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Understanding the exposure 
risk of aerosolized Coccidioides 
in a Valley fever endemic 
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Coccidioides is the fungal causative agent of Valley fever, a primarily pulmonary disease caused by 
inhalation of fungal arthroconidia, or spores. Although Coccidioides has been an established pathogen 
for 120 years and is responsible for hundreds of thousands of infections per year, little is known about 
when and where infectious Coccidioides arthroconidia are present within the ambient air in endemic 
regions. Long-term air sampling programs provide a means to investigate these characteristics 
across space and time. Here we present data from > 18 months of collections from 11 air sampling 
sites across the Phoenix, Arizona, metropolitan area. Overall, prevalence was highly variable across 
space and time with no obvious spatial or temporal correlations. Several high prevalence periods were 
identified at select sites, with no obvious spatial or temporal associations. Comparing these data with 
weather and environmental factor data, wind gusts and temperature were positively associated with 
Coccidioides detection, while soil moisture was negatively associated with Coccidioides detection. 
These results provide critical insights into the frequency and distribution of airborne arthroconidia and 
the associated risk of inhalation and potential disease that is present across space and time in a highly 
endemic locale.

The changing nature of modern climates and landscapes requires a closer investigation of pathogenic envi-
ronmental microbes. An oft-referenced pathogen tied to climate change is Coccidioides, the causative agent of 
coccidioidomycosis, or Valley fever. These dimorphic soil-dwelling fungi within the Onygenales order and are 
represented by two phylogenetically distinct species, C. posadasii and C. immitis1,2. C. immitis is found in desert 
regions in central and southern California and Baja California, as well as isolated locations in south-central Wash-
ington state, while C. posadasii is found in the thermic and arid desert regions of Arizona, Nevada, New Mexico, 
Texas, Mexico, and Central and South  America3. Exposure to Coccidioides is estimated to result in at least 150,000 
cases each year in the United States, with the vast majority reported from Arizona and  California3,4; however, 
only a fraction (10,000–20,000 cases) are officially reported to public health  agencies3,4. This under-reporting is 
thought to be the result of limited medical awareness, frequent misdiagnosis, lack of care seeking, testing and 
diagnostic challenges, and variations in reporting  guidelines3–6. Most individuals become infected by inhaling 
airborne infectious fungal spores or arthroconidia, yet the factors that facilitate and maintain aerosolization of 
arthroconidia are poorly understood. It is thought that the Coccidioides lifecycle and ecology along with weather 
and anthropogenic factors drive environmental aerosolization.
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Coccidioides fungi have a complex lifecycle that includes two distinct morphologies. The first is the sapro-
phytic cycle that occurs within soil where mycelia develop before forming infectious arthroconidia. The second 
is the parasitic cycle which occurs when arthroconidia change into immature spherules and develop numerous 
endospores which can colonize  tissues1. The role of the mammalian hosts has been an area of recent interest in 
the mammalian-driver  hypothesis7,8, in which small mammalian hosts are the drivers of this system, allowing 
high burdens of endospores within a host to colonize environmental soils and transition to a saprophytic cycle 
once the host dies from the disease, before infecting a successive  host7. In this, Coccidioides may be an endozoan 
organism that does not necessarily kill the host, but once the host dies, the carcass provides the needed resources 
for an extended saprophytic life cycle within the  environment8. However, once the fungus has transitioned to the 
saprophytic cycle, subsequent infections are the result of arthroconidia production and further spread to naïve 
susceptible hosts via soil disturbance and inhalation of disarticulated  conidia1,7,8. It has also been shown that 
Coccidioides can persist in soil for at least 6  years9 and perhaps for thousands of years or more under ideal soil and 
microclimate  conditions10. Human infections are primarily driven by inhalation of aerosolized  arthroconidia11 
and, based on coccidioidin skin test surveys, exposure is common in individuals inhabiting endemic  regions12,13. 
Although research has focused on characterizing the ecology and distribution of Coccidioides within the soil 
 environment9,14–16, limited research has characterized the distribution or abundance of arthroconidia within 
the  air17,18, restricting our understanding of drivers of arthroconidia aerosolization and human exposure risk.

As the burden of Valley fever cases continues to  increase4 and climate shifts continue to shape the world 
around us, it is essential to identify the environmental factors that facilitate the growth of the fungus and dis-
persal of the arthroconidia within the air to better model the risk of contracting this disease in endemic regions. 
However, these dynamics are complex, and are likely driven by many factors that vary across space and time. For 
example, at a coarse spatial scale (e.g., hundreds of kms), general climatic variables (e.g., average temperature, 
precipitation, etc.) influence the area that Coccidioides could survive in or the suitable climatic niche of Coccidi-
oides. At an intermediate spatial scale (e.g., ~ 10–100 kms), seasonal weather events and weather patterns (with 
anomalous precipitation, temperature, or winds) influence areas or periods of time that may promote higher 
abundances of Coccidioides and/or its mammalian  hosts19. At a fine spatial scale (e.g., 0.1–10 kms), anthropo-
genic impacts (e.g., agriculture and construction)20,21, highly localized weather events (e.g., rain events and 
wind event), and natural disasters (e.g., earthquakes, wildfires, etc.)21,22 increase the amount of soil disturbance 
allowing for potential increases in arthroconidia aerosolization. However, endemic presence of Coccidioides is 
dependent on Coccidioides being introduced into the soil (i.e., infected mammal dies below, or is buried in, the 
soil) and producing arthroconidia within a localized  environment10, a phenomenon that occurs at the smallest 
spatial scale (e.g., a few meters). Previous soil sampling has shown that Coccidioides presence is one of the most 
challenging dynamics to predict, as the distribution is generally not consistent across space and colonization is 
often a stochastic  event1,8,12.

