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Vector‑borne diseases emergence, particularly malaria, present a significant public health challenge 
worldwide. Anophelines are predominant malaria vectors, with varied distribution, and influenced 
by environment and climate. This study, in Ghana, modelled environmental suitability for Anopheles 
stephensi, a potential vector that may threaten advances in malaria and vector control. Understanding 
this vector’s distribution and dynamics ensures effective malaria and vector control programmes 
implementation. We explored the MaxEnt ecological modelling method to forecast An. stephensi’s 
potential hotspots and niches. We analysed environmental and climatic variables to predict spatial 
distribution and ecological niches of An. stephensi with a spatial resolution of approximately 5  km2. 
Analysing geospatial and species occurrence data, we identified optimal environmental conditions and 
important factors for its presence. The model’s most important variables guided hotspot prediction 
across several ecological zones aside from urban and peri‑urban regions. Considering the vector’s 
complex bionomics, these areas provide varying and adaptable conditions for the vector to colonise 
and establish. This is shown by the AUC = 0.943 prediction accuracy of the model, which is considered 
excellent. Based on our predictions, this vector species would thrive in the Greater Accra, Ashanti 
Central, Upper East, Northern, and North East regions. Forecasting its environmental suitability 
by ecological niche modelling supports proactive surveillance and focused malaria management 
strategies. Public health officials can act to reduce the risk of malaria transmission by identifying areas 
where mosquitoes may breed, which will ultimately improve health outcomes and disease control.

Malaria is a potentially fatal infection that is transmitted to people through the bites of infected female Anopheles 
mosquitoes. Nearly half of the world’s population was at risk of malaria in  20211. COVID-related interruptions 
increased malaria incidence and fatalities at the pandemic’s peak (2020–2021)2. Sub-Saharan Africa has the high-
est global malaria mortality and morbidity rates. As of 2021, the WHO African Region recorded approximately 
95%, of all reported malaria cases and 96% of  deaths1–3. Despite significant efforts to scale up vector control 
strategies, including the use of Long-Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS), this 
high rate of malaria persists. This is a direct effect of the continent’s highly efficient Anopheles vector species, 
Anopheles gambiae  complex4.

Anopheles stephensi species, an Asian malaria vector, has become an invasive species in the Horn of Africa 
(HOA) in recent  years5,6. It was initially discovered on the African continent in 2012 in a Djibouti seaport, then 
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in neighbouring Ethiopia in 2018, and 2019 near Sudan seaports, and Somalia in  20196,7. Given the species’ 
distinctive biological traits and identification in seaports, it has been predicted that their emergence was most 
likely helped by maritime  commerce6. This invasive An. stephensi population, which has successfully established 
itself in several African countries, represents a new challenge to malaria control and elimination on the African 
 continent8,9. The ability of this vector to adapt and thrive in urban surroundings could undermine malaria control 
and elimination efforts. In contrast to indigenous African mosquitoes, this Asian malaria vector is one of the 
unique Anopheline species present in major metropolitan  areas9,10.

The World Health Organization (WHO) issued a vector alert in 2019 encouraging nations in Africa to act 
promptly to improve vector surveillance to monitor and stop the spread of the An. stephensi  vector1,7. Ghana is 
one of the African countries where malaria is endemic and perennial in all parts of that with seasonal variations 
more pronounced in the  north11. There is the threat of establishing invasive An. stephensi vector in Ghana that 
was recently discovered in some areas of urban (Greater Accra) in  Ghana1. It is possible that An. stephensi has 
been inadvertently introduced into Ghana multiple times, but more research is needed to verify this. In areas 
where invasive species are expanding their ranges to new areas, there is a need to quickly identify these areas to 
slow down or eliminate this  invasion12.

