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Prediction of properties of boron  
α‑icosahedral nanosheet 
by bond‑addictive M‑polynomial
D. Antony Xavier 1, K. Julietraja 2, Ammar Alsinai 3,4* & S. Akhila 1

Nanosheets with boron elements have excellent characteristics which makes the boron polymorphs 
unique and super hard. A boron α‑icosahedral nanosheet in crystalline form has superconductivity and 
thermal electronic properties. In theoretical chemistry and QSPR/QSAR study, a topological descriptor 
is an important analytical tool. It helps to analyse the structure and its properties and also correlates 
the with numerical expressions. The valence‑based M‑polynomial provides quantitative measures of 
molecular properties based on their geometric, electrostatic, and quantum chemical characteristics. 
In this article, the QSPR/QSAR analysis is performed for this nanosheet and the analytical expressions 
are validated with original synthesized data, and received excellent correlation values of 0.9835 
and 0.9932. The mathematical expression of the structure is analysed and the indices are compared 
graphically and numerically.

Boron is an interesting and complex element, many aspects of which are still to be explored. The properties of 
boron are found between metals and insulators. While boron has only three valence electrons, which would 
favor metallicity, they are localized enough to produce insulating states. However, pressure, temperature, and 
impurities can easily shift this subtle balance between metallic and insulating states. Pure boron is one of the 
best alternatives to carbon fullerenes (CFs) and nanotubes (CNTs), which exhibit superior properties, in the 
form of novel solids and nanostructures, such as quasiplanar clusters, quasi-crystals, nanosheets, nanoribbons, 
nano chains, and  nanotubes1. Besides being the only non-metal element in Group III, boron is unique in its 
structural complexity and has exceptional chemical and physical properties, including low densities, high melt-
ing points, and high  hardness2. Initially, Boron exists in three crystalline forms, α − B12 , β − B106 and γ − B28
3. Later different forms of boron crystalline have been synthesized, such as α - rhombohedral, β-rhombohedral, 
tetragonal, γ-orthorhombic, and α-Ga type. In addition, there are amorphous phases and nanosized  structures4. 
One of them is the B12 icosahedral that is linked together by “inter-icosahedral covalent units” or “chains”5. The 
boron-rich ceramics based on icosahedral are second only to diamonds as hard materials. When compared to 
diamond-based materials, this class of ceramics offer low density, better thermal and chemical resistance, and 
ease of mass production.

In boron α-icosahedral nanosheet, each crystal contains an icosahedron molecule of B12 , which is linked 
to form a three-dimensional  network1 as shown in Fig. 1. A regular icosahedron has 12 vertices, 30 edges and 
20 faces. The icosahedral boron sheet, B12 and B20 have been proposed in recent years with special properties. 
Kah et al.6 proposed many icosahedral nanosheets based on B12 clusters, and Zhou et al.7 presented an antifer-
romagnetic metallic B20 sheet. Higashi et al.8 investigated the first 2D icosahedral B12 networks. The icosahedral 
nanosheet bonding is complex and was well explained by  Emin9. The boron allotropes attract major material 
researchers since they exhibit properties like thermal conductivity, hardness, and neutron scattering  length10. 
The novel icosahedral structures exhibit interesting chemical bonding and electronic properties and are structur-
ally and energetically stable. Additionally, these α-icosahedral nanosheets, which are a gapless system, exhibit 
semiconducting properties, suggesting an application in nanoelectronics and computer chips. is a good choice, 
In industrial semiconductor applications like solar cells with high solar light conversion efficiency, the icosahedal 
boron nanosheet is a prominent  component11.

In a molecular graph, each edge of a molecule corresponds to a chemical bond between atoms, while each 
vertex and degree denotes an atom and valence of the atom. In order to characterize the structural features of 
these molecules, several theoretical tools are employed. A topological index can be used to model relationships 
between chemical structures and their corresponding biochemical and physicochemical  activities12,13. Large 
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combinatorial chemical libraries are required to compute the physicochemical properties of a structure. These 
include novel development methods such as topological structural descriptors, combinatorial quantum chem-
istry tools for functional group analysis, shape-activity relations, and topological attributes of electron densities, 
etc. The degree-based topological indexes are used extensively in network science for investigating networks, in 
which the indexes are calculated based on the degrees of the graph. A breakthrough was made in degree-based 
indices by Deutsch and Klavz̆ar14, introducing the M-polynomial. Readers can refer  to15–18 for recent work in 
M-polynomial and topological indices.

