1)

j (x, t) by estimat-
ing M(1)(x, t) from the data. There are numerous studies regarding the use of the jump-diffusion Eq. (5), which 
describe the random evolution of neuron  dynamics19,20, stochastic  resonance21 and climate  data22.

Distinguishing between purely diffusive and jump‑diffusion processes
In the sample path of many empirical time series, it is often observed that fluctuations are interrupted by sudden 
long-amplitude jumps between different states of a  system24. The studies have shown that empirical detection 
of jumps is difficult because, in the real world, only discrete data from continuous-time models are available. 
In general, when data sampled at discrete intervals a sequence of discontinuous jump events will appear in the 
sampled path, even though the underlying path is continuous. The study on higher-order temporal approxima-
tions of KM conditional moments has shown that a finite sampling τ affects all the KM  coefficients25–27. Such 
studies have found that even for diffusive processes, non-vanishing higher-order conditional moments (> 2) can 
originate from a discrete sampling. Therefore, the Pawula theorem cannot be used to judge whether the given 
time series falls under the classification of diffusion processes or jump-diffusion processes. This means that when 
analyzing empirical time series, one cannot be immediately ensure which dynamical Eq. (2) or (3) is appropriate 
for modeling the corresponding time series, unless one uses the diagnostic criteria presented in this context. For 
Langevin and Jump-Diffusion dynamics, there are criteria that can be used to check whether a given time series 
is inherently continuous or discontinuous. Here are two of the widely used criteria:

1- The first criterion for distinguishing between purely diffusive and jump-diffusion processes is the use of 
the K (4)(x,τ)

3(K (2)(x,τ))2
 ratio. This criterion was introduced by Lehnertz et al.11. Their results show that this ratio is close 

to 1 for diffusive processes and for small τ , but for jump-diffusion processes it diverges to 1/τ, namely:

As it can be seen, using K (2)(x, τ) and K (4)(x, τ) will be problematic to detect jumps in the range of small 
time interval τ. In such a case, the next criterion can be used.

2- The second criterion to distinguish diffusive from jump-diffusion processes is based on the ratio of the 
fourth- and sixth-order KM conditional moments known as the Q-ratio, which was introduced in the same 
 article11 by Lehnertz et al. as follows:

Using expansion of the KM conditional moments in terms of τ , they found that when the process is purely dif-
fusive Q(x, τ) = D(2)(x)τ (Linearly dependent on τ ), while when the process has a jumpy behavior, Q(x, τ) = σ 2

ξ   
(constant and independent of τ ), where D(2)(x) is the diffusion coefficient, and σ 2

ξ  is the jump amplitude in 
jump-diffusion modeling.

In summary, by estimating the following Q-ratio from the data, one can be sure which dynamical Equation 
is appropriate to model the given time series:

In the next sections after introducing our dynamical stochastic equation, we will also define a new criterion 
to differentiate diffusion processes from jump-diffusion processes.

Introducing the proposed method and results
As mentioned, when analyzing a time series sampled with time intervals τ , successive discontinuities in the 
sampled path are observed, despite the fact that the underlying path is  continuous11. In addition, one of the 
main problems when using data sampled at discrete times is the distinction between discontinuities caused by 
continuous stochastic processes, and genuine discontinuities in the sample path of time series that were caused 
by finite sampling of continuous stochastic  processes11. Some points like this raise the question: Is it possible to 
use only jump-drift processes to describe the random evolution of a time series sampled with finite time intervals τ
? To address this question, we introduce a new modeling that attributes any stochastic variation in the sample 
path of a given time series to a jump event, regardless of whether the underlying trajectory is continuous or not. 
Based on this, we build a new dynamical stochastic equation, and call it the jump-jump equation, which in its 
general form includes a deterministic drift term and several stochastic terms with jumpy behaviors as follows:

(7)

σ 2
ξ (x, t) =

M(6)(x, t)

5M(4)(x, t)

�(x, t) =
M(4)(x, t)

3σ 4
ξ (x, t)

(8)

K (4)(x,τ)
3(K (2)(x,τ))2

≈ 1, diffusive

K
(4)
j (x,τ)

3(K
(2)
j (x,τ))2

∼ 1
τ

jumpy

Q(x, τ) =
K (6)(x, τ)

5K (4)(x, τ)

(9)
K (6)(x,τ )
5K (4)(x,τ)

= D(2)(x)τ , diffusive

K (6)(x,τ)
5K (4)(x,τ)

= σ 2
ξ , jumpy
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where D(1)(x) indicates the deterministic part of the process and J1(t), J2(t), etc are Poisson jump processes. 
The jumps have rates �1, �2, etc and sizes ξ1, ξ2, etc , which we assume they have zero mean Gaussian distribu-
tions with variances (amplitudes)σ 2

ξ1, σ
2
ξ2, etc , respectively. We start with the simplest form of Eq. (10), which 

includes a drift term and only a jump process. It will be shown that such a jump-drift equation is able to model 
time series that are classified as continuous processes. Afterwards, we extend modeling by considering more 
jump processes in Eq. (10), and use it to model time series with more varied amplitudes. In each step, we will 
demonstrate that all unknown coefficients and functions involved in this model can be derived directly from 
the measured time series data.