Species distribution models (SDMs), also known as Ecological Niche Models (ENMs), are very useful tools 
for identifying distributions and environmental suitability of invasive  species13. These models can be used to 
understand the responses of invasive species to climatic variables. In other words, these models use occurrence 
points of species and environmental data to predict their habitats with a high probability of the  presence14. Some 
approaches have been developed over the last decade in a review study, it was found that more than 35 modelling 
approaches have been developed for generating SDMs. The most common models in the world are Maximum 
Entropy (MaxEnt), Generalized Linear Model (GLM), Random Forest (RF), and Generalized Boosting Model 
(GBM)15. Recently, studies comparing several of these approaches indicated that the MaxEnt model performed 
as well or better than the other approaches. As such, a developed MaxEnt model is a great potential tool for 
determining suitability environmental given its reliance on only presence  locations16–18.

The purpose of this study was to model the current environmental suitability for An. stephensi and predict hot-
spot areas in Ghana to implement surveillance strategies and create effective management and surveillance strate-
gies for this vector. This is crucial for Ghana’s vector and malaria control programs to be effective and successful.

Results
Environmental variables selected
The bioclimatic variables had high correlations, based on Pearson’s correlation Coefficient (PCC) values (Fig. 1). 
Any two variables that had a correlation coefficient of |r|≥ 0.7 were deemed to be highly associated. Following the 
PCC statistical analysis of the outcomes, a subset of eight variables consisting of four environmental variables 
and four climatic layers: elevation, slope, Normalized Difference Vegetation Index (NDVI), population, Annual 
mean temperature (°C) (Bio1), Minimum temperature of the coldest month (°C) (Bio6), Annual precipitation 
(mm) (Bio12), and Precipitation of wettest month (mm) (Bio13) were used for the species distribution prediction 
modelling of the target species (An. stephensi) (Table 1).

Model performance
The Receiver Operating Characteristic curve (ROC) determines the AUC’s ability to evaluate the predictive ability 
of the model. The final model’s AUC mean over ten iterations was 0.943, and the standard deviation was 0.008 
(Fig. 2). This demonstrates the model’s strong functionality and great prediction accuracy. An. stephensi’s pro-
spective global distribution areas can be accurately predicted using the species’ distribution and environmental 
factors data used in this modelling.

Current distribution of suitable habitat
The MaxEnt model’s output of An. stephensi-friendly environments around the globe are shown with a spatial 
resolution of approximately 5  km2 in Fig. 3. The Arabian Peninsula and South-East Asia, where the An. stephensi 
species is native and is projected to have the best circumstances for its dispersion. However, the most favourable 
conditions can be found in the areas where it has invaded, which stretch from the southernmost point of the 
European continent to sections of the Middle East, the Horn of Africa, Eastern and Central Africa, and West 
Africa. In several areas of Central and South America, suitable conditions for the species’ dispersion are also 
predicted (Fig. 3). The ecological niches for An. stephensi in Ghana has expanded from the north-eastern (Upper 
East) to the southern (Greater Accra) regions of the country under the current conditions. Furthermore, the 
Ashanti and Bono East regions in the middle belt are projected to have a significant possibility of having this 
vector present (Fig. 4).

Species response and potential habitat suitability distribution
To get estimates of which variables are most important in the model, we used the jackknife analysis in the Max-
Ent model (Fig. 5). The population appeared to have the most useful information by itself because it was the 
environmental variable that gained the most when used alone. In other words, the population variable allows 
a reasonably good fit to the training data. It also appears to provide the most information that is not contained 
in the other variables because it was the variable that reduced the gain the greatest when it was omitted (Fig. 5). 
These findings demonstrate that population and yearly mean temperature (Bio1) contributions were 65.2% and 
21.3%, respectively, and that regularized training gain values were both more than 0.75, which could be more 
beneficial for the prediction model (Fig. 5). Population and Bio1, thus offered more insightful data than the 
other environmental and climatic factors and had a greater impact on the global distribution of the An. stephensi 
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species. In other words, the evaluation of the variables’ contributions reveals that population density was mostly 
used in the modelling, whereas Bio1 and population variable earned the greatest permutation importance (55.5 
and 28%, respectively), showing its ability to predict the outcome of the model when used alone (Table 1).