Boron α-icosahedral nanosheets are grabbing immense attention due to their numerous applications in 
emerging technologies. Thus, understanding the properties of these structures is imperative for industrial 
applications. In this paper, the degree-based structure analysis of α-icosahedral nanosheet is performed using 
M-polynomial. The analytical expressions for some prominent indices are evaluated and their graphical repre-
sentations are plotted using the numerical values of these indices and compared. The shear modulus and Young’s 
modulus of the icosahedral nanosheet are compared against its structural parameters, which helps to predict the 
properties of numerous additional boron allotropes.

Computational techniques
A chemical compound can be modeled as a simple graph, χ with vertex and edge sets, V(χ) and E(χ) respectively. 
The valency of an atom is denoted by dµ of the vertex µ ∈ V(χ) , whereas the maximum degree over all the ver-
tices of χ is denoted by � . The degree of the vertex of boron α-icosahedral nanosheet is illustrated in Fig. 2. The 
set are consider, D = {(k, h ∈ N× N)|1 ≤ k ≤ h ≤ �} . We denote dk,h = |{µη ∈ E(χ)|dµ = k and dη = h}| . 
The M-polynomial14 for simple connected graph, χ is defined by

where mkh(χ) be the total number of edges µη ∈ E(χ) such that {dµ,dη} = {k, h} . The bond additive is the 
function from χ into R specified as real numbers βk,h , (k, h) ∈ D induced by β(χ) =

∑

(k,h)∈D dkhβkh . The 
degree-based structural descriptors for χ , where f(dµ,dη) is the function of degree based indices is depicted as

A brief discussion of bond additive degree-based indices is given below regarding the above-specified real 
numbers, βkh . First degree-based structure descriptors were  studied19 and  developed20 with the Zagreb index, 
M1(χ) defined by βkh = k+ h based on the square root of the vertex degrees to analyze the influence of total 
electron energy on structure. The next analogous of Zagreb index is second Zagreb index, M2(χ) represented 
as βkh = kh . These indices help in analyzing the complexity of the molecular system and increase with extent 
branching of the carbon skeleton. The other analogous of Zagreb index are augumented Zagreb index , AZ(χ)21 
and hyper Zagreb index, HM(χ)22 is defined by βkh =

(

kh
k+h−2

)3 and βkh = (k+ h)2 respectively. These indices 

(1)M(χ; y, z) =
∑

k≤h

mkh(χ)y
kzh

�(χ) =
∑

µη∈D

f(dµ,dη)

Figure 1.  Crystal structure of boron α-icosahedral nanosheet.
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are used to analyze new drugs’ molecular structures and to understand their biological and chemical proper-
ties. Based on the inverse value of vertex degree, the other invariant of Zagreb index, modified Zagreb, Mm

2 (χ)
23 

defined by βkh = 1
kh

 is evolved. Several studies have demonstrated that the augmented Zagreb index can predict 
the temperature at which octanes and heptanes form. These variants of Zagreb indices can be used for determin-
ing the isomerism of ZE, chirality, heat formation, and heterogeneity of hetero systems.

Based on the degrees of the end vertices of χ , several methods have been proposed to examine the branching 
properties of alkanes. In 1975 Milan Randić24 developed the topological index of graph, χ under the label 
“molecular connectivity index” in the description R−1 and R−1/2 . A general Randić index, Rd(χ) latterly developed 
by Bollobas and  Erdos25 by substituting R−1 and R−1/2 with a real integer d is defined as βkh = (kh)d . The other 
variant of randić index are  reciprocal randić, RRd(χ)26 and harmonic index, H(χ)27 are represented as βkh = 1

(kh)d
 

and βkh = 2
k+h

 . Graph eigenvalues were analyzed by Favaron et al.28 in relation to harmonic indices. A correla-
tion has been demonstrated between these variants of randic index and various physicochemical properties of 
alkanes, including the formation of enthalpies, surface areas, vapor pressure, boiling points, Kovats constants, 
and so  on29.