Previous work has explored the relationship between possible environmental factors and Valley fever cases 
and Coccidioides exposure using statistical methods to model the number of human clinical cases across space 
and time using weather, dust storm, and airborne particulate datasets (e.g.,  PM10 and  PM2.5) (Table 1). However, 
these methods are limited by variability in time between arthroconidia exposure (inhalation) and diagnosis, 
underreporting of clinical cases, and lack of knowledge regarding the exposure location, which challenges the 
associations that can be identified. Although these attempts have limitations, several valuable trends have been 
explored and characterized (Table 1). Most notably, these analyses have identified increases in Valley fever cases 
related to increased precipitation, allowing for hyphal growth, followed by hot and dry periods, facilitating 
arthroconidia formation and aerosolization. In addition, previous analyses focusing on the impact of dust storms 
on clinical cases have been inconclusive with contrasting findings.

Unlike clinical case data, air surveillance for airborne Coccidioides provides a method to more directly assess 
Valley fever exposure risk that is not subject to the challenges associated with clinical cases and more directly 
measures prevalence of aerosolized Coccidioides in a highly endemic  region17. A careful, comprehensive collection 
of air filter data could provide a means to investigate factors that facilitate and maintain arthroconidia aerosoliza-
tion, a key area of research as the public health community takes a holistic view of Valley fever. Here, we describe 
results and analysis from a long-term air surveillance campaign in the greater Phoenix, AZ, metropolitan area. 
Through this campaign, we aimed to detect aerosolized Coccidioides across an endemic metropolitan region 
over an 18-month period, as well as identify factors that influence aerosolization, including daily local weather 
covariates, dust storms, and land cover.

Results
Coccidioides air surveillance
In total, 5243 filters from 630 days were tested for Coccidioides DNA across 11 sites in the greater Phoenix 
metropolitan area (Fig. 1a, Supplemental Table 1, Supplemental File 1). These data incorporate collections from 
three pilot programs and a sustained surveillance program that covered an 18-month period. During the first 
pilot program, samples were collected from 11 sites across 3 days in late August 2015. The second pilot program 
covered an 8-week period in 2016 (mid-September to early November)17. The third pilot program collected 
samples from three sites across several weeks in the latter half of 2017. The sustained surveillance program was 
the largest and most protracted and was conducted across 11 sites between January 2018 and June 2019.

An average of 5.45 (median: 7) filters were collected each week across all sites. Weekly Coccidioides prevalence 
(i.e., number of daily positive filters per week/total number of daily filters tested per week) varied from 0 to 100%, 
with a mean of 7.4% (median: 0%) across all sites (Fig. 1a). Positive Coccidioides weeks were often grouped over 
a limited duration (i.e., days to weeks) by site. Coccidioides was detected at a high prevalence for ~ 6 months at 
one site (Site 2A: January 2018–June 2018); however, several other sites had periods of sustained prevalence 
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Area of interest Years Model type
Response 
variable

Weather 
predictors 
considered

Other variables 
considered

Significant 
weather 
predictors

Significant 
other variables

Author 
conclusions Citation

Maricopa, AZ
Aug 2015, Oct 
2016, Fall 2017, 
Jan 2018–June 
2019

Univariate 
binomial mixed 
effects model

Daily Coccidi-
oides presence 
absence data

Wind speed, 
temperature, 
visibility, precipi-
tation

Soil moisture, 
 PM10

Wind speed None

Coccidioides 
aerosolization 
increases in 
response to 
high gusts, high 
temps and low 
soil moisture

This study

California (14 
counties) 2000–2020 Multiple 

(ensemble) Clinical cases Temperature, 
precipitation

Soil texture, 
elevation, % 
impervious 
surface

Lagged precipi-
tation, lagged 
temperature

Dependent on 
model

Drought can 
decrease Valley 
fever cases in the 
short term but 
increase cases in 
the years follow-
ing the drought 
conditions

19

Maricopa, Pima, 
Pinal Counties, 
AZ

2013–2018
General additive 
model (time 
series)

Clinical cases

Wind speed, 
mean max 
temperature, and 
total monthly 
precipitation 
with 2-month lag 
on all variables

PM10 with 
2-month lag

Mean max 
temp, lagged 
precipitation, 
wind speed, 
precipitation

Lagged  PM10

Lagged  PM10 
within the 
winter months 
had the largest 
impact on Valley 
fever cases

20

Maricopa 
County, AZ & 
Kern County, 
CA

2006–2020 Superposed 
epoch analysis Clinical cases None Dust storm data None None

No indication 
of an increase 
in Valley fever 
cases following 
dust storm 
activity

21

San Joaquin 
Valley, CA and 
southcentral, AZ

2000–2015 Linear and non-
linear regression Clinical cases Air temperature, 

precipitation

Soil moisture, 
dust concentra-
tion, NDVI, 
cropland area

Not applicable Not applicable

Air temperature, 
precipitation, 
soil moisture, 
dust concentra-
tion, NDVI, and 
cropland area 
could be signifi-
cant covariates 
for a predictive 
model

22

Maricopa, Pima 
Counties, AZ 2001–2011 Correlation 

Analyses Clinical cases Precipitation
PM10,  PM2.5, 
dust number, 
dust frequency

Not applicable Not applicable

Dust frequency 
was correlated 
but does not 
explain all vari-
ability in Valley 
fever cases

23

Maricopa, Pima 
Counties, AZ 1995–2006

Correlational 
analyses, regres-
sion

Clinical cases None NDVI None NDVI
Inverse relation-
ship between 
NDVI and Val-
ley fever cases

24

Kern County, 
CA 1995–2003

Generalized 
auto regressive 
moving average 
model

Clinical cases 
(weekly)

Temperature, 
precipitation, 
wind speed

None None None

Relationship 
between weather 
parameters and 
Valley fever case 
fluctuations are 
weak

25

Kern County, 
CA 1980–2002 Univariate and Clinical cases 

(monthly)
Temperature, 
precipitation, 
wind speed

None
Temperature, 
precipitation, 
wind speed

None

Relationship 
between weather 
parameters and 
Valley fever case 
fluctuations are 
weak

26

Pima County, 
AZ 1992–2003 Linear regres-

sion Clinical cases Precipitation PM10
Precipitation 
(lagged) PM10 (current)