The program produced a second set of response curves, in which each curve is made by generating a model 
using only the corresponding variable, disregarding all other variables (Fig. 6). In other words, Fig. 6 describes 
the response curve for the primary environmental factor influencing the spread of An. stephensi. The value shown 
on the y-axis is predicted probability of suitable conditions, as given by the logistic output format. The curve 

Figure 1.  (A) Absolute value of (r) and (B) Pearson correlation coefficient (r) for climatic variables.

Table 1.  Bioclimatic and environmental variables were used in the model. Source: Altitude and bioclimatic 
data were downloaded from the WorldClim (v2.1) database, www. world clim. org; slope and NDVI layers were 
obtained from Google Earth Engine (Modis satellite images); and population density grid downloaded from 
the website of socioeconomic data and application center.

Variables Description Percent contribution Permutation importance

Bio 1 Annual mean temperature (°C) 21.3 55.5

Bio 6 Minimum temperature of coldest month (°C) 2.3 8.5

Bio 12 Annual precipitation (mm) 5.8 1.4

Bio 13 Precipitation of wettest month (mm) 0.9 3.4

Elevation Altitude (m) 0.9 1.6

Slope Gradient or rate of maximum change in Z-value 2.5 1.3

NDVI Normalized Difference Vegetation Index 1.1 0.4

Population Population density 65.2 28

http://www.worldclim.org
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demonstrates that only the relevant variable (Bio1) was used to develop the MaxEnt model. The air temperature 
response curve’s annual mean temperature change exhibits a general upward pattern between 5 and 30 °C. The 
presence probability will be established when the yearly mean air temperature change exceeds 30 °C, where the 
maximum probability of presence is 70%. Inferring that the species is more sensitive to variations in annual 
mean temperature is possible (Fig. 6A). Furthermore, the curves show how the predicted probability of presence 
changes with population variable is varied. As the population increases, the probability of the presence of the 
An. stephensi is increasing (Fig. 6B).

Figure 2.  Receiver operating characteristic curve.

Figure 3.  Environmental suitability of the Anopheles stephensi species under current climatic conditions in the 
world. The Map was generated using ArcGIS v10.5 (www. esri. com).

http://www.esri.com
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Entomological study
Morphological identification and pictures were conducted using the Motic Plus microscope series. A total of 905 
mosquito specimens from the collected larvae emerged and were morphologically identified. Out of this number, 
720 were identified as An. gambiae s.l., 146 identified as Culex spp., (mostly Cx. quinquefasciatus) 4 identified 
as Aedes spp. (Ae. aegypti) and 35 were unidentified. Because the diagnostic characteristics for identification 
of some samples were damaged, we listed them as “unidentified” samples. No specimen was morphologically 
identified as An. stephensi. (Table 2). 

Discussion
It seems like An. stephensi is spreading to new areas and contributing to outbreaks of urban  malaria9. Therefore, 
according to the recently report of WHO, the discovery of the An. stephensi vector in Ghana (Greater Accra) is 
concerning as it is an invasive species that can transmits malaria in  Ghana1. It’s important to monitor and control 
the spread of this species to prevent further outbreaks of malaria and protect public  health1,7. Preliminary meas-
ures in order to avoid that threat is to predict the possible areas of presence of  species12. The current suitability 

Figure 4.  Environmental suitability of the Anopheles stephensi species under current climatic conditions in 
Ghana. The Map was generated using ArcGIS v10.5 (www. esri. com).

http://www.esri.com
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environmental of An. stephensi was modeled by the MaxEnt model in Ghana in this work. Considering our 
results, the suitable niches for An. stephensi in Ghana have expanded from the north-eastern (Upper East) to the 
southern (Greater Accra) regions of the country. Furthermore, the Ashanti and Bono East regions in the middle 
belt are predicted to have favorable areas for the survival of this vector. The mentioned areas are among the urban 
and densely populated areas of Ghana. On the other hand, Ghana is urbanizing rapidly; more than half of the 
population now lives in urban  areas19. Studies have shown that, in contrast to the endemic African mosquitoes, 
An. stephensi is one of the few anopheline species found in central urban locations. This vector is able to thrive 
in close connotation with people, and thus theoretically able to establish itself everywhere that temperature is 
not  limiting20. Our maps and findings in Africa point to a significant future threat to urban African populations. 
According to a modelling study, if An. stephensi were to spread unchecked, 126 million more people in Africa 
would be in danger of suffering  malaria9.