Symmetric division degree index, SSD(χ)30 is a great tool for predicting polychlorobiphenyl surfaces is defined 
by βkh = k

h
+ h

k
 or βkh = k2+h2

kh
 . Forgotten index, F(χ)31, which greatly enhances the physicochemical predic-

tion of the First Zagreb index, and it is defined as βkh = k2 + h2 . An important tool for estimating octane 
isomer surface area is the inverse sum index I(χ)32 defined as βkh = kh

k+h
 . And sigma index, σ(χ) is given by 

βkh = (k− h)2 . By analyzing the above discussion, it is evident that the bond additive degree is a significant 
aspect to investigate the physicochemical properties of molecular structures. Table 1 outlines the formulations 
for the M-polynomial method.

The operators are required which relate the degree-based topological descriptors with the M-polynomial,

- deg 6 - deg 5

Figure 2.  Degree of boron α-icosahedral nanosheet.

Table 1.  The derivation of vertex-degree M-polynomials.

Topological indices f(y, z) Derivation from M(χ)

M1(χ) y+ z (Dy + Dz)(M(χ);y, z)|y=z=1

M2(χ) yz (DyDz)(M(χ);y, z)|y=z=1

Mm
2 (χ) 1

yz
(SySz)(M(χ);y, z)|y=z=1

A(χ) (
yz

y+z−2
)3 (S3yQ−2D

3
yD

3
z)(M(χ);y, z)|y=z=1

Rd(χ) (yz)d (Dd
y + Dd

z )(M(χ);y, z)|y=z=1

RRd(χ)
(

1
yz

)d
SdyS

d
z (Dy + Dz)(M(χ);y, z)|y=z=1

H(χ) 2
y+z

2SyJ(M(χ);y, z)|y=z=1

HM(χ) (y+ z)2 (Dy + Dz)
2(M(χ);y, z)|y=z=1

F(χ) y2 + z2 (D2
y + D2

z)(M(χ);y, z)|y=z=1

σ(χ) (y− z)2 (Dy − Dz)
2(M(χ);y, z)|y=z=1

SDD(χ) y2+z2

yz
(DySz + DzSy)(M(χ);y, z)|y=z=1

I(χ) yz

y+z
(SyJDyDz)(M(χ);y, z)|y=1



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1197  | https://doi.org/10.1038/s41598-024-51642-2

www.nature.com/scientificreports/

Main results and discussion
M‑polynomial of boron α‑icosahedral nanosheet

Theorem 1 If χ = Iα(s, p)|s, p ≥ 1 represents a boron α‑icosahedral nanosheet, then M‑polyno-
mial is

Proof The boron α-icosahedral nanosheet, Iα(s, p)|s, p ≥ 1 contains 12sp vertices and 34sp− 3s− 3p+ 2 edges. 
icosahedral nanosheets are categorized into edge sets based on the degree of the vertex, D = {(5, 5), (5, 6), (6, 6)} . 
The edge partition of Iα(s, p) based on the vertex degree is depicted in Fig. 3. The edge sets, E(Iα(s, p)) is classified 
into three types and the parameter value, dkh is characterized by the following value,

By the Definition (1), M-polynomial of boron α-icosahedral nanosheet, Iα(s, p)|s, p ≥ 1 is defined as

Figure 4 shows the graphical illustration of the M-polynomial function of Iα(s, p)|s = 4 and p = 5 . Thus, 
M(Iα(s, p); y, z) can be formulated as,

Dy(f(y, z)) =y
∂(f(y, z))

∂y
,Dz(f(y, z)) = z

∂(f(y, z))

∂z
, Sy(f(y, z)) =

∫ y

0

f(q, z)

q
dq

Sz(f(y, z)) =

∫ z

0

f(y, q)

q
dq, J(f(y, z)) = f(y, y),Qκ (f(y, z)) = yκf(y, z); κ �= 0.