Important role 
of precipitation 
with a 1.5–2-
year lag prior to 
exposure

27

Maricopa 
County, AZ 1998–2001 Poisson regres-

sion analysis Clinical cases
Precipitation, 
wind speed, 
temperature

Building 
permits, Palmer 
Z index, Palmer 
drought severity 
index,  PM10

Precipitation, 
wind, tempera-
ture

Building 
permits, Palmer 
Z index, Palmer 
drought severity 
index,  PM10

Poisson regres-
sion identi-
fied several 
weather, dust, 
and drought 
covariates as sig-
nificant to Valley 
fever incidence

28

Continued
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for several weeks (Sites 1A, 1D, 1F). Qualitatively, there was not a clear relationship between Coccidioides filter 
prevalence and clinical cases, with a sustained number of clinical cases across the Phoenix metropolitan area 
with the exception of an obvious and previously  reported33 spike in cases at the end of 2017 (Fig. 1b).

Throughout 2018, the yearly site prevalence ranged from 0.6 to 29.5% (mean: 5.8%, median: 3.3%) (Fig. 1c). 
In 2019, yearly site prevalence ranged from 0 to 27.8% (mean: 6.7%, median: 1.5%) (Fig. 1d). The higher preva-
lence sites (1A,1B, 1D, 2A, and 2C) were perimeter sites, with four of the five located on the eastern or southern 
perimeters of the Phoenix metropolitan area. Similar to yearly Coccidioides site prevalence, across the 18-month 
study period (2018–2019), Coccidioides prevalence was highly variable across seasons and sites, with the highest 
prevalence in the spring of 2019 (11.5%, 59/452, 95% CI 9.0–14.7%) and 2018 (8.3%, 81/893, 95% CI 6.7–10.3%), 
however; this trend was not consistent across sites with individual sites showing variable seasonal prevalence 
(Supplemental Fig. 1).

Coccidioides presence comparison with dust storms
Across the entire surveillance program, days with a reported dust storm had a Coccidioides prevalence of 5% 
(7/131, 95% CI 2.3–11.1%) compared with days without dust storms which had a prevalence of 7% (368/5112, 
95% CI 6.5–7.9%), p = 0.52. In 2018, a total of 14 dust storms were either reported to National Oceanic & 
Atmospheric Administration’s (NOAA) Storm Events Database (n = 13; 9/13 verified via photographic evidence) 
or identified through an investigator online search (n = 1). Coccidioides prevalence was ~ 5% (Table 2) on days 
with reported dust storms, while the prevalence was ~ 6% for the filters collected within the 7-days prior to the 
dust storm. There was no statistically significant difference in prevalence between days with a dust storm and 
days without utilizing all dust storm events (p = 0.83), only NOAA reported events (p = 0.61), or utilizing only 
investigator verified events (p = 0.76) (Table 2).

Weather covariate analysis
Mean daily temperature had the highest positive association with Coccidioides detection, with odds ratio (OR) of 
1.5 (95% CI 1.1–1.9) in the univariate model and 1.3 (95% CI 1.0–1.9) in the full model (Fig. 2a and b). Further 
bootstrapping this analysis yielded an OR estimate of 1.5 (95% CI 1.3–1.7) in the univariate model and 1.4 (95% 
CI 1.1–1.7) in the full model. Lower soil moisture was associated with a higher likelihood of detection, with a OR 
estimate of 0.6 (95% CI 0.4–0.9), while bootstrapping produced an OR estimate of 0.6 (95% CI 0.4–0.7) in the 
univariate model. In the multivariable model, moisture availability had a OR estimate of 0.7 (95% CI 0.4–1.0), 
and OR = 0.6 (95% CI 0.4–0.8) in the bootstrapped model. In addition to temperature and soil moisture, a posi-
tive trend between high wind gusts and Coccidioides presence was observed. However, this relationship was not 
significant in all bootstrapped sample sets and produced a OR estimate of 1.2 (95% CI 1.0–1.3) in the univari-
ate and 1.05 (95% CI 0.9–1.2) in the full model. The trend for with minimum gust speed was similar to that of 
maximum gust speed, with not all bootstrapped sample sets recording a significant effect and OR estimates of 1.2 
(95% CI 1.0–1.3) and 1.1 (95% CI 0.9–1.26) in the univariate and full model.  PM2.5 (Univariate: 0.7, CI 0.5–1.0) 
and  PM10 (Univariate: 0.8, CI 0.6–1.0) were slightly negatively associated with detection, while bootstrapping 
produced estimates of 0.7 (95% CI 0.5–0.9) and 0.8 (95% CI 0.6–0.9). Visibility (Univariate: OR = 1.0, CI 0.7–1.2; 
Multivariable: OR = 0.76, CI 0.5–1.1) and daily precipitation (Univariate: OR = 0.9, CI 0.8–1.1; Multivariable: 
OR = 1.0, CI 0.8–1.2) were not statistically associated with Coccidioides detection with the collected data. Boot-
strapped sampling of the full model did provide a OR estimate of 0.7 (95% CI 0.6–0.9) in the full model for 
visibility, however this was not consistent within the univariate model (OR = 1, 95% CI 0.8–1.1).

In addition to odds ratios within the univariate and multivariate models, we analyzed the random effects 
across sites using mixed effects binomial models. The effects of the covariates were generally consistent among 
sites in temperature and soil moisture, although some sites had variation. For example, one site, “1D”, demon-
strated a strong positive association between Coccidioides detection and soil moisture, while the other ten sites 
showed either a negative or no association (Supplemental Fig. 2). To further investigate the effect of season, 
we did incorporate it into our weather covariate analysis, however, the effect of season had an odds ratio that 
overlapped 1 and inconsistent effects across sites (Supplemental Analysis 1).