After the establishment of this vector and the exposure of the population of Ghana in the future, this country 
probably will face new challenges. The species is now resistant to all major groups of insecticides as well as devel-
oping a variety of resistance  mechanisms21. Therefore, as its insecticide resistance is widespread, development 
on new formulations and molecules will be crucial to keep fighting malaria in Ghana. This challenge raises the 
economic costs of dealing with malaria. It is predicted that if this country does not have the challenges related 
to malaria control, through malaria elimination, can expect to see a 32-fold return on their  investment11. The 

Figure 5.  Jackknife of Regularized Training Gain for Anopheles stephensi.

Figure 6.  Response curves of the (A) annual mean temperature (Bio 1) (B) population variables that 
contributed the most the MaxEnt models. The curves show the mean response of the 10 replicate MaxEnt runs 
(red) and the mean + /− one standard deviation.
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Table 2.  Collection sites visited for Anopheles stephensi and the various mosquito species collected, Ghana, 
April–May, 2023.

Study site (major 
towns) Location

GPS coordinates Mosquito species caught

Longitude Latitude Anopheles gambiae Anopheles stephensi Aedes spp. Culex spp. Unidentified

Adenta East

Gogo Street −0.14840 5.71520 5 0 0 3 0

Housing Down −0.14565 5.69842 15 0 0 1 0

Commando Antoine street −0.14526 5.72211 2 0 0 3 0

Lakeside Estate −0.11653 5.71284 10 0 0 0 1

New Legon −0.13206 5.71326 1 0 0 0 0

Sowutoum

Kwashieman Ofankor 
Road Sp5 −0.27829 5.61648 24 0 0 1 0

Kolyma River Street Sp1 −0.27165 5.62289 36 0 0 8 1

Kolyma River Street Sp2 −0.27165 5.62297 20 0 0 0 0

Tabora junction Sp4 −0.26949 5.62432 19 0 0 3 0

Tabora junction Sp3 −0.26950 5.62416 3 0 0 0 0

Pokuase

Pokuase fetus −0.288281 5.695209 24 0 0 0 0

Spot 1 −0.288939 5.694899 4 0 0 0 1

Spot 5 −0.261404 5.683593 1 0 0 14 0

Spot 6 −0.261408 5.682907 13 0 0 4 1

Spot 3 −0.287654 5.697232 0 0 0 0 0

Gbawe

CP −0.299925 5.582797 5 0 0 3 0

Buleme −0.323757 5.578567 2 0 3 0 0

Gyama −0.316834 5.574750 10 0 0 4 0

Topbase −0.308462 5.571208 12 0 0 0 0

Gravel junction −0.303900 5.578505 5 0 0 0 0

Mandela

Spot 1 −0.332706 5.556941 3 0 0 1 0

Little falls Sp2 −0.333446 5.560278 18 0 0 56 0

Black St −0.340697 5.559738 1 0 0 4 0

Bing Cherry Sp4 −0.343023 5.558981 0 0 0 1 0

Spot 5 −0.344594 5.556350 19 0 0 0 1

Kakasunanka

Gbetsile Point 1 −0.01402 5.74280 14 0 0 4 3

Gbetsile Point 2 −0.02069 5.74423 27 0 0 1 2

Gbetsile Point 3 −0.02421 5.74272 8 0 0 1 1

Gbetsile Point 4 −0.02886 5.74388 21 0 0 1 5

Gbetsile Point 5 −0.03088 5.74398 0 0 0 0 0

Tema New Town

Pentecost Road Sp3 −0.01953 5.65929 64 0 1 2 15

Old Town Sp2 −0.01980 5.64710 5 0 0 0 1

Old Town −0.01986 5.64626 44 0 0 3 3

Old town Sp1b −0.02064 5.64546 20 0 0 0 0

Pentecost Road Sp4 −0.02966 5.66359 27 0 0 0 0

Lashibi

Spot 1 −0.064023 5.645560 8 0 0 8 0

Tema Village Rd Spot 4 −0.052373 5.619854 31 0 0 3 0

Spot 3 −0.065718 5.623489 10 0 0 0 0

Community 16 −0.071052 5.626916 51 0 0 6 0

Spot 5 −0.058131 5.640715 11 0 0 0 0

Gomoa Fetteh

White Sand −0.469481 5.429017 1 0 0 0 0

Sunset Resort −0.471357 5.414483 0 0 0 2 0

Till Resort −0.468553 5.415849 3 0 0 0 0

Goil Station Sp1 −0.472087 5.432942 0 0 0 0 0

Hope College −0.472087 5.432942 0 0 0 0 0

Kasoa

Winneba Road Site 1 −0.41534 5.53772 27 0 0 2 0