M(Iα(s, p); y, z) = (4sp+ 14s+ 16p− 4)y5z5 + (12sp− 2p+ 2s− 12)y5z6

+ (18sp− 17p− 19s+ 18)y6z6

d55 = |{µη ∈ E(Iα(s, p)|dµ = 5 and dη = 5}| = 4sp+ 14s+ 16p− 4

d56 = |{µη ∈ E(Iα(s, p)|dµ = 5 and dη = 6}| = 12sp+ 2s− 2p− 12

d66 = |{µη ∈ E(Iα(s, p)|dµ = 6 and dη = 6}| = 18sp− 19s− 17p+ 18

M(Iα(s, p); y, z) =
∑

k≤h

mkh(Iα(s, p))y
kzh

- (6,6) - (6,5) - (5,5)

p

s

Figure 3.  Edge partition of boron α-icosahedral nanosheet, Iα(4, 4).
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Results for boron α‑icosahedral nanosheet
Using Theorem  1 and M-polynomial  formula in Table  1,  vertex degree-based top-
o l o g i c a l  i n d i c e s  s u c h  a s  M1,M2,M

m
2 ,A,Rd,RRd,H ,HM, F, σ , SDD and I 

o f  b o r o n  α - i c o s a h e d r a l  n a n o s h e e t ,  Iα(s, p)|s, p ≥ 1  a r e  c o m p u t e d .  H e r e , 
f(y, z) = M(Iα(s, p); y, z) = (4sp+ 14s+ 16p− 4)y5z5 + (12sp− 2p+ 2s− 12)y5z6 + (18sp− 17p− 19s+ 18)y6z6  . 
The numerical value of the derived analytical expression is compared with each index is depicted in Tables 2, 3, 4 
and 5. And the graphical comparison is illustrated in Figs. 5, 6 and 7.

Theorem 2 Let Iα(s, p)|s, p ≥ 1 be a boron α-icosahedral nanosheet then 

1. M1(Iα(s, p)) = 388sp− 66p− 66s+ 44

2. Rd(Iα(s, p)) = 1108sp− 272p− 274s+ 188

3. I(Iα(s, p) =
1064sp

11
−

181p

11
−

182s

11
+

124

11

4. RRd(Iα(s, p) =
89s

900
+

91p

900
+

53sp

50
−

3

50

M(Iα(s, p); y, z) =
∑

5≤5

m55(Iα(s, p))y
5z5 +

∑

5≤6

m56(Iα(s, p))y
5z6 +

∑

6≤6

m66(Iα(s, p))y
6z6

= d55y
5z5 + d56y

5z6 + d66y
6z6

= (4sp+ 14s+ 16p− 4)y5z5 + (12sp− 2p+ 2s− 12)y5z6

+ (18sp− 17p− 19s+ 18)y6z6

Figure 4.  M-polynomial of boron α-icosahedral nanosheet, Iα(4, 5).

Table 2.  Numerical value of M1(Iα(s, p)) Rd(Iα(s, p)) I(Iα(s, p)) RRd(Iα(s, p)).

(s,p) M1(Iα(s,p)) Rd(Iα(s,p)) I(Iα(s,p)) RRd(Iα(s,p))

(1, 1) 300 750 75 1.2

(1, 2) 622 1586 155.2727 2.3611

(2, 2) 1332 3528 332.1818 4.58

(3, 3) 3140 8522 782.8182 10.08

(4, 3) 4238 11572 1056.4545 13.3589

(5, 5) 9084 25158 2264.4545 27.44

(5, 6) 10958 30426 2731.6364 32.8411

(6, 6) 13220 36800 3295.4545 39.3

(6, 7) 15482 43176 3859.3636 45.7611

(7, 8) 20782 58142 5180.5454 60.8011
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Proof 

1. M1(Iα(s, p)) = (Dy + Dz)(M(Iα(s, p)); y, z)|y=z=1

(s,p)
(1,1) (1,2) (2,2) (3,3) (4,3) (5,5) (5,6) (6,6) (6,7) (7,8)

In
di

ce
s 

Va
lu

e 
R

an
ge

× 104

0

1

2

3

4

5

6
M1 (I  (s,p))

Rd(I  (s,p))

I(I  (s,p))

RRd(I  (s,p))

Figure 5.  Visualization of M1(Iα(s, p)), Rd(Iα(s, p)), I(Iα(s, p)), RRd(Iα(s, p)).