Area of interest Years Model type
Response 
variable

Weather 
predictors 
considered

Other variables 
considered

Significant 
weather 
predictors

Significant 
other variables

Author 
conclusions Citation

Pima County, 
AZ 1948–1998

Linear regres-
sion and com-
posite analysis

Clinical cases

Precipitation 
(total, average. 
Max), dew point, 
average wind 
speed

Palmer drought 
severity index 
(PDSI)

Temperature 
and pre-
cipitation with 
different lags 
depending on 
month

None

Identified 
significant rela-
tionships with 
temperature 
and precipita-
tion at different 
lag times cor-
responding to 
the ecology of 
Coccidioides

29

Table 1.  Previously published models linking weather or other covariates to Valley fever incidence or 
Coccidioides exposure.
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Figure 1.  (a) Weekly prevalence of Coccidioides in ambient air sampling across the Phoenix metropolitan area, 
2015–2019. The height of the tile represents the number of filter samples collected within the week (min = 1 day, 
max = 7 day). The color corresponds to the percentage of filter samples that were positive. (b) Normalized 
number of reported human Valley fever cases per week in greater Phoenix metropolitan area, AZ, 2015–2019. 
All cases in the greater Phoenix metropolitan area are included as the Phoenix metropolitan with finer scale 
aggregation included in the West Valley, Central Valley, East Valley, and South East Valley. Dotted vertical 
lines represent days with dust storm events reported to the Storm Events Database of the US National Centers 
for Environmental Information. (c) Prevalence of Coccidioides in ambient air sampling across the greater 
Phoenix metropolitan area during 2018 (Jan–Dec), with green representing low prevalence, yellow representing 
moderate prevalence, and red representing high prevalence. (d) Prevalence of Coccidioides in ambient air 
sampling across the greater Phoenix metropolitan area during 2019 (Jan–June), with green representing low 
prevalence, yellow representing moderate prevalence, and red representing high prevalence. Maps were created 
in R (4.2.0)30 using Rstudio editor (2022.02.2)31 and  ggmap32.

Table 2.  Coccidioides filter prevalence in 2018 on days with dust storms and the proceeding 7-days across 
all identified dust storms, all NOAA reported dust storms, and all investigator verified events. All confidence 
intervals and proportions tests were computed using Wilson’s score.

Dust storm definition N dust storms
Coccidioides filter prevalence on days with dust 
storms [%(n/total, 95% CI)]

Average Coccidioides filter prevalence 7-day prior 
to dust storms [%(n/total, 95% CI)] Proportions test p-value

All events 14 5 (6/115, 2–11) 6 (25/396, 4–9) 0.83

All NOAA events 13 5 (5/107, 2–11) 6 (24/363, 4–9) 0.61

All verified 10 5 (4/85, 2–12) 6 (20/315, 4–9) 0.75
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Figure 2.  (a) Effect of daily environmental measures on filter prevalence across the study period using 
univariate models. The large black point represents the point estimate of the odds ratio with the error bar 
representing a 95% confidence interval estimate of the odds ratio. To account for possible influential points, 
the smaller colored bars represent 500 bootstrapped iterations of the odds ratio estimates and confidence 
intervals. (b) Effect of daily environmental measures on filter prevalence across the study period using 
multivariable models. The large black point represents the point estimate of the odds ratio with the error bar 
representing a 95% confidence interval estimate of the odds ratio. The smaller colored bars represent 500 
bootstrapped iterations of the odds ratio estimates and confidence intervals. c. Effect of weekly Coccidioides filter 
prevalence on reported Valley fever cases across several incubation periods (0–24 weeks) in the greater Phoenix 
metropolitan area. The point represents the point estimate of the effect with the error bar representing the 95% 
confidence interval.
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Land cover analysis
Across all sites, medium intensity developed land accounted for most of the land cover, with a mean of 48.4% 
(Range: 28.8–57.9%, Median: 49.9%) (Fig. 3a). The next most common land cover types were low intensity 
developed land (Range: 9.7–35.0%, Median: 21.6% Mean: 21.4%) and high intensity developed land (Range: 
7.3–40.4%, Median: 15.1%, Mean: 19.6%). Additional land cover classifications included developed open space, 
cultivated crops, shrub/scrub, and other. Coccidioides aggregated filter prevalence was not associated with land 

Figure 3.  (a) Land cover classification across the Phoenix metropolitan area, AZ in 2019, along with the 
fixed filter sites and aggregated Coccidioides prevalence across all filters. (b) Land cover change that occurred 
between 2016 and 2019 in the Phoenix metropolitan area, AZ. The gray areas indicate no change in land cover, 
with colors representing the updated (2019) land cover classification. Circles represent the fixed filter sites with 
the aggregated Coccidioides prevalence across all filters. Maps were created in R (4.2.0)30 using Rstudio editor 
(2022.02.2)31.
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cover composition (p = 0.51). Changes of land cover type between 2016 and 2019 entailed urbanization in areas 
surrounding the Phoenix metropolitan area (Fig. 3b). At filter collection sites, the proportion of area within a 
2.4 km radius that underwent land cover turnover ranged from 0.3% (2A) to 3.9% (1A) across study sites with an 
average of 1.1% (median: 0.7%). The largest changes across sites were the result of increasing developed medium 
and high intensity areas. Coccidioides filter prevalence was not associated with these land cover changes within 
a 2.4 km radius (p = 0.99).

Reported Valley fever cases across the study period
Qualitatively, reported Valley fever cases across five regions of the greater Phoenix metropolitan area were 
generally stable across time and space, with exception of the previously  identified34 spike at the end of 2017 
(Fig. 1b). Utilizing univariate models, detection of Coccidioides arthroconidia on the filters was not associated 
with metropolitan wide clinical cases at any lag periods (period from theoretical exposure to case report), with 
all confidence intervals overlapping 1.0 (Fig. 2c).