Cowfort Mensah Rd Site 2 −0.43173 5.53630 0 0 0 0 0

Zain St Site 3 −0.44741 5.53430 7 0 0 6 0

Accra Rd Site 4 −0.44457 5.52330 43 0 0 0 0

Kasoa Roundabout Site 5 −0.42485 5.51746 46 0 0 1 0
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physical changes in An. stephensi, specifically its ability to tolerate different temperatures better than An. gam-
biae22, are causing concern about its ability to thrive as an invasive species and potentially disrupt efforts to 
control malaria in Ghana. Another challenge that can be mentioned, the increase in temperature caused by future 
climate changes in the surrounding environment reduces the time required for the larval stage to mature. As 
adults, mosquitoes will then digest blood meals at a faster rate. This results in mosquitoes biting humans more 
frequently and parasites developing more quickly, ultimately leading to an increase in reproduction, efficiency 
in transmitting malaria, and overall  fitness23,24.

We also modeled environmental suitability for An. stephensi globally. Due to the fact that the modeling was 
done globally, we had to use lower-resolution data (5  km2). Although the resolution of environmental and cli-
matic variables can affect the accuracy of the model output, this effect does not seem to be enough to distort the 
overall result of the work. Several other studies conducted globally have also used medium-resolution  data25,26. 
Our modeling showed that a wide range from Iraq to West China is suitable for its survival. A study recently 
provided a snapshot of environmental suitability for An. stephensi and it demonstrated that India, Pakistan, south 
of Iran, west of Yemen, Southwest Saudi Arabia, East of Iraq and several countries from the African continent, 
including Djibouti, Ethiopia are suitable in terms of  habitat9. In the world scale and as a snapshot the similarity 
of the modeling results conducted by Sinka et al. with the outputs of our model shows the consistency of the 
results. In detail, the whole South of India is overall very suitable for An. stephensi (> 0.5), while in our map it is 
~ 0.5. West-Africa is marked overall as not suitable (except in the cities), while in our predictions, West-Africa 
(including Ghana) has a lot of more or less suitable regions (~ 0.5). This differences may be due to differences in 
the model  used44. So that, Sinka et al. ran their models using the biomed2 platform in R studio using R. Moreover, 
the reference study provided a final set of just seven relevant environmental covariates, refined from an initial 
set of 19 in their study. Apart from climate, other factors such as topography, and vegetation conditions can 
affect the distribution of An. stephensi. Furthermore, this could be the result of different global climate models 
(GCMs) that create specific differences in regional climate change prediction. Therefore, we used SSP-MIROC6 
in our study. Predictive performance can be impacted by a wide range of variables in addition to the model type, 
including sample size, spatial scale, environmental variable selection, and the method used to choose pseudo- or 
absence  data27–29. The AUC has been widely applied in SDMs and is regarded as the best measurement of predic-
tive  power30,31. In our analysis, the model was able to predict the distribution of the vector with an excellent level 
of accuracy (AUC = 0.943). Our findings are in line with those of other studies and support the MaxEnt model’s 
excellent  performance24,32.

