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Enhanced convergence in p‑bit 
based simulated annealing 
with partial deactivation 
for large‑scale combinatorial 
optimization problems
Naoya Onizawa * & Takahiro Hanyu 

This article critically investigates the limitations of the simulated annealing algorithm using 
probabilistic bits (pSA) in solving large‑scale combinatorial optimization problems. The study begins 
with an in‑depth analysis of the pSA process, focusing on the issues resulting from unexpected 
oscillations among p‑bits. These oscillations hinder the energy reduction of the Ising model and thus 
obstruct the successful execution of pSA in complex tasks. Through detailed simulations, we unravel 
the root cause of this energy stagnation, identifying the feedback mechanism inherent to the pSA 
operation as the primary contributor to these disruptive oscillations. To address this challenge, we 
propose two novel algorithms, time average pSA (TApSA) and stalled pSA (SpSA). These algorithms 
are designed based on partial deactivation of p‑bits and are thoroughly tested using Python 
simulations on maximum cut benchmarks that are typical combinatorial optimization problems. On 
the 16 benchmarks from 800 to 5000 nodes, the proposed methods improve the normalized cut value 
from 0.8 to 98.4% on average in comparison with the conventional pSA.

In recent years, a new device model known as the probabilistic bit, or p-bit, has been  proposed1. Unlike tradi-
tional bits which can only exist in a state of 0 or 1, a p-bit can exist in a range of states between 0 and 1, each state 
has a certain probability of occurring. The p-bit is a versatile computational model that can be implemented 
in  software2 or emerging probabilistic devices, such as Magnetoresistive Random Access Memory (MRAM)3. 
Furthermore, it can be approximated by digital circuits, such as Field-Programmable Gate Arrays (FPGAs)4–7. 
This probabilistic nature makes p-bits a useful tool in solving certain types of problems that require a degree of 
randomness or uncertainty. The output state of a p-bit is represented as follows:

where σi(t + 1) ∈ {−1, 1} is a binary output signal, Ii(t + 1) is a real-valued input signal, and ri(t) ∈ {−1 : 1} 
is a random signal. The utilization of p-bits is notably effective in the development of a specific neural network 
variant, the Boltzmann  machine8. This model is particularly well-adapted for tasks that require invertible  logic9, 
where inputs and outputs can be interchanged. Moreover, it has significant applications in Bayesian  inference10, 
parallel  tempering11, Gibbs  sampling12, and simulated annealing (SA)13.

SA is a stochastic optimization technique widely used for addressing combinatorial optimization  problems14,15. 
Its applications span diverse real-world scenarios, including solving the maximum cut (MAX-CUT) problem in 
network  analysis16, optimizing communication  systems17, and enhancing various machine learning  algorithms18. 
Combinatorial optimization problems can often be represented by Ising models, which are mathematical rep-
resentations of networks or graphs. These problems are often categorized as NP-hard19, meaning that the time 
required to find the optimal solution tends to grow exponentially with the size of the problem, making them 
computationally challenging to solve. The goal of simulated annealing in this context is to minimize the ‘energy’ of 
the Ising model, where ‘energy’ is a metaphor for the objective or cost function of the optimization problem. The 
global minimum energy state corresponds to the optimal solution to the combinatorial optimization problem. 
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Diverse enhancements and adaptations of SA, including parallel tempering and stochastic simulated annealing 
(SSA), have been devised to improve efficiency in solving combinatorial optimization  problems20,21. Additionally, 
hardware implementations of SA have been explored for rapidly addressing large-scale combinatorial optimi-
zation  challenges22–24. More advanced computational methods such as quantum annealing (QA)25,26 have been 
developed, with expectations of faster processing times compared to  SA27. However, despite its potential, the 
realization of quantum annealing is currently restricted due to limitations in device performance. Large-scale 
problems remain challenging to solve using quantum annealing  methods28,29. In addition to simulated annealing, 
various other algorithms have been developed for solving Ising models. These include coherent Ising  machines30, 
simulated  bifurcation31, and coupled oscillation  networks32.

Simulated annealing that utilizes p-bits (pSA) is grounded in a probabilistic computing paradigm, which 
enables its implementation on classical computers. This theoretical framework positions pSA as a potential tool 
for efficiently solving large-scale problems. A potential advantage of pSA is its ability to update nodes in paral-
lel, as opposed to the serial updating method of traditional SA. This means that multiple nodes in the network 
can be updated simultaneously rather than one at a time, which could potentially lead to a faster convergence to 
the global minimum energy state, speeding up the process of finding the optimal solution. Preliminary studies 
have demonstrated that pSA can effectively solve small-scale  problems13. On the other hand, the efficacy of pSA 
appears to diminish as the scale of the problem increases. Simulation studies have indicated that as the size of 
the problems increases, particularly in the cases of graph isomorphism and MAX-CUT problems, the effective-
ness of finding solutions using pSA significantly  diminishes21. One of the challenges is that the energy of the 
Ising model does not decrease as expected and remains high, indicating that pSA struggles to find optimal or 
near-optimal solutions for these larger problems. In pSA, the exact reasons behind this limitation remain unclear 
and are yet to be understood.