Jump‑drift modeling
We now consider Eq. (10) with a drift term and a jump process (a jump-drift equation), and show that it can be 
used to model time series belonging to the class of continuous processes when the data are sampled at discrete 
intervals. The general form of a jump-drift equation is as follows:

where D(1)(x, t) denotes the drift part of the process, and J(t) is a Poisson jump process characterized by the 
rate �(x, t) and the size ξ . We assume that ξ is a random variable, and has a zero mean Gaussian distribution, i.e. 
ξ ∼ N(0, σ 2

ξ ) . The variance of this distribution ( σ 2
ξ  ) is called the jump amplitude, and in general may depend on x 

and t  . We will show that all unknown parameters and functions required in this modeling can be estimated based 
on a data-driven approach from measured time series. Before doing so, it is necessary to mention two points:

1) We assume the case that J(t) is a homogeneous Poisson jump process with a constant jump rate � . The jump 
rate represents the expected number of jumps that will occur per unit time. It follows that the number of jumps 
occurring in the interval of (t, t + dt] follows a Poisson distribution with the associated parameter �dt . On the 
other hand, a jump event has two states of occurrence 1 and non-occurrence 0, of which only one will occur in 
each infinitesimal dt . The last point shows that in the Poisson process, the occurrence of an event in each small 
interval of time is defined as a Bernoulli variable. That is, dJ takes only the values 1 and 0 with probabilities �dt 
and 1− �dt , respectively.

2) Up to the first orders in dt, the statistical moments of dJ are given by the following  relation8,10:

With these two points in mind, we now present a data-driven approach to estimate the drift and jump prop-
erties required in this modeling. This method can be used for both stationary and non-stationary time series, 
and the results are applicable to both.

Non‑parametric estimation of jump‑drift processes.

Theorem 1 For a jump‑drift process described by the dynamical Eq. (11), all the functions and 
parameters required to model the process can be estimated non‑parametrically by estimating 
KM coefficients from measured time series as follows:

We have provided a proof for this theorem in the appendix. For non-stationary processes, all functions and 
parameters are time-dependent, but in the following, we focus on stationary processes, and omit the t-depend-
ence in Eq. (12) to improve readability.

We can estimate the drift function D(1)(x) using the first relation in (12). The jump amplitude σ 2
ξ (x) and the 

jump rate �(x) can be estimated using the relation 
〈

ξ 2l
〉

= 2l!
2l l!

〈

ξ 2
〉l for the Gaussian random variable ξ in the 

last relation in Eq. (12) with n = 2 and n = 4 . Therefore, we have:

where M(n)(x) = lim
dt→0

1
dt K

(n)(x).

We now argue that if Eq. (11) is able to describe the random evolution of a sampled time series x(t) belonging 
to the class of diffusion processes, then the following conditions should be held:

(10)dx(t) = D(1)(x)dt +

N
∑

i=1

ξidJi(t),

(11)dx(t) = D(1)(x, t)dt + ξdJ(t),

〈

(dJ)m
〉

= �dt

(12)
M(1)(x, t) = D(1)(x, t)

M(n)(x, t) = �(x, t)
〈

ξn
〉

for n ≥ 2

(13)

D(1)(x) = M(1)(x)

σ 2
ξ (x) =

M(4)(x)

3M(2)(x)

�(x) =
M(2)(x)

σ 2
ξ (x)

,
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1.  The last relation in (12) in terms of conditional moments K (n)(x) is written as follows:

where with n = 2 and n = 4 it leads to:

  Extracting the ratio  K (4)(x)

3(K (2)(x))2
  from these relations leads to:

  On the other hand, we know from Eq. (8) that this ratio is approximately equal to 1 in diffusion processes 
for small dt , as a result:

  This criterion can be used as a possibility for numerical verification of Pawula theorem. Employing this 
measure, one can ensure that the given time series belongs to the class of diffusive processes or not:

2. Comparing K (2)(x) presented in (14) with the second-order conditional moment used in the Langevin 
modeling i.e.K (2)(x) = D(2)(x)dt , we obtain:

  Applying the condition �(x)dt = 1 for diffusion processes leads to the following result:

  This means that if we use the drift-jump Eq. (11) to model diffusion processes, then the estimation of the 
jump amplitude σ 2

ξ (x) will lead to the estimation of the diffusion coefficient D(2)(x) required in Langevin 
modeling.