Discussion
Understanding Valley fever risk has been a research aim of the public health and clinical communities for many 
years, with the majority of previous work focusing on reported clinical cases to identify risks associated with 
environmental variables (Table 1). Although these studies have been useful for recognizing possible associations, 
utilizing case reports introduces several biases and challenges, including highly variable incubation periods 
among people infected with Valley fever, inconsistent testing, incomplete case finding, and variably lagged 
diagnosis and reporting. Air filter surveillance for Coccidioides allows for direct monitoring of the pathogen 
within the air and is not subject to these biases, allowing for higher resolution analysis of environmental factors 
associated with exposure risk. Previously, we developed an improved methodology for detection of Coccidioides 
arthroconidia in the ambient air using daily collected air filters from fixed high-volume sampling and reported 
the preliminary results of a 45-day air-surveillance from 21 sites in the Phoenix, Arizona, metropolitan  area17. 
Here we show results from over 600 days of air surveillance across 11 sites in the same area. To our knowledge, 
these results represent the largest spatial and temporal airborne survey to date, which was able to identify envi-
ronmental factors associated with the presence of arthroconidia, explore previously hypothesized aerosolization 
drivers (e.g., dust storms), as well as unveil notable temporal and spatial dynamics of Coccidioides in the air.

Our results demonstrated a highly variable prevalence of the airborne arthroconidia across space and time 
within an endemic and highly urbanized metropolitan region. Across our 18-month surveillance period, Coc-
cidioides prevalence peaked in the spring; however, this was not consistent across sites and driven by increased 
prevalence at four sites (Sites: 1B, 1D, 2A, and 2C). Additionally, a few sites maintained high daily prevalence of 
arthroconidia for weeks, while the nearby sites located < 8 km away showed little to no detectable Coccidioides 
during the same time. Furthermore, the periods of high and low daily prevalence of arthroconidia occurred at 
different times at different sites. The observed heterogeneity among sites is consistent with our understanding 
of Coccidioides lifecycle. For example, it is well documented that Coccidioides is not evenly distributed in the 
soil across  space9, thus, it not surprising that airborne arthroconidia from disturbed soil will also be unevenly 
dispersed. This provides evidence that aerosolized Coccidioides arthroconidia are not uniformly distributed 
across an endemic region, nor is the localized geographic risk of exposure.

We hypothesized that local land cover and land cover change (i.e., development) have a large impact on the 
variability in Coccidioides airborne prevalence; however, our land cover analysis did not show a relationship 
between specific land cover types or land cover change and site level Coccidioides prevalence. We expect that 
this is likely due to a lack of spatial resolution within our analysis, a result of not having exact locations of filter 
collections. For example, our analysis utilized land cover from a 2.4 km radius around the approximate site loca-
tion. However, we suspect that sustained high prevalence periods are the result of extremely focal factors, such 
as localized soil disturbance from construction, which would not have been detected by our analysis.

Although the distribution of arthroconidia across space and time was uneven and often seemingly stochastic, 
several weather variables were associated with Coccidioides detection consistent with the established ecology of 
Coccidioides. For example, mean daily temperature and maximum daily wind gust speeds were both positively 
associated with Coccidioides detection. In addition, mean daily soil moisture was negatively associated with Coc-
cidioides detection at most sites, suggesting that warmer days with higher gusts and low soil moisture increase the 
probability for aerosolization of arthroconidia and Coccidioides detection within the air. Although our program 
covers ~ 18-months of sustained daily air filter and weather variable surveillance, the lack of multi-year surveil-
lance limits the ability to larger-scale incorporate temporally lagged weather variables into our analysis. Previ-
ously, temporally lagged weather variables have been identified as significant factors influencing the number of 
reported Valley fever cases (Table 1); however, to compare these findings to air surveillance, the air surveillance 
would need to cover numerous consecutive years as well.

In contrast with the weather variable relationships, no increase in Coccidioides detection was seen on days 
with reported dust storms. The possible relationship between Coccidioides exposure and significant dust storms 
(‘haboobs’) has been a subject of recent  debate21,23,35. Our analysis included dust storm reports through the 
National Oceanic & Atmospheric Administration Storm Events Database, which relies on several sources includ-
ing trained spotters, storm chasers, government employees, and public observations. The reliability of these 
data has been questioned since this dataset is not independently  verified35; therefore, to improve confidence in 
the reported dust storm events, we used online images, videos, and news articles to verify reported dust storm 
instances, improving the reliably of these reports (Supplemental Table 2). In addition, analysis included sev-
eral subsets of dust storms including all reported events, all NOAA events, and all investigator verified events. 
Overall, this analysis provides evidence that the prevalence of airborne Coccidioides did not increase around the 
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days when dust storms were recorded, consistent with our previous  work17. However, we caution that this does 
not preclude the possibility that occasional dust storms in areas with high densities of localized arthroconidia 
and recent soil disturbance could contribute to airborne arthroconidia and Valley fever cases, as seen in natural 
 disasters34,36. Additionally, our analysis did not consider spatial or temporal scales of the dust storm, which were 
unavailable due to the lack of consistent dust storm reporting.

From an epidemiological perspective, clinical cases did not obviously increase with airborne Coccidioides 
prevalence in localized regions across the Phoenix metropolitan area (Fig. 1b). An increase would have been 
expected if a few high-risk locales were responsible for most Valley fever cases across space. Instead, Valley fever 
cases were fairly homogenous across the greater Phoenix metropolitan area, which is dominated by developed 
urban areas. Although these observations seem to contradict the air surveillance data, they likely result from 
different spatial and temporal resolutions within the data. Reported case data were available at a coarse scale 
(community or city). However, even finer spatial scale case data (e.g., patient’s residence) may not reflect the 
location of exposure. Unlike case data, air filter data represent a snapshot of risk for a small spatial and temporal 
area. In addition, movement of individuals across space and time was not incorporated into these analyses, thus, 
it is possible that individuals’ movements from low prevalent sites to higher prevalent sites, or vice-versa, across 
space and time account for the evenness in reported Valley fever cases. For example, a recent community shed 
analysis of the Phoenix metropolitan area found that the average commute time was 26 min over a substantial 
distance (i.e., > five miles)37, demonstrating extensive daily movement of a large segment of the population across 
the Phoenix metropolitan area.