The initial part of this article will involve a detailed analysis of the issues encountered with pSA. This will 
involve using simulation techniques to study the behavior of the p-bits in detail, with the aim to identify the root 
cause of the aforementioned problems. The analysis identifies that the failure to lower the energy of the Ising 
model, which is an issue encountered during the optimization process, stems from oscillations occurring among 
the p-bits. This issue arises because pSA operates as a feedback system, where the output at one stage becomes 
the input for the next stage, causing the oscillations to occur and impede the reduction of energy. Based on the 
insights gained from the analysis, two new pSA algorithms are introduced: time average pSA (TApSA) and stalled 
pSA (SpSA). These algorithms aim to counteract the oscillations based on partial deactivation of p-bits, thereby 
overcoming the main issue identified with the current pSA process. These newly proposed algorithms are then 
put to the test through simulations conducted using Python. The simulations are applied to solve maximum cut 
(MAX-CUT)  problems33, which are typical examples of combinatorial optimization problems. The simulation 
results demonstrate that the newly proposed pSA algorithms significantly outperform both the conventional pSA 
algorithm and traditional SA algorithms This implies that these new algorithms may provide a more effective 
method for solving combinatorial optimization problems, especially for larger problem sizes where traditional 
methods struggle.

Methods
Problem identification of pSA
A combinatorial optimization problem is represented using an Ising model that represents an energy. The energy 
is represented by Hamiltonian that is defined as follows:

where σi ∈ {−1, 1} is a binary state, h are biases for p-bits, and J are weights between p-bits. Depending on 
combinatorial optimization problems, different h and J are assigned. Simulated annealing attempts to reach the 
global minimum energy of Eq. (2) by changing the states σi . An algorithm of chancing σi is different depending 
on SA  algorithms13,14,21,23.

pSA13 is illustrated in Fig. 1. In pSA, each p-bit is biased with h and is connected with other p-bits with weights 
J. The input of p-bit Ii(t + 1) is calculated using the outputs of other p-bits that is defined as follows:

where I0 is a pseudo inverse temperature used to control the simulated annealing. During the simulated anneal-
ing process, I0 is gradually increased in attempt to lower the energy of the Ising model. When I0 is small, σi can 
be easily flipped between ‘− 1’ and ‘+ 1’ to search for many possible solutions of the combinatorial optimization 
problem. When I0 is large, σi can be stabilized in attempt to reach the global minimum energy. σi can be found 
as the solution of the combinatorial optimization problem at the global minimum energy.

Let us explain an issue of pSA using a simulated result of a maximum-cut (MAX-CUT) problem that is a 
typical combinatorial optimization  problem33 (Fig. 2). The MAX-CUT problem aims to partition a graph into 
two groups in such a way that the sum of the weights of the edges crossing between the two groups is maximized. 
This process involves ‘cutting’ the graph into two separate sections, hence the term ‘MAX-CUT’. A five-node 
MAX-CUT problem with edge weights of − 1 and +1 is illustrated (Fig. 2). The black circle illustrates a spin state 
of ‘+ 1’, while the white circuit illustrates a spin state of ‘− 1’. In the graph, the weight associated with each edge, 
which can be either − 1 or + 1, is symbolized by the variable J. This variable is crucial in the MAX-CUT problem 
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Figure 1.  Simulated annealing based on p-bit (pSA). p-bits (left) probabilistically operates based on Eq. 
(1). A combinatorial optimization problem is represented by an Ising model that corresponds to an energy 
(Hamiltonian). Based on an Ising model, each p-bit is biased with h and is connected with other p-bits with 
weights J (right top). During the simulated annealing process, an pseudo inverse temperature I0 is gradually 
increased to reach the global minimum energy ( Hmin ). pSA attempts to lower the energy of the Ising model 
by changing the p-bit states σi . If the energy reaches the global minimum energy σi are a solution of the 
combinatorial optimization problem (right bottom).