In order to test the validity of the proposed modeling, we reconstructed a diffusion process with preset drift 
and diffusion coefficients using a synthetic time series sampled with time intervals dt . Diffusive process gener-
ated using the discretization of Eq. (3) in Euler–Maruyama scheme [28] with a sampling interval dt = 0.001 and 
with functions D(1)(x) = −x and D(2)(x) = 1 (the Ornstein–Uhlenbeck process).

Afterwards, the unknown parameters D(1)(x),�(x) and σ 2
ξ (x) required for jump-drift modeling were estimated 

using the relations in (13). As explained, we expected �(x)dt ≈ 1 and σ 2
ξ (x) = D(2)(x)dt = 0.001 , which the 

obtained results were confirmed (see Fig. 1).
Furthermore, to ensure that jump-drift modeling is capable to reconstruct a time series for x(t) that is statisti-

cally similar to the original diffusion time series, we reconstructed a data set by applying the obtained parameters 
to the jump-drift equation Eq. (11). Afterwards, D(1)(x) and D(2)(x) were estimated from the reconstructed data, 
and we found a very good agreement between these estimated coefficients and the corresponding original ones 
(see Fig. 2).

Jump‑jump modeling
In this section, we expand the jump-drift dynamical Eq. (11), and do not limit it to only a jump process. We begin 
by considering two jump processes with two different amplitudes in Eq. (10). Before continuing the discussion, 
let us explain how the idea of   including these two jump processes comes about.

The jump-diffusion Eq. (5) that is able to construct a trajectory with jump discontinuities consists a deter-
ministic drift term and two stochastic terms with diffusive and jumpy behaviors. On the other hand, when data 
sampled at discrete time intervals from a jump-diffusion process, two types of discontinuities are observed in 
the path of the sampled time series. Those discontinuities that originate from finite sampling of the diffusive part 
of the process, and have a smaller amplitude, and those discontinuities that arise from genuine jump events and 
have a larger amplitude. Based on this, we build a new equation including a deterministic drift term and two 
stochastic terms with jumpy behavior. The aim of this article is to introduce this jump-jump equation, which 
enables us to generate sample paths with successive discontinuities, but with two different distributed sizes. A 
jump-jump equation is as follows:

where D(1)(x, t) indicates the deterministic part of the process and J1(t) and J2(t) are Poisson jump processes. 
The jumps have rates �1 and �2 , and sizes ξ1 and ξ2 , which we assume have zero mean Gaussian distributions with 
variances σ 2

ξ1 and σ 2
ξ2 , respectively (or any symmetric distribution with finite statistical moments). In general, 

K (n)(x) =
〈

ξn
〉

�(x)dt,

(14)
K (2)(x) = σ 2

ξ (x)�(x)dt

K (4)(x) = 3
(

σ 2
ξ (x)

)2
�(x)dt,

K (4)(x)

3(K (2)(x))2
=

1

�(x)dt

�(x)dt ≈ 1

(15)
�(x)dt = 1, diffusive

�(x)dt �= 1, jumpy

σ 2
ξ (x)�(x)dt = D(2)(x)dt

(16)σ 2
ξ (x) = D(2)(x)dt

(17)dx(t) = D(1)(x, t)dt + ξ1dJ1(t)+ ξ2dJ2(t),
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the jump rates �1 and �2 and statistical moments of σ 2
ξ1 and σ 2

ξ2 may be functions of state variable x and time t  . 
We also assume that any discontinuity in the sample path is caused by the occurrence of only one of the jump 
events dJ1(t) or dJ2(t) , and two jumps do not occur simultaneously. The meaning of this condition is that in the 
time interval (t, t + dt] , if for example dJ1(t) occur, and takes the value 1, then dJ2(t) does not occur, and its value 
becomes zero and vice versa. Applying this condition enables us to construct a time series via Eq. (17) whose 
corresponding trajectory consists of successive jump discontinuities with different amplitudes and jump rates. 
In other words, by applying this condition, Eq. (17) is able to describe the random evolution of a jump-jump 
process, a process whose corresponding time series consists of the union of two data sets belonging to two jump 
processes with different amplitudes and rates. We now discuss a nonparametric approach to estimating drift and 
jump characteristics directly from the measured time series data. This method can be applied to both stationary 
and non-stationary time series, and the results can be applied to both.

Non‑parametric estimation of jump‑jump processes

Theorem 2 For a jump‑jump process described by the dynamical Eq. (17), all the functions and 
parameters required to model the process can be estimated non‑parametrically by estimating 
KM coefficients from measured time series as follows:

In the Appendix, we have presented a proof for this theorem. In this section, as before, we focus on stationary 
processes, and we remove the t-dependencies in Eq. (18).