The complicated relationship between airborne arthroconidia and reported cases of Valley fever in the Phoe-
nix metropolitan area is further illustrated by the lack in association between Coccidioides filter detection and 
clinical cases, even accounting for variable incubation, testing and reporting periods (Fig. 2c). Our study, though 
the largest investigating the prevalence of aerosolized arthroconidia to date, used air sampling data from only 11 
sites across the greater Phoenix metropolitan area, while reported clinical cases are likely the result of exposure 
across the entire greater Phoenix metropolitan and surrounding areas, a much larger spatial area. In addition 
to these spatial scale challenges, case reports introduce additional biases that include diagnostic delays and 
significant under-diagnosing and under-testing. Though our analysis of temporal lags suggested no relation-
ship between Coccidioides detection and clinical cases, we caution that based on the ecology, epidemiology, and 
public health investigations of Coccidioides this is likely not a sufficient conclusion. We hypothesize that if filter 
surveillance were expanded to provide a complete high-resolution view of Coccidioides risk across the greater 
Phoenix metropolitan area, and clinical testing data were available at finer spatial scale, including epidemiologic 
data identifying likely exposures sites and timepoints, this relationship would be positive.

Surveillance for airborne Coccidioides at fixed locations provides a novel method to assess Valley fever risk, 
with each filter collecting a total air volume equivalent to that inhaled by ~ 17 people, increasing the likelihood 
of Coccidioides detection compared to lower volume collections. Although further work is needed to identify the 
public health implications of these data, high resolution temporal and spatial airborne Coccidioides prevalence 
data can help identify environmental factors (e.g., wind, temperature, and soil moisture) that impact the likeli-
hood of arthroconidia aerosolization. In the future, we aim to further understand the differences in Coccidioides 
prevalence across sites by incorporating higher resolution land cover and soil disturbance analyses. In addition, 
further investigation should be conducted to better characterize how generalizable aerosolized Coccidioides 
prevalence is across small spatial scales; assess the scope of airborne risk following specific contaminated soil 
disturbance (i.e., plume modeling); and to better understand to what extent a single sampling location (e.g., at 
a property, block, or neighborhood level) can be used to assess the local risk.

Conclusions
We demonstrate the ability to study an environmental pathogen in the ambient airspace, a previously underex-
plored realm, where they may be most affected by changing environmental variables and where they cause human 
infection. Utilizing fixed air filter units, the presence of airborne Coccidioides was detected and measured across 
a large geographic space for a sustained period of time, providing insights on the aerobiology and exposure risk 
in a highly endemic metropolitan region. These results demonstrate high spatial and temporal variability in the 
prevalence of arthroconidia detected on filters positioned at sites across such a region. This variation was seen 
both within a site and between closely positioned sites suggesting that, like Coccidioides presence within the soil, 
Coccidioides presence within the air is highly localized both in time and space. Future studies should prioritize 
assessing how localized these patterns are and should involve matched air and soil analyses. In addition, no 
difference in prevalence was seen between days with dust storms when compared to days without dust storms. 
Covariate analyses revealed that increased filter prevalence rates were observed on days with higher temperatures, 
higher maximum gust speeds, and lower soil moisture indices, suggesting that these variables are important for 
arthroconidia aerosolization, and should be considered as weather covariates in future models and analyses. From 
this study, it can be surmised that Coccidioides exposure risk in an endemic area may be most dependent on very 
localized soil disturbance events (e.g., neighborhood-level site development), that in turn may be enhanced by 
local or even regional weather features (e.g., wind and aridity). Public health policy will be better informed by 
understanding such local drivers of increased risk of coccidioidomycosis.

Methods
Air sampling
Air sampling was conducted at 11 fixed sampling locations in a ~ 1500  km2 region of the Phoenix, Arizona, 
metropolitan area using portable air sampling units located between 4.5 and 15 feet above the ground, as pre-
viously  described17. The collections are part of ongoing surveillance program conducted by Maricopa County 
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Department of Air Quality, Maricopa County Department of Public Health, and Arizona Department of Health 
Services. The exact locations of the sites are confidential; thus, approximated locations (~ 2.4 km radius) were 
used in all analyses; however, generally these air filters are in urbanized regions. Air samples were collected 
over a 24-h period from ~ 7 a.m. to ~ 7 a.m. The collection device utilized an airflow rate of 100 L/min which is 
equivalent to the same amount of air that ~ 17 people would breathe in a minute. Hydrophobic polytetrafluoro-
ethylene filters fluorophore membrane filters (3 μm pore size, 47 mm diameter, 150 μm thickness, and 85% 
porosity, PTFE, EMD Milipore, Danvers, MA, USA) were used for all collections. Air sampling was conducted 
over three time periods. The first two periods (August 24–26, 2016 and September 25–November 8, 2016) 
served as a pilot program for a larger surveillance program and data from the pilot program were previously 
 published17. The larger program was initiated after the pilot program and collected samples from the beginning 
of January, 2018 through the end of July, 2019. Sample processing was split between two laboratories: (1) Lab A, 
at the Translational Genomics Research Institute; and Lab B, at the Centers for Disease Control and Prevention. 
Since there were slight differences in equipment availability between each lab, test sensitivity was verified across 
labs by exchanging Coccidioides spiked filters and a dilution series of Coccidioides DNA.

DNA isolation
Dneasy PowerLyzer PowerSoil kit (Qiagen) was used for extraction of genomic DNA from filters in accordance 
with the manufacturer’s instructions and the following modifications; filters were sectioned into ~ 1 cm pieces 
using sterile scissors, loaded directly into the PowerBead tubes provided in the kit. At lab A, homogenization 
was performed using MP BioMedicals FastPrep-24™ Classic benchtop bead beating lysis system for seven 1-min 
cycles at 6.0 m/s with 5 min cool down breaks between each cycle. At lab B, homogenization was performed 
using Qiagen PowerLyzer24 benchtop bead beating lysis system for seven 1-min cycles at 3700 rpm with 5-min 
cool down breaks between each cycle. Upon addition of elution buffer, a 5-min incubation was completed prior 
to spinning the filter. DNA was eluted into 50 µL of Qiagen’s C6 solution.