Figure 2.  A five-node maximum cut (MAX-CUT) problem with edge weights of −1 and +1 . MAX-CUT 
problem is a typical combinatorial optimization problem. The line cuts the edges to divide the graph into two 
groups while the sum of the edge weights is maximized. The graph is divided into Group A (nodes 1, 3, and 4) 
and Group B (nodes 2 and 5), with a sum of edge weights equal to 4.
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as it determines the optimal partition of the graph. During the simulated annealing process, the spin states are 
flipped to lower the energy. The goal is to find the optimal solution, which corresponds to the minimum energy 
state. After the process, the graph is divided into Group A (nodes 1, 3, and 4) and Group B (nodes 2 and 5), with 
a sum of edge weights equal to 4.

pSA with the G1 problem is simulated to identify and understand the current issue of pSA. The pSA algo-
rithm is executed using Python 3.11 on Apple M1 Ultra with 128 GB memory. G1 is a specific combinatorial 
optimization challenge called the MAX-CUT problem from the G-set  benchmark34. The G1 graph consists of 
800 nodes and 19,176 edges that are randomly interconnected. To manage the simulated annealing process of 
pSA, the pseudo inverse temperature I0 is gradually increased over time from I0min to I0max , following the formula 
I0(t + 1) = I0(t)/β , where β is 0.995, I0min is 0.0149, and I0max=1.49 (Fig. 3a). A method of determining these 
hyperparameters will be explained in the last subsection. During the simulated annealing process, all the p-bit 
states σi start to oscillate between ‘− 1’ and ‘+ 1’. The average value of all the p-bit states is changed between ‘− 1’ 
and ‘+ 1’ at every cycle (Fig. 3b). An unexpected issue arises due to this oscillation: the energy starts to increase 
rather than decrease towards a global minimum (Fig. 3c). This suggests that pSA is not reaching the optimal 
solution, as we would typically expect the energy to minimize in a successful simulated annealing process.

Proposed algorithms based on partial deactivation of p‑bits
SA based on time average p‑bit (TApSA)
In this article, two new pSA algorithms with nonlinear functions are introduced, which partially deactivates p-bits 
to mitigate the oscillations. The first algorithm is SA based on time average p-bit (TApSA). The TApSA algorithm 
draws its inspiration from stochastic simulated annealing (SSA)21. SSA approximates the behavior of p-bits using 
a method called stochastic computing, which is particularly suited for simulated annealing processes. Stochastic 
computing is a computational approach where values are represented as the frequencies (time averages) of 1s 
in bit  streams35,36. This allows for the efficient operation of time series computations in a way that is hardware 
efficient in terms of physical area  usage37. The use of stochastic computing has been successfully applied in a range 
of computational applications, such as in low-density parity-check decoders, image processing, digital filters, and 
deep neural  networks38–41. The SSA approach approximates the tanh function (Eq. 1), a key component of the 
pSA operation, using a saturated updown counter, which results in an operation that calculates tanh in a time 
series manner. Contrary to pSA, SSA has been shown to be capable of effectively solving large-scale combinatorial 
optimization problems. This suggests that the new TApSA algorithm, which is inspired by SSA, could potentially 
address the limitations identified in traditional pSA when dealing with large problem sizes.

Based on the previously discussed explanations, the time average operation is a key element to solve the issue 
of pSA. The proposed TApSA incorporates a time-average operation into the pSA algorithm. This operation, 
which is added to Eq. (3) of pSA, is defined as follows: 

 where TIi(t + 1) represents a temporary value used for the time averaging operation and the variable α is the 
size of the time window over which TIi(t + 1) is averaged. Ii(t + 1) is the input for the p-bit, as defined in Eq. 
(1) that is also used in TApSA. The set of equations in Eq. (4) is responsible for calculating the time average of 
the p-bit input signal. This operation effectively smooths out the signal over a certain time window, which helps 
to reduce random fluctuations or ‘noise’ in the signal. Another consequence of this time-averaging operation is 
that it highlights or emphasizes the lower frequency components of the signal while simultaneously reducing or 
attenuating the higher frequency components.

(4a)TIi(t + 1) = hi +
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Figure 3.  Issue of pSA. pSA is simulated by Python with G1 that is a MAX-CUT problem of the G-set 
benchmark. During the simulated annealing process, the pseudo inverse temperature I0 is increased to control 
pSA (a). A mean of all the p-bits states is changed between ‘− 1’ and ‘+ 1’ at every cycle (b). Because of this 
oscillation, the energy starts to increase after the oscillation, although the energy is expected to be lower to the 
global minimum energy (c).
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SA based on stalled p‑bit (SpSA)
The second algorithm is simulated annealing based on stalled p-bit (SpSA). SpSA takes inspiration from the 
sparse random signals used in invertible logic  operations42. Invertible logic is an application of p-bits, which 
permits bidirectional operations of any function. Sparse random signals are applied in such a way that they 
probabilistically halt, or “stall,” the addition of random signals to the invertible logic operations, subsequently 
reducing error rates.

The SpSA algorithm employs a similar approach, where it probabilistically stalls the behavior of p-bits. Specifi-
cally, in SpSA, the input of a p-bit, represented as Ii(t) , is probabilistically stalled and maintains the same value 
Ii(t) from the previous time step. The equation for SpSA as mentioned above is:

In this equation, the input of the p-bit at time t+1, Ii(t + 1) , can either be stalled (i.e., be the same as the input 
at time t, Ii(t) ), with a probability p, or take on a new value with a probability of (1− p) . This approach is a sig-
nificant deviation from traditional pSA, where Eq. (3) is replaced by Eq. (5) in SpSA.