(18)
M(1)(x, t) = D(1)(x, t)

M(n)(x, t) =
〈

ξn1
〉

�1(x, t)+
〈

ξn2
〉

�2(x, t)forn ≥ 2

Figure 1.  (a) Synthetic time series ( 106 data points) generated by Langevin equation with functions 
D(1)(x) = −x and D(2)(x) = 1 and with a time interval dt = 0.001 . (b) Estimated drift, (c) estimated jump rate, 
and (d) estimated jump amplitude obtained using proposed jump-drift modeling. As can be seen �(x)dt ≈ 1 
and σ 2

ξ (x) ≈ D(2)(x)dt , which confirms correctnes of Eqs. (15) and (16).
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The five unknown parameters required for this modeling are D(1)(x), �1(x), �2(x), σ 2
ξ1(x) and σ 2

ξ2(x) . The 
first relation in this theorem gives us the estimate for the drift coefficient, which is equal to the first-order KM 
coefficient, namely:

Additionally, from the last relation in Eq. (18) for n = 2, 4, 6, 8 , we can derive a system of equations to estimate 
the parameters of jump processes as follows (we use the relation 

〈

ξ 2l
〉

=
(2l)!
2l l!

〈

ξ 2
〉l for the Gaussian random 

variables ξ1 and ξ2):

By solving this system of nonlinear equations, the unknowns �1(x), �2(x), σ 2
ξ1(x), σ

2
ξ2(x) are estimated using 

M(2)(x),M(4)(x) and M(6)(x) , which are obtained from the data. Since the parametric solution of this system of 
equations leads to long and boring relations, we refrain from presenting them, and use the numerical methods.

To demonstrate the validity of our approach, we estimated drift and jumps characteristics from synthetic time 
series generated with preset coefficients. First, we considered Eq. (17) with D(1)(x) = −x as a linear drift func-
tion and two constant jump amplitudes σ 2

ξ1(x) = 0.2 and σ 2
ξ2(x) = 0.5 with constant jump rates per data point 

(19)D(1)(x) = M(1)(x)

(20)

M(2)(x) = σ 2
ξ1(x)�1(x)+ σ 2

ξ2(x)�2(x)

M(4)(x) = 3
(

σ 2
ξ1(x)

)2
�1(x)+ 3

(

σ 2
ξ2(x)

)2
�2(x)

M(6)(x) = 15
(

σ 2
ξ1(x)

)3
�1(x)+ 15

(

σ 2
ξ2(x)

)3
�2(x)

M(8)(x) = 105
(

σ 2
ξ1(x)

)4
�1(x)+ 105

(

σ 2
ξ2(x)

)4
�2(x)

Figure 2.  (a) Reconstructed data by jump-drift Eq. (11) using estimated parameters from Fig. 1 with time 
interval ∆t = 0.001. (b) Estimated drift coefficient, and (c) estimated diffusion coefficient, obtained from 
reconstructed data. The red lines are the initial coefficients. As can be seen, the good agreement between the 
estimated coefficients, and the original coefficients confirms that the jump-drift equation is able to describe the 
discrete time evolution of a diffusion process.
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�1(x) = 0.6 and �2(x) = 0.4 , respectively. It is worth noting that the jump rate per data point is different from the 
jump rate per unit of time in a dt , i.e.�(perdatapoint) = �

(

perunitoftime
)

∗ dt . We generated synthetic time series 
by discretizing Eq. (17) using Euler–Maruyama discretization scheme with dt = 0.01 . Afterwards, we estimated 
the drift function and jump characteristics from the synthetic time series using relations present in (19) and 
(20). Very good agreement was observed between all estimates and initial functions and parameters (see Fig. 3).

As a second example, we considered Eq. (17) with a linear drift function D(1)(x) = −10x and two jump 
amplitude as σ 2

ξ1(x) = bx2 ( b = 0.001) and σ 2
ξ2(x) = 1 , with constant jump rates per data point �1(x) = 0.7 and 

�2(x) = 0.3 , respectively. We proceeded as before, and generated an exemplary synthetic time series using the 
discretization of Eq. (17) in Euler–Maruyama scheme with a sampling interval dt = 0.001 . Again, a very good 
agreement was found between the estimated and predetermined functions and parameters (see Fig. 4).