Coccidioides detection
A single-tube nested real-time PCR  assay38 which is based on the CocciEnv real-time PCR  target39 was run in 
duplicate to analyze DNA samples for presence of Coccidioides DNA. At lab A, each 10 µL reaction mixture 
contained 2 µL DNA template, 5 µL 2× SSOAdvanced Universal Probes Supermix (Bio-rad), 240 nM each of 
primers and probe, and 2.5 µL nuclease-free water. Thermocycling conditions consisted of an initial denatura-
tion for 10 min at 95 °C, followed by 11 outer amplification cycles at 95 °C 10 s, 65 °C 30 s, 72 °C 15 s, and 45 
inner amplification cycles at 95 °C 10 s, 52 °C 30 s, 72 °C 15 s on a Biorad CFX Connect. At lab B, the assay was 
run in 20 µL reactions containing TaqMan Universal Polymerase Chain Reaction (PCR) Master Mix (Applied 
Biosystems, Grand Island, NY, USA), 240 nM each of primers and probe, BSA (2 ng/μl; BSA) and 2 μl DNA 
template. Thermocycling conditions consisted of an initial denaturation for 10 min at 95 °C, followed by 25 outer 
amplification cycles at 95 °C 10 s, 65 °C 30 s, 72 °C 15 s, and 45 inner amplification cycles at 95 °C 10 s, 52 °C 
30 s, 72 °C 15 s on a Rotor-Gene 6000 thermocycler (Qiagen; Valencia, CA, USA). Samples were considered 
positive if they displayed a Ct less than 45 and displayed logarithmic amplification plots on at least one of the 
duplicate real-time PCR reactions.

General analyses
All analyses were conducted in R (4.2.0)30 using the Rstudio editor (2022.02.2)31 using  tidyverse40,  ggmap32, 
 DirichletReg41,  sp42, and  lme443 packages. Filter prevalence was calculated by dividing positive filters by the total 
filters. We used Wilson’s score to generate 95% binomial confidence intervals for filter prevalence measurement 
 error30,44.

Dust storm records
Dust storm records were collected from NOAA’s Storm Events Database for Maricopa County and across the 
study  period45, which relies on trained spotters, storm chasers, government employees and public observations. 
Events were included if they were reported in Maricopa County, AZ and were reported as “Dust Storm”. Since 
the database is not independently verified and no information on the scale of the events is available, to further 
increase confidence in the reported events, reports were verified by utilizing Google searching “dust storm 
Phoenix AZ” along with the year and/or the date of the event. We counted an event as verified if we found a news 
story, social media post with photos or videos, or other documentation verifying the event occurrence. A total of 
26 dust storms were reported to the NOAA database, of which, 20 (77%) could be verified with online reports. 
Six of the 26 (23%) were not verified with the online search method, however, these events were still included in 
the analysis. An additional six dust storm events were identified via internet searching during the time period 
of interest and were included in the “All Events” analysis (Supplemental Table 2). In addition to the researcher 
verification, we investigated the relationship of  PM10 and  PM2.5 to reported dust storms. Generally, days with 
reported dust storms had higher  PM10 and  PM2.5 values. For example, days with reported and verified dust 
storms had a mean  PM2.5 value of 11.6 (95% CI 9.4–13.7) compared to 7.58 (95% CI 7.4–7.78) on days without 
reported dust storms. Similarly, for days with reported and verified dust storms  PM10 values had an average of 
63.1 (95% CI 48.4–77.8) compared to 24.4 (95% CI 23.9–25) on days without reported dust storms. However, 
this distribution overlaps with some of the verified and unverified dust storm days having near “normal” PM 
values (Supplemental Fig. 3). For an initial analysis, Coccidioides detection and dust storm presence was com-
pared across all available data and compared Coccidioides prevalence on days with a reported dust storm to days 
without. Further analyses were limited to 2018, where the most consistent filter surveillance data were available 
allowing prevalence to be calculated in the 7-days prior to the dust storm and on days with reported dust storms. 
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Analysis utilizing filter data and dust storm events prior to 2018 have been previously  published17. All statistical 
comparisons were performed with Wilson’s score accessed through prop.test30,44.

Weather data
Hourly weather predictions were extracted from the NOAA’s High Resolution Rapid Refresh (HRRR)  model46,47. 
HRRR model was used since local weather station data from each air filter site was not available and we were 
not able to quantify the exact distance from the nearest weather station to the air filter collections site. Archived 
HRRR data for the study period were downloaded from Amazon Web Services (https:// regis try. opend ata. aws/ 
noaa- hrrr- pds/). The HRRR model provides hourly predictions for a variety of weather variables (including 
wind speed, temperature, visibility, precipitation, and surface soil moisture) for the continental United States at 
a gridded 3-km spatial resolution and the 1-h forecast was used for all analyses. Since the exact location of the 
filter collection locations were confidential and not available, data were extracted from 2.4 km radius around 
the approximate filter collection location and a weighted average was used to average the gridded values from 
the buffer zone. For each day (8 a.m.–7 a.m.) and site, summary statistics (sum (precipitation), mean, median, 
min, and max) were calculated for each variable. Daily observations were removed (n = 1, 2019-03-09) if they 
had less than 18 hourly observations within a single day.

To validate HRRR model data, hourly summarized weather station observations from the Flood Control 
District of Maricopa County weather stations (n = 39) were compared to the hourly HRRR model forecasts across 
temperature and max wind gust (unpublished data and analyses). Temperature was highly correlated across the 
sites with an average Pearson correlation of 0.89 (Min: 0.81, Max: 0.93). HRRR gust speeds were moderately cor-
related with weather station observations with a mean site level Pearson correlation of 0.54 (Min: 0.29, Max: 0.72). 
Other included HRRR model variables were not available for comparison within the weather station dataset.