Table 3.  Numerical value of M2(Iα(s, p)) F(Iα(s, p)) A(Iα(s, p)) HM(Iα(s, p)).

(s,p) M2(Iα(s,p)) F(Iα(s,p)) A(Iα(s,p)) HM(Iα(s,p))

(1, 1) 750 1500 915.5273 3000

(1, 2) 1586 3182 1942.9053 6354

(2, 2) 3528 7092 4370.407 14148

(3, 3) 8522 17140 10637.9321 34184

(4, 3) 11572 23278 14471.7565 46422

(5, 5) 25158 50604 31610.9189 100920

(5, 6) 30426 61198 38263.5878 122050

(6, 6) 36800 74020 46316.3806 147620

(6, 7) 43176 86842 54375.3723 173194

(7, 8) 58142 116942 73299.8022 233226

(s,p)
(1,1) (1,2) (2,2) (3,3) (4,3) (5,5) (5,6) (6,6) (6,7) (7,8)

In
di

ce
s 

Va
lu

e 
R

an
ge

× 105

0

0.5

1

1.5

2

2.5
M2(I  (s,p))

F(I  (s,p))

A(I  (s,p))

HM(I  (s,p))

Figure 6.  Graphical representation of M2(Iα(s, p)) F(Iα(s, p)) A(Iα(s, p)) HM(Iα(s, p)).
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2. Rd(Iα(s, p)) = (Dd
y + Dd

z )(M(Iα(s, p)); y, z)|y=z=1

3. I(Iα(s, p)) = (SyJDyDz)(M(Iα(s, p)); y, z)

4. RRd(Iα(s, p) = SdyS
d
z (Dy + Dz)(M(Iα(s, p)); y, z)

(Dy + Dz)(f(y, z)) = 2y5z5(70s+ 80p− 66z+ 20sp+ 11sz− 11pz+ 108yz+ 66spz

− 114syz− 102pyz+ 108spyz− 20)
∣

∣

y=z=1

= 388sp− 66p− 66s+ 44

(Dd
y + Dd

z )(f(y, z)) = 52d(14s+ 16p+ 4sp− 4)− 62d(19s+ 17p− 18sp− 18)

+ 5d6d(2s− 2p+ 12sp− 12)

∣

∣

∣

y=z=1;d=1

= 1108sp− 272p− 274s+ 188

(SyJDyDz)(f(y, z)) = y12(54sp− 51p− 57s+ 54)+ y11
(

60s

11
−

60p

11

+
360sp

11
−

360

11

)

+ y10(10sp+ 35s+ 40p− 10)

∣

∣

∣

y=1

=
1064sp

11
−

181p

11
−

182s

11
+

124

11

Table 4.  Numerical value of Mm
2 (Iα(s, p)), SDD(Iα(s, p)), H(Iα(s, p)), σ(Iα(s, p)).