Climate-related factors have an impact on this vector species’ distribution, which could influence the inci-
dence of malaria and create  outbreaks33. Regions with warm temperatures and humid conditions are preferred 
habitats for An. stephensi. The main environmental variable among the eight that affected the suitability of the 
habitat, and the likelihood of the species distribution was the annual mean  temperature36. Changes in temperature 
have a direct impact on the populations of An. stephensi and is a critical factor in its habitat and  reproduction37. 
This is consistent with research carried out across the  globe38. When the amount of yearly temperature variation 
was between 5 and 30 °C, it could generate an effective accumulation temperature for An. stephensi when com-
bined with the response curves of environmental factors output from the prediction model. The plot reflect the 
dependence of the prediction suitability on the selected variable and the dependence caused by the correlation 
between the selected variable and other  variables39. According to the response curve, when the annual mean 
temperature (Bio 1) is between ≈24.0 and 30.0 °C, this is most suitable for the survival of An. stephensi. Accord-
ing to the plot, the temperature of ≈26.0 °C and 30.0 °C indicates two suitable peaks in terms of average annual 
temperature for the survival of An. stephensi, and remains stable after 30.0 °C. Studies have reported that this 
species has two peaks of activity in field conditions, which appear in different months depending on the regions 
of its  presence20,36. Artificial habitats produced by human activities inside or on the edge of residential areas are 
considered to be the most suitable places for spawning and hatching of An. stephensi40–42. In recent research, 
based on the study that was conducted, there were many suitable habitats in residential  areas9,43. These areas are 
potentially prone to the spawning of An. stephensi and action should be taken to improve the environment and 
reduce suitable areas for the growth and development of this dangerous vector.

Our results added more detail about the presence/absence of An. stephensi in Ghana. Although the results 
from our entomological study indicated no specimens were identified as An. stephensi, in a recent report pub-
lished by the WHO on An. stephensi, in Africa, this species was recently reported from two locations in Greater 
Accra,  Ghana1. It is interesting to note that based on the output of the model in our study, these two points have 
been identified as prone to the presence of An. stephensi in terms of environmental conditions. The absence of 
this species in predicted areas can have various reasons. The main factor is that we only collected samples once 
in this study. As another reason, it’s essential to note that modelling studies aim just to predict a species’ habitat 
suitability. In other words, predicting the areas with the probability of the presence of a certain species does not 
mean the definite presence of that  species44. Generally speaking, the report of specimens from Ghana raises 
some interesting questions. Is An. stephensi a recent introduction to the area, or has it been present but simply 
went undetected due to its morphological similarity to An. arabiensis. Further research and investigation will be 
necessary to shed more light on this issue. Therefore, the probability of the presence of this species in the areas 
predicted by this model should be taken seriously studies and regular and periodic monitoring in hotspot areas 
on the Anopheles fauna should carried out using the new morphological identification key of African Anopheles45 
as well as molecular methods.

Like any modeling tool, MaxEnt can have limitations that need to be addressed to obtain better results. For 
example, MaxEnt is influenced by heavily biased sampling distributions, although this bias can be reduced by 
targeting background locations from sampled  areas46. There are also a few limitations in this study. First and 
foremost, MaxEnt is limited to the analysis of abiotic factors, such as temperature and the results output by the 
model do not consider the influences of biological factors on species  distribution47. In other words, the predicted 
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output does not always take biological and physical barriers to species movement into consideration. It is vital 
that future studies take a larger variety of potential variables into account. It would be great to consider the 
combination of abiotic and biotic factors in future prediction work, and this is an area that deserves attention 
and reflection in future forecasting efforts. One of the limitations of the study is related to historical climate data. 
These data have been produced from 1970 to 2000, and due to recent climate changes, the climatic conditions 
have changed since 2000. Updating historical climate data can solve this limitation in future studies.

There is no doubt that models cannot predict the complexity of the real world. But to get closer to understand-
ing this complexity, machine learning-based model like the one we have used here is vital tool in many areas of 
entomology and VBDs. MaxEnt modeling assumes that the available data is representative of the true distribu-
tion of the phenomenon being modeled, but this may not always be the case. To resolve this, it is important to 
evaluate the model’s predictive performance using independent validation data and incorporate new information 
and data sources when available to update or refine the model. Moreover, the AUC may be overly optimistic due 
to the model evaluation scheme used. With goal-oriented validation strategies for spatio-temporal prediction 
models, the neglected problem of dependencies caused by the nature of spatio-temporal data can be  addresse48. 
Furthermore, we also suggest using more than one model or ensemble models. It makes it possible to better 
decide which one fits best and has the best function on the distribution of species or to identify areas at risk. In 
addition, models and tools with interpretable machine learning such as Partial Dependence Plots (PDPs) can 
be used in future studies.