Figure 3.  (a) Illustration of a synthetic time series generated using the proposed jump-jump Eq. (17) with a 
time interval �t = 0.01 , a drift function D(1)(x) = −x and two constant jump amplitudes σ 2

ξ1(x) = 0.2 and 
σ 2

ξ2(x) = 0.5 with jump rates �1(x) = 0.6 and �2(x) = 0.4 , respectively. (b) Estimated drift term and (c–f) 
estimated jumps characteristics using relations in Eq. (20). The red lines are the corresponding theoretical 
coefficients.
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Jump‑jump modeling with constant coefficients and parameters
Because of its practical uses, in this section we focus on a special case of Eq. (17), where all coefficients and 
parameters are assumed constant and none of them are time-dependent or state-dependent. For this purpose, 
we rewrite the Eq. (17) as follows:

(21)dx(t) = µdt + ξ1dJ1(t)+ ξ2dJ2(t),

Figure 4.  (a) Illustration of a synthetic time series generated using the proposed jump-jump Eq. (17) with 
a time interval �t = 0.001 , a linear drift D(1)(x) = −10x and two jump amplitudes σ 2

ξ1(x) = 0.001x
2 

and σ 2
ξ2(x) = 1 with jump rates �1(x) = 0.7 and �2(x) = 0.3 , respectively. (b) Estimated drift coefficient. 

(c–f) Estimated jump characteristics using relations in (20). The red lines are the corresponding theoretical 
coefficients.
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where μ is the drift parameter and other parameters are the same as previously defined. Similar to the proof pro-
vided in Theorem 2, one can prove that all necessary parameters and coefficients in this modeling are obtained 
non-parametrically by estimating the statistical moments of the increments of the measured time series as follows:

where Mn = lim
dt→0

1
dt �dx

n� are the statistical moments of the increments of the time series, namely 
dx = x(t + dt)− x(t). As before, we derive the following relations from Eq. (22):

By solving this system of equations, the 5 unknown parameters, i.e. µ and �1, �2, σ 2
ξ1, σ

2
ξ2 can be obtained.

Again, to investigate the validity of this approach, we estimated these parameters from synthetic time series 
generated with known drift and jump parameters. We considered Eq. (21) with µ = 1 and two constant jump 
amplitudes σ 2

ξ1 = 1 and σ 2
ξ2 = 0.3 with two constant jump rates per data point �1 = 0.4 and �2 = 0.6 , respectively. 

We generated synthetic time series x(t) using the Euler–Maruyama scheme with a sampling interval dt = 0.001 . 
A sample path of x(t) is shown in Fig. 5. In addition, we constructed a new time series y(t) based on the incre-
ments of x(t) , i.e.y(t) = x(t +�t)− x(t) (the trajectory of y(t) is also shown in Fig. 5).

By calculating the statistical moments of y(t) for n = 1, 2, 4, 6, 8 and substituting in Eqs. (23), and then solv-
ing this system of equations, the following results were estimated, which are in very good agreement with the 
original values:

µ ≈ 1.04 , σ 2
ξ1 ≈ 1.0002 , σ 2

ξ2 ≈ 0.3004 , �1 ≈ 0.3992,�2 ≈ 0.6007

Expansion of the jump‑jump equation
The strength of jump-jump modeling is that if the amplitude of fluctuations in a given time series is so diverse 
that its random evolution cannot be described using only two jump processes such as seen in Eq. (17) or (21). 
Afterwards, the stochastic part of the Eq. (10) can be expanded by considering more jump processes. For example, 
Eq. (21) is expanded as follows considering three jump processes:

As before, we assume that any random variation in the time series data is due to the occurrence of only one 
of the jump events, and that two or more jump events do not occur simultaneously. That is, when in a time step 

(22)
M1 = µ

Mn =
〈

ξn1
〉

�1 +
〈

ξn2
〉

�2for n ≥ 2,

(23)

M1 = µ

M2 = σ 2
ξ1�1 + σ 2

ξ2�2

M4 = 3
(

σ 2
ξ1

)2
�1 + 3

(

σ 2
ξ2

)2
�2

M6 = 15
(

σ 2
ξ1

)3
�1 + 15

(

σ 2
ξ2

)3
�2

M8 = 105
(

σ 2
ξ1

)4
�1 + 105

(

σ 2
ξ2

)4
�2

(24)dx(t) = µdt + ξ1dJ1(t)+ ξ2dJ2(t)+ ξ3dJ3(t)

Figure 5.  Upper panel: 106-step random walk generated using Eq. (21) with constant drift parameter µ = 1 and 
constant jump components σ2ξ1 = 1,σ 2

ξ2 = 0.3 and �1 = 0.4 , �2 = 0.6 with a time interval �t = 0.001 (starting 
from zero). Lower panel: increments of the generated time series y(t) = x(t +�t)− x(t).
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dJ1(t) occur and takes the value 1,dJ2(t) and dJ3(t) do not occur and their values are zero, and so on. The follow-
ing section discusses a nonparametric approach to estimate the drift parameter µ and the jump characteristic 
�1, �2, �3, σ

2
ξ1, σ

2
ξ2, σ

2
ξ3 required in this modeling.