(s,p) Mm
2 (Iα(s,p)) SDD(Iα(s,p)) H(Iα(s,p)) σ(Iα(s,p))

(1, 1) 1.2 60 6 0

(1, 2) 2.3611 122.3333 11.9848 10

(2, 2) 4.58 253.2 23.9455 36

(3, 3) 10.08 583.2 53.8545 96

(4, 3) 13.3589 782.4667 71.797 134

(5, 5) 27.44 1653.6 149.5636 288

(5, 6) 32.8411 1989.5333 179.4758 346

(6, 6) 39.3 2394 215.3637 420

(6, 7) 45.7611 2798.3333 251.2576 490

(7, 8) 60.8011 3743.9333 335.003 658

(s,p)
(1,1) (1,2) (2,2) (3,3) (4,3) (5,5) (5,6) (6,6) (6,7) (7,8)

In
di

ce
s 

Va
lu

e 
R

an
ge

0

500

1000

1500

2000

2500

3000

3500

4000
M2

m (I  (s,p))

SDD(I  (s,p))

H(I  (s,p))

 (s,p))

Figure 7.  Graphical illustration of Mm
2 (Iα(s, p)), SDD(Iα(s, p)), H(Iα(s, p)), σ(Iα(s, p)).



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1197  | https://doi.org/10.1038/s41598-024-51642-2

www.nature.com/scientificreports/

Theorem 3 Let Iα(s, p)|s, p ≥ 1 be a boron α-icosahedral nanosheet then 

1. M2(Iα(s, p)) = 1108sp− 272p− 274s+ 188

2. F(Iα(s, p)) = 2228sp− 546p− 546s+ 364

3. A(Iα(s, p) =
202510477sp

144000
−

40926041p

108000
−

332764271s

864000
+

39354227

144000
4. HM(Iα(s, p)) = 4444sp− 1090p− 1094s+ 740

Proof 

1. M2(Iα(s, p)) = DyDz(M(Iα(s, p)); y, z)

2. F(Iα(s, p)) = (D2
y + D2

z)(M(Iα(s, p)); y, z)

3. A(Iα(s, p)) = (S3yQ−2D
3
yD

3
z)(M(Iα(s, p)); y, z)

4. HM(Iα(s, p)) = (Dy + Dz)
2(M(Iα(s, p)); y, z)

Theorem 4 Let Iα(s, p)|s, p ≥ 1 be a boron α-icosahedral nanosheet then 

1. Mm
2 (Iα(s, p)) =

89s

900
+

91p

900
+

53sp

50
−

3

50

2. SDD(Iα(s, p)) =
342sp

5
−

91p

15
−

89s

15
+

18

5

3. H(Iα(s, p)) =
p

330
−

s

330
+

329sp

55
+

1

55

SdyS
d
z (f(y, z)) =

1

52d
(14s+ 16p+ 4sp− 4)+

1

30d
(2s− 2p+ 12sp− 12)

−1

62d
(19s+ 17p− 18sp− 18)

∣

∣

∣

y=z=1;d=1

=
89s

900
+

91p

900
+

53sp

50
−

3

50

DyDz(f(y, z)) = yz
(

30y4z5(2s− 2p+ 12sp− 12)+ 25y4z4(14s+ 16p+ 4sp− 4)

− 36y5z5(19s+ 17p− 18sp− 18)
)∣

∣

y=z=1

= 1108sp− 272p− 274s+ 188

(D2
y + D2

z)(f(y, z)) = 2y5z5(350s+ 400p− 366z+ 100sp+ 61sz− 61pz+ 648yz

+ 366spz− 684syz− 612pyz+ 648psyz− 100)

∣

∣

∣

y=z=1

= 2228sp− 546p− 546s+ 364

(S3yQ−2D
3
yD

3
z)(f(y, z)) = y10

(

104976sp

125
−

99144p

125
−

110808s

125
+

104976

125

)

+ y9
(

2000s

27
−

2000p

27
+

4000sp

9
−

4000

9

)

+ y8
(

109375s

256
+

15625p

32
+

15625sp

128
−

15625

128

)

∣

∣

∣
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202510477sp
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−
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−
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+

39354227

144000

(Dy + Dz)
2(f(y, z)) = 2y5z5(700s+ 800p− 726z+ 200sp+ 121sz− 121pz+ 1296yz

+ 726spz− 1368syz− 1224pyz+ 1296spyz− 200)

∣

∣

∣

y=z=1
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4. σ(Iα(s, p)) = 2s− 2p+ 12sp− 12