Particulate data
Particulate data were accessed through U.S. Environmental Protection Agency’s Air Monitoring  archives48. In 
total,  PM10 (particulate matter < 10 microns) and  PM2.5 (particulate matter < 2.5 microns) values were collected 
from a total of 18 air quality monitoring sites in the Phoenix metropolitan area. Filter collection sites were then 
paired with to closest  PM10 monitor location up to a 4.8 km radius. This technique provided data for five of the 
11 sites in this analysis (“1B,” “1D,” “1E,” “2A,” and “2C”). In addition,  PM2.5 data were collected from four sites 
in this analysis (“1B,” “1E,” “2A”, and “2C”).

Environmental covariate analysis
Prior to the analysis, available hourly weather covariates (including temperature, wind speed, visibility, precipita-
tion and particulate matter) were summarized at the daily level, using max, min, and mean, and were grouped 
into categories (i.e., wind/gust speed, temperature, visibility, soil moisture, precipitation,  PM10 and  PM2.5) and 
collinearity within groups was analyzed to reduce the dimensionality of the analysis. Due to the high amount of 
collinearity within each category (i.e., min temperature, mean temperature, and max temperature), a primary 
variable from each category was retained if it was expected to more directly influence the aerobiology of Coc-
cidioides (i.e., daily max gust speed and daily accumulated precipitation), otherwise, the mean of the category 
was selected. Once the primary variable was selected, other variables were removed from consideration if they 
had a correlation greater than 0.6 to the selected variable. All predictor variables were centered and scaled prior 
to statistical modeling to improve model convergence and interpretation.

Environmental covariate analyses (temperature, wind speed, visibility, precipitation and particulate matter) 
were conducted using generalized linear mixed models, using the logit link function and binomial distribution 
(using “lme4”  package43), to explain the daily proportion of filter positives using both univariate and multivari-
able models. Site was included as a random effect on both the slope and the intercept, allowing each site to have 
an independent calculated slope and intercept to identify if effects were consistent across sites. Multivariable 
models excluded  PM10 and  PM2.5 variables as these variables were not available for all sites (see “Particulate 
data”). Within the full multivariable model, the most parsimonious random effects model structure was selected 
by calculating all possible combinations of random effects on predictor variables and selecting the model based 
on AIC. In all iterations, models including random effects for both site and all covariate slopes were the most 
parsimonious and used in further analyses.

Models were fit using bound optimization by quadratic approximation optimizer and up to 20,000 function 
evaluations. Confidence intervals around fixed effects were generated using Wald confidence intervals. To explore 
the stability of odd ratio estimates and account for possibility of influential observations, models were built using 
the full dataset and 500 bootstrapped iterations. Multicollinearity within the full model was assessed with vari-
ance inflation factor (VIF), to ensure all variables in the model were uncorrelated. An overall effect, odds ratio 
(OR), was recorded from each mixed effect model and used to identify covariates with generally positive (OR > 1) 
or negative (OR < 1) associations with Coccidioides prevalence on filters. In addition to the average effect of each 
covariate across sites, ORs were calculated for each site to analyze the consistency of the effects across sites.

Univariate model structure:

Multivariable model structure:

logit(P(Positive Filter)) = (β0+S0 Site)+ (β1 + S 1Site)Single Predictor + ESite i

https://registry.opendata.aws/noaa-hrrr-pds/
https://registry.opendata.aws/noaa-hrrr-pds/
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Landcover analysis
Land cover for the Phoenix metropolitan area was acquired from the National Land Cover Database for 2019 and 
2016 and was at a 30-m  resolution49,50. Using the 2019 NLCD product, the proportion of each land cover class 
was extracted for each site with a 2.4 km radius buffer around the approximate site location. Land cover classes 
with a proportion of less than 1% across sites (Grassland/Herbaceous, Open Water, Woody Wetlands, Emergent 
Wetlands, Barren Lands and Pasture/Hay) were grouped into a single group (“Other”). In addition to 2019 land 
cover dataset, land cover change between 2016 and 2019 was calculated at the pixel level using the NLCD 2016 
and NLCD 2019 product. The effect of land cover on site level Coccidioides prevalence was analyzed using Dir-
ichlet  regression51. Dirichlet models summarize the proportions of land coverage or change by site as a response 
vector (with a sum to one constraint), with either an intercept only model (null model) or Coccidioides prevalence 
as a predictor variable (experimental model). A statistically significant association was identified by measuring 
the comparing the models using the difference between squared deviance and chi-squared test statistic.

Maricopa County case data
Reported Maricopa County Valley fever case data were acquired from the Arizona Department of Health Ser-
vices and TGen’s Office of Research Compliance and Quality Management determined that the research met 
the criteria for IRB exemption defined at 45 CFR 46.104(d)(4). To investigate possible differences in cases across 
space and time, reported cases were filtered to the greater Phoenix metropolitan area and grouped into four 
categories based on the location of the reported city, which were not independently verified. For each analysis 
the earliest date reported (generally, the date of the first positive test) of each case was used. Spatially, the West 
Valley included cases with reported cities that were west of Interstate 17. Central Valley included the City of 
Phoenix proper. East Valley included cities east of State Route 51 and North of Loop 202. The South East Valley 
was considered areas south of the northern section of Loop 202 and east of the western section of Loop 202. Data 
were normalized across these regions by using a 3-week rolling lagged mean and dividing that by mean weekly 
cases to allow all data to be visualized at a single scale.

Univariate Valley fever case analysis
A generalized linear model, using the logit link function and binomial distribution was used to compare the 
relationship of total weekly (3-week rolling average) reported Valley fever cases across the greater Phoenix 
metropolitan area to aggregated Coccidioides filter prevalence across weeks. Weeks that had less than 20 filters 
collected were removed from this analysis. To account for the difficulties in Valley fever diagnosis and possible 
delays in reporting, a total of seven different lag periods, time between filter prevalence and case report, were 
analyzed including 0, 4, 8, 12, 16, 20, and 24 weeks. Point estimates and 95% confidence intervals of the odds 
ratios were then computed and compared across the expected lag periods.

Univariate Model Structure:

Data availability
Coccidioides presence/absence data are available as a supplemental file. Reported Arizona Valley fever case 
counts are available from Arizona Department of Health Services. All other data sources in this analysis previ-
ously publicly available.
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