Theorem 3: parametric estimation of jump‑jump processes

Theorem 3 For a jump‑jump process described by the dynamical Eq. (24), all the functions and 
parameters required to model the process can be estimated non‑parametrically by estimating 
KM coefficients from measured time series as follows:

where all parameters and coefficients are the same as previously defined. In the Appendix, we have presented a 
proof for this theorem. As before, the first relation in (25) use for estimating the drift coefficient, which is equal to 
the first-order KM coefficient:

On the other hand, using the last relation in Eq.  (25), with n = 2, 4, 6, 8, 10, 12 , and using the relation 
〈

ξ 2l
〉

= 2l!
2l l!

〈

ξ 2
〉l for the Gaussian random variables ξ1,ξ2 and ξ3 , one can estimate the 6 unknown parameters 

�1, �2, �3, σ
2
ξ1, σ

2
ξ2, σ

2
ξ3 by solving the following system of equations:

To demonstrate the validity of this modeling we constructed a synthetic time series x(t) with a constant drift 
parameter µ = 5 and jump amplitudes σ 2

ξ1 = 0.2 and σ 2
ξ2 = 0.6 and σ 2

ξ3 = 10 with constant jump rates per data 
point �1 = 0.3 and �2 = 0.2 and �3 = 0.5 , respectively. We generated the synthetic time series x(t) using the 
discretization of Eq. (24) with a sampling interval dt = 0.001 in Euler–Maruyama scheme. A random path of 
x(t) , and corresponding increments y(t) = x(t +�t)− x(t) are shown in Fig. 6.

Afterwards, by calculating the statistical moments of y(t) for n = 1, 2, 4, 6, 8, 10, 12 and substituting in 
Eqs. (26) and (27), we estimated the drift parameter and jumps characteristics. The obtained results confirm the 
effectiveness of the presented modeling:

Conclusion
We discussed that when one deals with data sampled at discrete times, one encounters successive discontinuities 
along the path of the sampled time series. The observation of such sequential discontinuities, in the sample path 
of empirical time series, gave us the idea to develop a new modeling in which any random variation in the path 
is attributed to a jump event, even if the sampled time series belongs to the class of diffusive processes. Based on 
this, we introduced a new dynamical stochastic equation -a jump-jump equation- including a deterministic drift 
term and a combination of several Poisson jump processes with different distributed sizes. The general form of 
this equation is as follows:

In this modeling we also assumed that the jump events do not occur simultaneously so that the jumps have no 
overlap. We started with the simplest form of equation including a deterministic drift term and a jump process 
as the stochastic component, and argued that it can be used to describe the discrete time evolution of a Langevin 
process. We provided a measure to distinguish the type of underlying process -diffusive or jumpy- from the 
corresponding time series as well. Afterwards, we increased the variety of modeling by considering more jump 
processes with different distributed sizes. We also demonstrated that all unknown functions and parameters 
required for each of the modeling are estimated non-parametrically from the measured data set. It should be 
noted that depending on the number of data points and variety of the amplitude of fluctuations, the jump-jump 

(25)
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µ ≈ 4.9, σ 2
ξ1 ≈ 0.2001, σ 2

ξ2 ≈ 0.6010, σ 2
ξ3 ≈ 9.9928,

�1 ≈ 0.3002,�2 ≈ 0.2010,�3 ≈ 0.4988.

dx(t) = D(1)(x)dt +

N
∑

i=1

ξidJi(t)
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equation allows one to keep a greater number of stochastic terms (jump processes) for more accurate modeling. 
But on the other hand, the more the number of jump processes the need to solve the system of equations with 
more unknowns, the cost of which should be paid in the form of longer runtime.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Appendix
Proof of relations (12)
To prove the relations in Eq. (12), we can find the conditional moments of dx from Eq. (11). The first-order 
conditional moment of dx is obtained by conditional averaging of Eq. (11) over two independent processes, i.e. 
Poisson-distributed jumps dJ and jump amplitude ξ:

With assuming that ξ has a Gaussian distribution with zero mean, i.e. �ξ� = 0 , we have:

which is the proof of the first relation in Eq. (12). Similarly, the nth-order conditioned moment of dx for n ≥ 2 
leads to:

Up to order of O(dt) we have:

which leads to the last relation in Eq. (12).