MAX‑CUT problems and annealing parameters for evaluation
The proposed TApSA and SpSA algorithms are evaluated in MAX-CUT problems using Python 3.11 on Apple 
M1 Ultra with 128 GB memory. Two MAX-CUT benchmarks, namely G-set and K2000, are used for these simu-
lations (Table 1). The G-set includes Gxx graphs that vary in node sizes and edge  connections34. On the other 
hand, K2000 represents a fully-connected graph with edge weights of either ‘− 1’ or ‘+ 1’43. Before the simulated 
annealing process begins, J of the Ising model is assigned based on the graph weights.

Performance of the proposed TApSA and SpSA algorithms is compared with the traditional pSA. The anneal-
ing algorithms are outlined in Table 2. In these simulated annealing algorithms, a crucial factor is the manipula-
tion of the pseudo inverse temperature, a value which has significant implications on annealing to explore the 
solution space. During the simulated annealing process, the pseudo inverse temperature I0 is gradually increased 
over time from the initial value I0min to the maximum value I0max , following the formula I0(t + 1) = I0(t)/β 

(5)Ii(t + 1) =

{

Ii(t), with probability of getting stalled p

I0

(

hi +
∑

j Jij · σj(t)
)

. with probability(1− p)

Table 1.  Summary of MAX-CUT benchmarks used for evaluating simulated annealing algorithms, including 
TApSA, SpSA, and traditional SA and pSA. The Gxx graphs are part of the G-set  benchmark34, and K2000 is a 
fully-connected graph  benchmark43.

Graph # nodes Structure Weights (J) # Edges Best known value

G1 800 Random + 1 19,176 11,624

G6 800 Random + 1, − 1 19,176 2178

G11 800 Troidal + 1, − 1 1600 564

G14 800 Planar + 1 4694 3064

G18 800 Planar + 1, − 1 4694 992

G22 2000 Random + 1 19,990 13,359

G34 2000 Troidal + 1, − 1 4000 1384

G38 2000 Planar + 1 11,779 7688

G39 2000 Planar + 1, − 1 11,778 2408

G47 1000 Random + 1 9990 6657

G48 3000 Troidal + 1, − 1 6000 6000

G54 1000 Random + 1 5916 3852

G55 5000 Random + 1 12,498 10,299

G56 5000 Random + 1, − 1 12,498 4017

G58 5000 Planar + 1 29,570 19,293

K2000 2000 Full + 1, − 1 1,999,000 33,337

Table 2.  Summary of the determined hyperparameters for pSA, TApSA, and SpSA. In the simulated annealing 
process, all the p-bit states are updated using these equations in parallel in attempt to reach the global 
minimum energy of an Ising model.

Algorithm Equations

pSA13 Eqs. (1) and (3)

TApSA (proposed) Eqs. (1) and (4)

SpSA (proposed) Eqs. (1) and (5)
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(Table 3). The hyperparameters for the simulated annealing processes, such as I0min , I0max , and β , are not arbi-
trarily selected. Rather, they are determined in accordance with a specific statistical method, which is designed 
to optimize the performance of the simulated annealing algorithm (SSA)44. In addition to these, a traditional 
SA algorithm, a well-established method for optimization problems, is also implemented for the sake of per-
formance  comparison16. In the traditional SA algorithm, the annealing temperature T is managed in a slightly 
different manner: the temperature is gradually decreased at each cycle by a factor of �IT , following the equation 
T ← 1/(1/T +�IT ) . In this experiment, the initial temperature is set to 1, and the final temperature is set to 
1/1000.

All of the simulated annealing algorithms, including TApSA, SpSA, pSA, and traditional SA, are simulated 
for a total of 1,000 cycles each. This number of cycles allows the annealing system ample opportunity to explore 
the solution space and converge to a solution. Due to the inherent randomness in these probabilistic algorithms, 
the evaluation is not based on a single trial. Instead, to get a more accurate understanding of their performance, 
100 separate trials are executed for each algorithm. The outcomes of these trials are then used to calculate the 
minimum, average, and maximum cut values of the MAX-CUT problems, providing a comprehensive assess-
ment of the algorithms’ performance.

Results
Simulation analysis of TApSA
The TApSA algorithm is simulated on the G1 graph with varying window size α (Fig. 4). During the annealing 
process, the pseudo inverse temperature I0 is gradually increased over time for 1,000 cycles from I0min = 0.0149 

Table 3.  Statistically determined hyperparameters for pSA, TApSA, and SpSA. A pseudo inverse temperature 
is gradually increased over time from I0min to I0max , following the formula I0(t + 1) = I0(t)/β . γ = 0.1 and 
δ = 10 are used in this article.