Proof 

1. Mm
2 (Iα(s, p)) = SySz(M(Iα(s, p)); y, z)

2. SDD(Iα(s, p)) = (DySz + DzSy)(M(Iα(s, p)); y, z)

3. H(Iα(s, p)) = 2SyJ(M(Iα(s, p)); y, z)

4. σ(Iα(s, p)) = (Dy − Dz)
2(M(Iα(s, p)); y, z)

Properties prediction of boron crystal sheet
By emphasizing topological descriptors’ importance in QSAR/QSPR research and illustrating their predictive 
and assessment factors for boron sheets, a key focus of this study is described in this section. Using regression 
analysis, an equation has been formulated to relate the topological descriptors and the significant properties of 
boron sheets. With the aid of these formulations, one may further predict the characteristics of boron sheets, 
independent of their dimensions.

Significance of molecular descriptors
In quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR), 
the topological descriptors, ’describes’ the molecular structure’s properties or activities in mathematical termi-
nologies. QSAR/QSPR mathematically correlates the physicochemical properties or biological activity of chemi-
cal compounds with molecular descriptors. The base for this idea, QSAR/QSPR modelling is many chemical 
compounds have been implicitly equated with the overall risks which cause acute effects on human health. Some 
of the pesticide compounds are highly toxic and few may cause cancer.

The toxicological testing of an active ingredient is usually limited. To estimate and rank the potentially haz-
ardous chemicals, it is essential to develop an accurate and simple  method33. Thus, it is a critical need to analyze 
and understand the structural properties of molecular compounds. Linear regression, multiple linear regression, 
logistic  regression34, efficient linear  method35, principal component  analysis36, partial least square  regression37, 
decision  tree38 and random  forest39 are the modelling techniques or methods that are used to analyze or predict 
the molecular compounds. In our study, linear regression method is deployed for statistical analysis of boron α
-icosahedral nanosheet. The graphica flowchart insisting on the topological descriptors and their potential uses 
is exhibited in Fig. 8.

Variant of boron sheets and its descriptors
Boron has recently received a lot of attention due to its diverse chemical properties and similarities to carbon. Due 
to the large number of allotropes and complex bonding nature of boron, many are interested to study its crystal 
structures and  stability40. Icosahedra exhibit electrical and structural stability as well as interesting chemical 
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∣

∣
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s
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+
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1
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∣

∣
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bonding characteristics. A few of the two-dimensional boron sheets such as boron α-icosahedral nanosheet, α
-B122, α borophene  nanosheet41, 8− Pmmn borophene  nanosheet42, β12-borphene  nanosheet43 were analyzed 
through regression analysis. The above-mentioned boron sheet is illustrated in Fig. 9. The degree-vertex value 
of the base structure of boron sheets is listed in Table 5.

In our study, we investigate the elastic, geometric, thermodynamic, and mechanical properties of the boron 
sheets. An elastic constant is used to determine the mechanical properties of a material and describe its abil-
ity to resist deformation by external forces. With elastic constant, some mechanical properties such as Young’s 
modulus E, bulk modulus B and Shear modulus G can be determined. The elastic properties are closely related 
to the thermodynamic properties like melting point, heat capacity, vacancy defect, and temperature. The Young’s 
modulus, E, and Shear modulus, G data of various boron nanosheets are summarized in Table 644–46. The Young’s 
modulus (N/m) indicates a material’s ability to withstand changes in length when brought under tension or 
compression and shear modulus (GPa) is a measure of elastic shear material’s stiffness that reflects body rigidity.

Properties analysis and theoretical prediction
The mechanical properties, Young’s modulus and shear modulus of the above-mentioned boron sheets are ana-
lyzed with topological descriptors by a regression model.  Legendre47 and  Gauss48 introduced the least squares 
approach to linear regression in 1805 and 1809 respectively. Regression analysis is a statistical technique that 
determines the correlation between two or more variables. The correlation coefficient ranges from 1 to -1. The 
perfect positive and negative correlation is 1 and -1 where near 0 indicates weak correlation. A correlation coef-
ficient and regression analysis are used to derive the equation connecting the descriptors and properties. The 
linear regression model,

where M is the mechanical properties of the boron nanosheets, and TD is topological descriptors. Using SPSS 
 software49,50, the invariant, i and regression coefficient, j can be calculated. The correlation coefficients between 

M = i + j(TD)

Figure 8.  Graphical flowchart indicating the topological descriptors significance.