〈

dx(t)|x(t)=x

〉

= D(1)(x)dt + �ξdJ�

= D(1)(x)dt + �ξ��dJ�

〈

dx(t)|x(t)=x

〉

= D(1)(x)dt,

〈

dx(t)n|x(t)=x

〉

=

〈[

D(1)(x)dt + ξdJ
]n〉

=

n
∑

k=0

〈[

(n

k

)(

D(1)(x)dt
)n−k

(ξdJ)k
]〉

〈

dx(t)n|x(t)=x

〉

=
〈

ξn
〉

�(x)dt,

Figure 6.  Upper panel: 107-step random walk generated using Eq. (24) with constant drift parameter µ = 5 and 
constant jump components σ 2

ξ1 = 0.2,σ 2

ξ2 = 0.6,σ 2

ξ3 = 10 and �1 = 0.3,�2 = 0.2 , �3 = 0.5 with a time interval 
�t = 0.001 (starting from zero). Lower panel: increments of the generated time series y(t) = x(t +�t)− x(t).
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Proof of relations (18)
To prove the relations in Eq. (18), we can find the conditional moments of dx from Eq. (17). The first-order 
conditional moment of dx is obtained by conditional averaging of Eq. (17) over four independent processes, two 
Poisson-distributed jumps dJ1 and dJ2 (which we assume do not occur simultaneously) and two jump amplitudes 
ξ1 and ξ2:

With assuming that ξ1 and ξ2 have zero mean Gaussian distributions i.e. �ξ1� = 0 and �ξ2� = 0 , we have:

which is the proof of the first relation in Eq. (18). The nth-order conditioned moment of dx for n ≥ 2 leads to:

where Al,m,k = n!/l!m!k! , so that l +m+ k = n . Up to order of O(dt) we will have:

using 
〈

(dJi)
m
〉

= �idt for the statistical moments of dJ1 and dJ2 , we will have:

which leads to the second relation in Eq. (18).

Proof of relations (25)
To prove the relations in Eq. (25), we can find the statistical moments of dx from Eq. (24). The first-order con-
ditional moment of dx is obtained by conditional averaging of Eq. (24) over six independent processes, three 
Poisson-distributed jumps dJ1, dJ2, dJ3(which we assume do not occur simultaneously) and three jump amplitudes 
ξ1, ξ2 and ξ3:

With assuming that ξ1 and ξ2 and ξ3 have zero mean Gaussian distributions i.e. �ξ1� = 0 and �ξ2� = 0 and 
�ξ3� = 0 we have:

which is the proof of the first relation in Eq. (25). The nth-order moments of dx for n ≥ 2 leads to:

where Al,m,k,p = n!/l!m!k!, so that l +m+ k + p = n . Up to order of O(dt) we have:

using 
〈

(dJi)
m
〉

= �idt  for the statistical moments of three Poisson Jumps, we will have:

Which leads to the last relation in Eq. (25).

〈
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〈

dx(t)n|x(t)=x

〉

=

〈[

D(1)(x)dt + ξ1dJ1 + ξ2dJ2

]n〉

=
∑

l,m

〈[

Al,m,k

(

D(1)(x)dt
)l
(ξ1dJ1)

m(ξ2dJ2)
k

]〉

,

〈

dx(t)n|x(t)=x

〉

=
〈

(ξ1dJ1)
n + (ξ2dJ2)

n
〉

=
〈

ξ1
n
〉〈

dJ1
n
〉

+
〈

ξ2
n
〉〈

dJ2
n
〉

,

K (n)(x) =
〈

ξ1
n
〉

�1(x)dt +
〈

ξ2
n
〉

�2(x)dt,

�dx(t)� = µdt + �ξ1dJ1� + �ξ2dJ2� + �ξ3dJ3�

= µdt + �ξ1��dJ1� + �ξ2��dJ2� + �ξ3��dJ3�

�dx(t)� = µdt,

(29)

〈

dx(t)n
〉

=
〈

[µdt + ξ1dJ1 + ξ2dJ2 + ξ3dJ3]
n
〉

=
∑

l,m

〈[

Al,m,k,p(µdt)
l(ξ1dJ1)

m(ξ2dJ2)
k(ξ3dJ3)

p
]〉

,

〈

dx(t)n
〉

=
〈

(ξ1dJ1)
n + (ξ2dJ2)

n + (ξ3dJ3)
n
〉

=
〈

ξ1
n
〉〈

dJ1
n
〉

+
〈

ξ2
n
〉〈

dJ2
n
〉

+
〈

ξ3
n
〉〈

dJ3
n
〉

〈

dx(t)n
〉

=
〈

ξ1
n
〉

�1dt +
〈

ξ2
n
〉

�2dt +
〈

ξ3
n
〉

�3dt,



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1234  | https://doi.org/10.1038/s41598-024-51863-5

www.nature.com/scientificreports/

Received: 12 August 2023; Accepted: 10 January 2024

References
 1. Anvari, M. et al. Short term fluctuations of wind and solar power systems. New J. Phys. 18(6), 063027 (2016).
 2. Sahimi, M. Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches (Wiley, 2011).
 3. Zhou, J. et al. Analysis of oil price fluctuation under the influence of crude oil stocks and US dollar index—Based on time series 

network model. Physica A 582, 126218 (2021).
 4. Ghasemi, F. et al. Analysis of non-stationary data for heart-rate fluctuations in terms of drift and diffusion coefficients. J. Biol. Phys. 