Parameter Value

si
√

(n− 1) · Var(Ji,:)

I0min
γ

mean(si)

I0max
δ

mean(si)

β
(

I0min
I0max

)

(

1
cycle−1

)

Figure 4.  Simulation analysis of TApSA on the G1 graph with different window size α . The mean values of all 
the p-bit states are oscillated between ‘− 1’ and ‘+ 1’ in case of α of two and three (top of a and b), resulting in 
the energy increase of the Ising model instead of decrease (bottom of a and b). When α is four, no oscillation 
occurs and hence the energy goes down to the global minimum energy (c). TApSA can solve the oscillation 
issue of pSA.
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to I0max = 1.49 , following the formula I0(t + 1) = I0(t)/0.995 . α is incrementally increased from two to four to 
observe the corresponding changes in the behavior of TApSA. Note that when α equals to one, TApSA operates 
exactly the same as pSA. Increasing α can make signals of p-bits smoother. For α = 2 , the mean of all the p-bit 
states oscillates between ‘− 1’ and ‘+ 1’. This oscillatory pattern implies that the algorithm alternates between two 
distinct states throughout its execution. This behavior, however, does not lead to the energy of the system decreas-
ing towards the global minimum. Instead, it causes an increase in the energy level. Similarly, when α is increased 
to three, the oscillation persists, but its start cycle is delayed in comparison to when α = 2 . Despite this delayed 
onset of oscillation, the energy of the Ising model still increases, failing to converge to the global minimum. 
However, a significant change in behavior is observed when α is increased to four. In this case, no oscillation is 
observed in the mean of the p-bit states. This allows the energy of the Ising model to decrease steadily, eventu-
ally reaching the global minimum. Thus, for this specific graph and set of conditions, an α value of four appears 
to facilitate the effective optimization, leading the annealing system towards the global minimum energy state.

Next, the TApSA algorithm is simulated to evaluate the normalized cut value on the G1, G11, G58, and K2000 
MAX-CUT problems by varying the windows size α from one to ten (Fig. 5). By varying the window size, the 
behavior of the TApSA algorithm and the resulting cut values are influenced. To evaluate the performance, the 
normalized cut values are calculated using the minimum, mean and maximum cut value divided by the best-
known value for each benchmark graph. This normalization process allows for fair comparisons across different 
graph structures and scales. The parameters to control the pseudo inverse temperature I0 are summarized in 
Table 4. These parameters are determined based on Table 3.

As α is increased to a specific value, the cut values tend to get closer to the best-known values due to the 
elimination of oscillation in the algorithm. However, when α surpasses this optimal value, the normalized cut 
value starts to decrease slightly as α continues to increase. This suggests that while increasing α can improve 

Figure 5.  Normalized cut values using the TApSA algorithm on the G1, G11, G58 and K2000 MAX-CUT 
problems by varying the windows size α from one to ten. This window size α plays a key role in determining 
the quality of the solution and can control the behavior of the TApSA algorithm. When α is increased to a 
specific value, the cut values can be closer to the best-known values because of no oscillation. The peak of the 
normalized mean cut value is obtained with different α depending on the graph.
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performance up to a point, overly large window sizes may have a detrimental effect. Interestingly, the specific 
value of α that yields the peak normalized mean cut values varies depending on the graph. This indicates that 
the optimal window size is not universal but instead depends on the particular characteristics of the graph being 
analyzed. The source of these differing optimal α values can be traced to the weights present in the respective 
graphs, as listed in Table 1. For instance, G1 and G58 only contain weights of ‘+ 1’, while G11 and K2000 contain 
both ‘− 1’ and ‘+ 1’ weights. This imbalance in weights can lead to strong oscillations in the algorithm. Large α 
values can help to mitigate these oscillations, effectively smoothing the search through the solution space and 
improving its ability to find the global minimum.

Simulation analysis of SpSA
The G58 graph is used to evaluate the SpSA algorithm, considering varying probabilities of p-bits getting stalled, 
denoted as p (Fig. 6). The parameter p is systematically incremented from 0.1 to 0.5 in order to thoroughly under-
stand how changes in p impact the behavior and effectiveness of the SpSA algorithm. When p equals zero, there 
is no discernible difference in how SpSA and the pSA algorithm function. When p is 0.1, the average of all p-bit 
states starts to oscillate, alternating between ‘− 1’ and ‘+ 1’. This oscillation mirrors the behavior observed in the 
TApSA algorithm with small α , leading to an increase in the energy level of the system, which usually signifies a 
less optimal solution. When p rises to 0.3, though the oscillation continues, its magnitude is diminished compared 
to the scenario where p = 0.1 . The most significant change in behavior of the SpSA algorithm is observed when p 
reaches 0.5. In this situation, the oscillation of the average p-bit states ceases completely. The absence of oscillation 
allows the energy of the Ising model to decrease steadily. As the energy reduces, the energy moves closer to the 
most optimal solution, ultimately achieving the global minimum, which represents the best possible solution.