The map of the global occurrences of An. stephensi shows that the data collated cover a quite restricted geo-
graphical area (Northern-East Africa, Middle East, and South Asia). As the our model was trained with data that 
cover a restricted geographical area, when conducting global predictive mapping, should be taken with many 
care for the areas that are located far away from the training data. In order to address the mentioned limitation, 
care must be taken that a thorough understanding of the vector’s ecology, along with its historical, recent, and 
current spatial distributions, should be used to inform the modeling and interpretation process. The studies 
have proposed different approaches and scenarios for mapping. These scenarios will have different complexities 
that may affect the interpretation of the resulting projections, but taking the time to consider what the observed 
data shows and the implications of the possible scenarios is a starting point for more accurate interpretation of 
the predicts  maps49.

Finally, our practical suggestion related to current study is increasing local studies. Considering that in this 
study we only used the larval sampling method, this can be stated as a limitation of this study. It is better to use 
common mosquito sampling methods such as total catch, hand catch and stuff like that in future studies. There-
fore, we suggest conducting a comprehensive study on the presence and absence of the invasive An. stephensi in 
our projected hotspot areas, which calls for more sampling for a more detailed analysis. Based on the findings and 
implications of the study, we would advise the NMEP to consider establishing and executing formal protocols for 
An. stephensi surveillance in Ghana to effectively manage the menace of malaria transmission and its dynamics. 
Given that the species is anthropophilic, the movement of people is more likely to be a contributing factor. Due 
to the morphological similarity of An. stephenie to An. arabiensis, so it would be great if the identification was 
based on genetic analysis.

Conclusion
The presence and potential spread of An. stephensi poses a significant challenge to malaria control and elimina-
tion efforts in Africa, particularly in urban areas. The introduction of An. stephensi to the continent has been 
documented. Planning for public health and risk mitigation certainly includes evaluating the potential risk of 
An. stephensi expansion.The predicted hotspots were across several ecological zones of the country and included 
urban and peri-urban regions mostly influenced by human populations and mean annual temperature as the 
most important variable in the model. In general, the findings from the study provide important information 
for the surveillance and future development of control strategies as well as mitigating the spread of An. stephensi 
in Ghana. The National Malaria Elimination Program (NMEP) must consider both healthcare access and the 
varied geographic distribution of malaria burden in the country to increase the effectiveness of control measures.

Methods
Data collection and preparation
Occurrence data
The terms "An. stephensi" and "malaria" were used in a literature search of several online scientific sources (Google 
Scholar, PubMed, and Web of Science) from 2011 to 2022 to compile a database of the presence-only locations 
of the vector worldwide. From the invasive species threat map, we downloaded global occurrence data from 
the WHO website. A database was created in Excel with the species’ presence points of geographical locations. 
A total of 1059 geographical points were collated, most of them occurring in Asia the species’ native continent, 
and Africa since its invasion (Supplementary material: Fig S1). Given the fact that the occurrence records were 
obtained from several data sources, we started by eliminating duplicate points. Distribution points that were 
close to one another (distance ≤ 5 km) were then eliminated using the spatially rarefy occurrence data tool in 
SDMs toolbox v2.5 via ArcGIS v10.5 to prevent pseudo-replication and spatial autocorrelation. Finally, out of 
the 1059 points, 660 were used in the MaxEnt model (Supplementary material: Excel file S1).