Table 5.  Experimental data for Young’s modulus and shear modulus of boron nanosheets.

SI. no Boron nanosheets Shear modulus, G Young’s modulus, E

1 α-icosahedral, α-B12 210 GPa 480 N/m

2 α borophene 88 GPa 210 N/m

3 8− Pmmn borophene 108 GPa 241 N/m

4 β12−borphene 68.5 GPa 179 N/m
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dependent variables, physical properties of boron sheets and independent variables, topological descriptors of 
nanosheets are listed in Table 7. For recent work on QSPR analysis by linear regression method, readers can 
 refer51,52.

The correlation table indicates that these boron derivatives have strong correlations within themselves for both 
chemical attributes. In comparison to other indices, the hyper Zagreb index has a strong correlation for Young’s 
modulus and shear modulus. The linear regression model for shear modulus is shown below,

where G is shear modulus and HM is hyper Zagreb index. Similarly, the linear regression equation for Young’s 
modulus is determined as follows

G = 165.46(HM)− 1252.8

Figure 9.  Boron nanosheet and its allotropes; (a) α-icosahedral, α-B12 (b) α borophene (c) 8− Pmmn 
borophene (d) β12−borphene.

Table 6.  Degree-vertex value of boron nanosheets.

Indices α-icosahedral α-borophene 8− pmmn β12-borophene

M1 3140 1222 1364 1318

M2 8522 2968 3441 3023

Mm
2 10.08 6.1511 6.0986 7.6156

A 10637.932 3520.5917 3910.979 3508.5186

R 8522 2968 3441 3028

RR 10.08 6.1511 6.0986 7.6156

H 53.8545 26.849 26.1612 31.9423

HM 34184 12148 14714 12452

F 17140 6212 7832 6814

σ 96 276 950 360

SDD 583.2 266.667 313.9048 304.9333

I 782.8182 297.9432 316.349 319.6294
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where E is Young’s modulus. The molecular characteristics with a greater dimension can be predicted with an 
appropriate regression model. In Fig. 10, the scatter plots for the highest correlated properties and descriptors 
are shown.

Conclusion
Using a degree-vertex M-polynomial graph technique, the topological indices of the boron α-icosahedral 
nanosheet are determined. The structural characterization is used to analyse the topological connectivity prop-
erties of boron α-icosahedral nanosheet, by combining quantum chemical descriptors with nanosheet results. 
This research could provide a crucial tool for determining the significance of nanosheets in many areas, such as 
material science, drug discovery, and predictive toxicology. Furthermore, the topological indices are used in the 
study of boron α-icosahedral nanosheets and provide QSAR expressions that predict several molecular proper-
ties such as band gap, optical and electronic stability, molecular density, enthalpies, conductivity, and so on. In 
this research, we correlate our theoretical results with the shear modulus and Young’s modulus original data 
synthesized in recent years, which showed a high correlation of 0.9835 and 0.9932 with hyper Zagreb. This type 
of research has not been explored earlier. So, it has a significant contribution to research by finding a correlation 
between topological indices and properties of boron allotropes. This allows us to explore other nanosheets, it is 
left as an open problem for future research.

E = 76.659(HM)− 2898.5

Table 7.  Correlation coefficient between properties and descriptors.

Indices Shear modulus, G Young’s modulus, E

M1 0.9701 0.981

M2 0.98 0.9915

Mm
2 0.8109 0.8494

A 0.9774 0.9901

R 0.9798 0.9914

RR 0.8109 0.8494

H 0.9013 0.93005

HM 0.9835 0.9932

F 0.9794 0.989

σ 0.39799 0.45497

SDD 0.9636 0.9777

I 0.9645 0.98102

Figure 10.  Scatter visualisation for the properties and indices.
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