Table 4.  Summary of hyperparameters to control I0 for pSA, TApSA, and SpSA on the G1, G11, G58, K2000 
benchmarks. The number of cycles is 1000.

Parameter G1 G11 G58 K2000

si 6.69 1.99 3.22 44.7

I0min 0.0149 0.0501 0.0311 0.00224

I0max 1.49 5.01 3.11 0.224

β 0.995 0.995 0.995 0.995

Figure 6.  Simulation analysis of SpSA on the G58 graph with different probabilities of getting stalled on p-bits 
p. The mean values of all the p-bit states are oscillated between ‘− 1’ and ‘+ 1’ in case of p of 0.1 and 0.3 (top of a 
and b), resulting in the increase of energy instead of decrease (bottom of a and b). When p is 0.5, no oscillation 
occurs and hence the energy goes down to the global minimum energy (c). SpSA can also solve the oscillation 
issue of pSA.
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Next, the SpSA algorithm is simulated to evaluate the normalized cut value on the G1, G11, G58, and K2000 
MAX-CUT problems by varying the probability of p-bits getting stalled p from 0 to 0.9 (Fig. 7). As p is increased 
to a specific value, the cut values tend to get closer to the best-known values due to the elimination of oscillation 
as well as TApSA. When p surpasses this optimal value, the normalized cut value starts to decrease slightly as p 
continues to increase. The specific value of p that yields the peak normalized mean cut values varies depending 
on the graph.

Based on the simulated results of TApSA and SpSA, increasing α exhibits the similar effect to increasing p 
in terms of eliminating the oscillation, which is crucial for effective optimization. In both TApSA and SpSA, 
there appears to be an optimal value of α and p, respectively, which yields the best performance in terms of the 
normalized cut value. However, this optimal value is not universal and depends on the specifics of the graph. 
Moreover, surpassing these optimal values can actually lead to a decrease in performance.

Performance comparisons
A comparative analysis of the cut values on the G1 graph are conducted for three different simulated anneal-
ing algorithms: pSA, TApSA, and SpSA (Fig. 8). To assess the effectiveness of these algorithms in finding cut 
values, simulations involving 1000 cycles are performed for each, and these are repeated 100 times. The repeti-
tion of these simulations leads to the collection of a substantial amount of data, enabling a robust evaluation 
of the minimum, mean, and maximum cut values. All cut values using pSA are found to be zero, an intriguing 
outcome attributable to the oscillation that is observed during the annealing process. This suggests that the pSA 
algorithm is unstable under these conditions, leading to a failure to produce any viable cut values. In the case of 
the TApSA and SpSA algorithms, they are simulated with the most advantageous parameters, namely α = 4 and 
p = 0.6 , respectively. The choice of these specific values is determined on previous experiments and analysis, 
which demonstrated superior performance. When comparing the results, it is shown that both TApSA and SpSA 

Figure 7.  Normalized cut values using the SpSA algorithm on the G1, G11, G58 and K2000 MAX-CUT 
problems by varying the stalled probability p from 0 to 0.9. When p is increased to a specific value, the cut values 
can be closer to the best-known values because of no oscillation as well as SpSA.
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outperform pSA, achieving near-optimal solutions. This is largely due to the elimination of oscillations observed 
in the pSA algorithm, made possible by the design of the TApSA and SpSA algorithms.

Furthermore, a comparison is also conducted between the proposed algorithms (TApSA and SpSA) and the 
traditional SA method, specifically using the G-set and K2000 benchmarks. The detailed results of this compari-
son are summarized in Table 5. The pSA algorithm is found to consistently fail to lower the energy of the Ising 
model, leading to particular patterns in the mean cut values. When the weight values of the graphs are solely ‘+ 
1’, the mean cut values turns out to be 0. Conversely, when the weight values are either ‘− 1’ or ‘+ 1’, the mean cut 
values are negative. On the 16 benchmarks, the normalized mean cut value of pSA is only 0.8% on average. The 
traditional SA algorithm, on the other hand, delivers better cut values compared to pSA. However, it is worth 
noting that these values are still significantly off from the best-known values, where the normalized mean cut 
value is 44.4% on average. Remarkably, the proposed algorithms, TApSA and SpSA, demonstrate substantial 
superiority over both pSA and traditional SA. TApSA and SpSA achieve the normalized mean cut value of 98.3% 
and 98.4% on average, respectively, in all 16 benchmarks used in this study. This underlines the effectiveness of 
these proposed methods and their potential for practical applications in solving similar optimization problems.