32, 117–128 (2006).
 5. Kalmykov, Y. P. & Coffey, W. T. Langevin Equation, The: With Applications To Stochastic Problems in Physics, Chemistry and Electri-

cal Engineering Vol. 27 (World Scientific, 2012).
 6. Pascucci, A. Stochastic calculus for jump processes. In PDE and Martingale Methods in Option Pricing (ed. Pascucci, A.) 497–540 

(Springer Milan, 2011).
 7. Gorjão, L. R. et al. Analysis and data-driven reconstruction of bivariate jump-diffusion processes. Phys. Rev. E 100(6), 062127 

(2019).
 8. Anvari, M. et al. Disentangling the stochastic behavior of complex time series. Sci. Rep. 6(1), 35435 (2016).
 9. Aıt-Sahalia, Y. Disentangling diffusion from jumps. J. Financ. Econ. 74(3), 487–528 (2004).
 10. Rahimi Tabar, M. R. Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems: Using the Methods of 

Stochastic Processes (Springer International Publishing, 2019).
 11. Lehnertz, K., Zabawa, L. & Tabar, M. R. R. Characterizing abrupt transitions in stochastic dynamics. New J. Phys. 20(11), 113043 

(2018).
 12. Risken, H. & Risken, H. Fokker-Planck Equation (Springer, 1996).
 13. Friedrich, R. et al. Approaching complexity by stochastic methods: From biological systems to turbulence. Phys. Rep. 506(5), 

87–162 (2011).
 14. Gorjão, L.R. and F. Meirinhos, kramersmoyal: Kramers--Moyal coefficients for stochastic processes. Preprint at https:// arXiv. org/ 

quant- ph/ 1912. 09737 (2019).
 15. Bandi, F. M. & Nguyen, T. H. On the functional estimation of jump–diffusion models. J. Econometr. 116(1–2), 293–328 (2003).
 16. Pawula, R. Approximation of the linear Boltzmann equation by the Fokker-Planck equation. Phys. Rev. 162(1), 186 (1967).
 17. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry Vol. 1 (Elsevier, 1992).
 18. Bouchaud, J.-P. & Cont, R. A Langevin approach to stock market fluctuations and crashes. Eur. Phys. J. B-Condens. Matter Complex 

Syst. 6, 543–550 (1998).
 19. Giraudo, M. T. & Sacerdote, L. Jump-diffusion processes as models for neuronal activity. Biosystems 40(1–2), 75–82 (1997).
 20. Sirovich, R., Sacerdote, L. & Villa, A. E. Cooperative behavior in a jump diffusion model for a simple network of spiking neurons. 

Math. Biosci. Eng. 11(2), 385–401 (2013).
 21. Gammaitoni, L. et al. Stochastic resonance. Rev. Modern Phys. 70(1), 223 (1998).
 22. Goswami, B. et al. Abrupt transitions in time series with uncertainties. Nat. Commun. 9(1), 48 (2018).
 23. Stanton, R. A nonparametric model of term structure dynamics and the market price of interest rate risk. J. Finance 52(5), 

1973–2002 (1997).
 24. Weissman, M. 1 f noise and other slow, nonexponential kinetics in condensed matter. Rev. Modern Phys. 60(2), 537 (1988).
 25. Ragwitz, M. & Kantz, H. Indispensable finite time corrections for Fokker-Planck equations from time series data. Phys. Rev. Lett. 

87(25), 254501 (2001).
 26. Honisch, C. et al. Extended Kramers-Moyal analysis applied to optical trapping. Phys. Rev. E 86(2), 026702 (2012).
 27. Tang, K., Ao, P. & Yuan, B. Robust reconstruction of the Fokker-Planck equations from time series at different sampling rates. 

Europhys. Lett. 102(4), 40003 (2013).

Author contributions
A.A.M.: Conceptualization, Methodology, Experimental, Resources, Reviewing and Editing, H.N.: Conceptual-
ization, Methodology, Experimental, Resources, Supervision, Reviewing and Editing.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://arXiv.org/quant-ph/1912.09737
https://arXiv.org/quant-ph/1912.09737
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Introducing a new approach for modeling a given time series based on attributing any random variation to a jump event: jump-jump modeling
	The Langevin equation
	The jump-diffusion equation
	Distinguishing between purely diffusive and jump-diffusion processes
	Introducing the proposed method and results
	Jump-drift modeling
	Non-parametric estimation of jump-drift processes.
	Jump-jump modeling
	Non-parametric estimation of jump-jump processes
	Jump-jump modeling with constant coefficients and parameters
	Expansion of the jump-jump equation
	Theorem 3: parametric estimation of jump-jump processes

	Conclusion
	Appendix
	Proof of relations (12)
	Proof of relations (18)
	Proof of relations (25)

	References