Environmental data
Additionally, topographic (altitude) and bioclimatic data were downloaded with a spatial resolution of approxi-
mately 5  km2 from the WorldClim (v2.1) database (www. world clim. org). The environmental suitability of the 
An. stephensi vector was predicted using historical climate data (1970–2000). The model also included slope, 

http://www.worldclim.org
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NDVI (Normalized Difference Vegetation Index) layers, and population density grid, which were obtained from 
the Socioeconomic Data Applications Centre website and Google Earth Engine, respectively, and had the same 
resolution as the bioclimatic layers. It is widely known that many climate variables are highly correlated with 
each other and inclusion of highly correlated variables in statistical models can lead to spurious results. We 
tested all variables for correlation in ArcGIS v10.5 using the "SDMtools" tool. This tool evaluates the correlations 
among all input environment data through Pearson’s correlation and then removes layers that are correlated 
at the user-specified level. Finally, a Pearson’s correlation matrix was generated for each pair of variables. The 
Pearson correlation coefficient measures the linear relationship between two continuous variables. It provides a 
numerical value between -1 and 1, where -1 indicates a perfect negative correlation, 1 indicates a perfect positive 
correlation, and 0 indicates no correlation (Fig. 1).

Modelling
To forecast the probable environmental suitability for An. stephensi around the world, we used the Maximum 
Entropy (MaxEnt) model, which has been recognized be the most widely used among many other modelling 
techniques. The most recent bioclimatic data were used for the modelling in the MaxEnt program version 3.4.335. 
The software used a jack-knife method to evaluate the importance of each variable in the model by analysing the 
contribution of each environmental and bioclimatic variable. The model ran ten repetitions, with training data 
of 80% and a random test sample of 20%. The model’s output gave the best predictions for the possible distribu-
tions of the species. We then clipped using Ghana’s boundary shape file after importing the model output into 
ArcGIS 10.5.

Assessing the model
The Area Under Curve (AUC) statistics, a measure that is threshold independent, was used to assess the model’s 
performance. It is one of the most used statistical methods for evaluating models. The AUC uses values ranging 
from 0 to 1 to assess the model’s capacity for prediction. Following the AUC measurement principle, a value of 
0.5 implies a model with the least accuracy (signifying random prediction), whereas an AUC of 0.75 or higher 
is regarded as suitable and an AUC of 0.9 or above as excellent. Essentially, the model performs better with a 
higher AUC value  of30.

Field sampling
We binaries the MaxEnt modeled map. The first category was 1 value, where it represents areas with a probability 
of presence greater than 60%. On the other hand, the second category was 0 value, which it represents areas with 
a presence below 60%. Indeed, communities for field sampling represented the presence areas of An. stephensi 
species with a probability of over 60%. It should be noted that to avoid sampling bias in the evaluation of the 
models, we randomly selected areas where no studies have been conducted regarding the presence of this species 
until then (Supplementary material: Fig S2). The output of the model was tested in the field, through mosquito 
larval sampling. During April–May 2023, ten communities (eight in the Greater Accra region and two in the 
Central region) were selected, for sampling. Five breeding sites were sampled in each community making a total 
of 50 breeding sites. Larvae were collected from typical Anopheles and some Aedes breeding areas as described 
in the  literature50,51, as well as some artificial breeding places that are typical to the target species (An. stephensi) 
such as clear water in containers, household water storages, and a few air conditioning  units52 (Supplementary 
material: Fig. S3). A global positioning system (GPS) device was used to record the coordinates for each breed-
ing site. We also recorded geographic coordinates of sites from which sampling was done, as reference points 
for mapping species presence. The larval samples were transported in improvised breeder cups to the Noguchi 
Memorial Institute for Medical Research (NMIMR) and reared to adult mosquitoes in the Institute’s insectary. 
The adult mosquitoes, reared from the field-collected larvae, were aspirated into holding cups and knocked down 
in a −20 °C freezer for identification. They were then sorted into Anophelines and Culicines. Each Anopheles 
mosquito was put into a tube for confirmation. All Anopheles mosquitoes were morphologically identified using 
an identification  key45.

Ethical approval
This study was conducted under the ethical principles, national norms, and standards for conducting Medical 
Research in Iran. The Research Ethics Committees of the School of Public Health & Allied Medical Sciences-
Tehran University of Medical Sciences approved this project under code: IR.TUMS.SPH.REC.1402.032.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper, or the references cited here 
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