Figure 8.  Cut values obtained using simulated annealing on the G1 graph for 100 trials. The conventional pSA 
causes all 0 values due to the oscillation (a). In contrast, TApSA with α = 4 and SpSA with p = 0.6 can reduce 
the energy of the Ising model, which results in good cut values that are closer to the best-known values (b and 
c).

Table 5.  Comparisons of mean cut values in the MAX-CUT benchmarks. On the 16 benchmarks from 800 
to 5000 nodes, the proposed methods improve the normalized cut value from 0.8 to 98.4% on average in 
comparison with the conventional pSA.

Graph

SA14 pSA13 TApSA (proposed) SpSA (proposed)

Mean cut value Mean cut value Mean cut value Window size α Mean cut value Probability of getting stalled p

G1 10757.91 0 11574.69 4 11567.89 0.6

G6 1270.88 173.48 2150.49 2 2151.23 0.1

G11 336.72 6.18 542.7 3 543.78 0.5

G14 2801.84 0 3035.74 3 3034.78 0.5

G18 591.5 − 49.79 968.31 2 968.94 0.1

G22 11161.58 0 13277.55 3 13271.27 0.5

G34 469.22 − 29.62 1331.22 2 1335.72 0.5

G38 6638.96 0 7617.3 3 7610.48 0.5

G39 854.57 − 489.49 2343.52 2 2349.57 0.2

G47 5851.46 0 6623.31 3 6618.35 0.6

G48 3563.94 3057.22 5867.16 2 5897 0.1

G54 3479.42 0 3815.16 3 3811.77 0.5

G55 6968.09 0.03 10184.66 2 10193.41 0.2

G56 696.99 − 185.22 3900.35 2 3912.14 0.1

G58 15787.85 0 19108.08 3 19096.28 0.5

K2000 11369.62 − 4889.64 32812.64 2 32860.58 0.1
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Discussion
In this article, we have critically examined the limitations of the simulated annealing using probabilistic bits 
(pSA) algorithm, specifically with large-scale combinatorial optimization problems such as the maximum cut 
(MAX-CUT) problem. Our detailed analysis has identified disruptive oscillations as the root cause of energy 
stagnation in the pSA process. To mitigate this, we have proposed and rigorously tested two novel algorithms, 
time average pSA (TApSA) and stalled pSA (SpSA). The results suggest significant performance improvements 
over traditional methods (SA and pSA), highlighting the potential of our proposed algorithms in effectively 
tackling large-scale optimization tasks.

Stochastic simulated annealing (SSA) is another p-bit-based simulated annealing that outperforms pSA and 
SA in several combinatorial optimization  problems21. SSA is implemented using digital hardware because the 
tanh function is approximated using stochastic computing. In terms of energy consumption, TApSA and SpSA 
can reduce energy consumption than SSA because of the nature of their implementation. When the p-bit is 
implemented using an emerging device, the energy consumption can be 10 times smaller than that implemented 
using a traditional digital  circuit3. In addition, the p-bit is a single device, while it can be approximated using 
several hundreds of transistors in digital implementation, resulting in a more compact hardware implementation. 
In the future, large-scale p-bit-based simulated annealing, TApSA and SpSA could gain in terms of energy and 
area consumption in comparison with SSA.

In terms of computation cost, TApSA and SpSA require extra computation for nonlinear functions in com-
parison with pSA. In Fig. 9a, the simulation time for TApSA is plotted against the parameter α , while Fig. 9b 
illustrates the simulation time for SpSA as a function of p, with both scenarios considering 1000 cycles for solving 
problems G1, K2000, and G58. It is observed that TApSA’s simulation time remains relatively constant regard-
less of variations in α , across the same number of cycles. In contrast, SpSA exhibits longer simulation times at 
smaller values of α , as opposed to shorter times at larger p values. This consistent behavior is further detailed in 
Fig. 9c, which shows the total simulation time, inclusive of the duration spent tuning α or p. Prior to the annealing 
process, parameter tuning for TApSA and SpSA involves adjusting α or p over 100 cycles to identify the optimal 
parameter settings. When compared to pSA, it is noteworthy that the additional computational costs associated 
with TApSA and SpSA are less significant at higher cycle counts. From another point of view, it would be prefer-
able to realize new emerging devices that mimic these algorithms for future implementation.

To determine if pSA induces oscillation in optimization problems other than MAX-CUT, a 100-spin graph 
isomorphism (GI) problem is employed. This problem involves ascertaining the isomorphism of two 10-node 
graphs. GI problems are inherently more complex than MAX-CUT problems, primarily due to the presence of 
non-zero values of h in GI, in contrast to the all-zero values of h in MAX-CUT. Previous  literature21 noted that 
pSA failed to converge in GI problems with more than 25 spins, though it did not explicitly address the oscillation 
of p-bit states. To further explore this issue, both pSA and TApSA are applied to the 100-spin GI problem over 
1000 cycles as shown in Fig. 10. The result shows that pSA, similar to its performance in MAX-CUT problems, 
is unable to reduce energy due to p-bit state oscillation. On the other hand, TApSA effectively resolves this oscil-
lation issue, achieving a reduction in energy to the global minimum. These findings suggest that while TApSA 
shows promise in addressing oscillation issues in various algorithms, a more detailed analysis in other contexts 
is planned for future work.

The performance of the newly proposed TApSA algorithm is benchmarked against other notable methods, 
specifically the GPU-based asynchronous parallel  algorithm45 and the coherent Ising machine (CIM)30, with 
details presented in Table 6. This comparison uses normalized mean cut values, calculated by dividing the mean 
cut value by the best-known value for each problem. The GPU-based approach evaluates mean cut values over 
1000 annealing steps. Conversely, the performance data for CIM, sourced from the  literature47, is based on 
simulations using  SimCIM46 for a substantially longer duration of 50,000 annealing steps. In comparison with 
the GPU-based method, TApSA achieves comparable normalized mean cut values. While TApSA’s performance 
is marginally lower than CIM, it shows potential for improvement with an increased number of annealing steps.

Initially, p-bits are modeled with uniform random signals, where ri(t) ∈ {−1 : 1} , as outlined in Eq. (1). To 
explore the impact of random signals on performance, this study introduces random signals derived from a Pois-
son distribution for the p-bits. Specifically, the random signal ri(t) = 1/� · X − 1 is generated according to the 
Poisson probability formula P(X = k) = e−�

�
k/k! , with � set to 10. A comparison of normalized mean cut values, 

Figure 9.  The simulation duration for TApSA and SpSA was assessed by varying the parameters α and p, 
respectively, across 1000 cycles (as shown in figures a and b). This evaluation includes the total time spent on the 
simulations over the number of cycles, incorporating the time required for tuning the parameters α or p (c).
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Figure 10.  In the context of a 100-spin graph isomorphism (GI) problem, which involves determining if 
two 10-node graphs are isomorphic, distinct performance characteristics of pSA and TApSA with α = 10 are 
observed. In case (a), pSA struggles to minimize energy due to oscillations in p-bit states, a challenge similarly 
noted in the MAX-CUT problem. Conversely, TApSA effectively addresses this oscillation issue, as shown in 
case (b), leading to a significant reduction in energy that can reach the global minimum.

Table 6.  Comparisons of normalized mean cut values obtained in this research with those reported in related 
 works45,47. In this comparison, both the GPU-based approach and TApSA are configured to perform 1000 
annealing steps. In contrast, the SimCIM approach, as referenced in the literature, requires a significantly 
higher number of annealing steps, totaling 50,000. This disparity in the number of annealing steps highlights 
the efficiency differences among these methods.

Benchmark GPU45 SimCIM47 TApSA

G22 N/A 99.6% 99.4%

G39 N/A 97.9% 97.3%

G47 99.4% N/A 99.5%

G54 97.7% N/A 99.0%

K2000 N/A 99.6% 98.4%

Table 7.  Normalized mean cut values on average for all 16 benchmarks with different random signals.

ri(t) pSA TApSA SpSA

Uniform 0.828% 98.3% 98.4%

Poisson 3.94% 97.9% 97.9%
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using both uniform random and Poisson distribution-based signals, is presented in Table 7. The results indicate 
that the type of random signals has a negligible effect on the performance of all three algorithms under study.

P-bits have found application in various domains, one of which includes Gibbs  sampling12. A key distinction 
between Gibbs sampling and pSA lies in the approach to node updates: Gibbs sampling typically operates serially, 
while pSA updates nodes in parallel. It is important to note that although extended versions of Gibbs sampling, 
such as chromatic Gibbs sampling, have the capability to operate in  parallel7, the scope of their applications is 
relatively limited. Simulation results have shown that pSA faces an oscillation issue due to its parallel update 
mechanism, a problem which the proposed algorithms aim to address. However, applying techniques based 
on TApSA and SpSA to Gibbs sampling, which inherently operates serially, presents a significant challenge. 
Exploring a Gibbs sampling method that incorporates the proposed techniques is an intriguing direction for 
future research.

In conclusion, our research has broadened the understanding of the pSA process and has led to the develop-
ment of more effective algorithms for complex optimization tasks. The proposed TApSA and SpSA algorithms 
offer promising avenues for overcoming the limitations of the traditional pSA approach and could be crucial for 
future progress in combinatorial optimization.

Data availability
All data generated or analyzed during this study are included in this published article. The Python codes are 
available at https:// github. com/ noniz awa/ pSA.
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