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Validation of an algorithm 
for sound‑based voided volume 
estimation
Gyoohwan Jung 1, Hoyoung Ryu 2, Jeong Woo Lee 3, Seong Jin Jeong 4,5, Eric Margolis 6, 
Neel Grover 7 & Sangchul Lee 4,5*

A voiding diary is commonly used in clinical practice to monitor urinary tract health. However, manual 
recording and use of a measuring cup can cause significant inaccuracy and inconvenience. Recently 
sound‑based voided volume estimation algorithms such as proudP have shown potential to accurately 
measure the voided volumes of patients urination while overcoming these inconveniences. In order 
to validate the sound‑based voided volume estimation algorithm, we chose bodyweight change after 
urination as a reference value. Total 508 subjects from the United States and Korea were enrolled. 584 
data points that have matching bodyweights change data and urination sound data were collected, 
and fivefold cross validation was performed in order to evaluate the model on all data in the dataset. 
The mean voided volume estimated by the algorithm was 202.6 mL (SD: ± 114.8) while the mean 
bodyweight change after urination was 208.0 g (SD: ± 121.5), and there was a strong linear correlation 
with high statistical significance (Pearson’s correlation coefficient = 0.92, p‑value < 0.001). Two paired 
t‑test showed the equivalence with bodyweight change data with 10 mL margin. Additionally, a 
Bland–Altman plot shows a mean difference of − 5.5 mL with LoA (− 98.0, 87.1). The results support 
high performance of the algorithm across the large population data from multi‑site clinical trials.

Abbreviations
TR  Training set
TE  Test set
VV  Voided volume
SD  Standard deviation
TOST  Two one-sided-tests
LoA  Limit of agreement
df  Degree of freedom

Daily tracking of voiding parameters provides important information regarding patients’ urinary  health1. In clini-
cal practice, a voiding diary kept by patients is a useful tool recommended and utilized by physicians to assess 
a patient’s urinary  health2. These are typically measured at home by the patient who has to manually record the 
voided volume (VV) by reading the marking on a measuring  cup3. The inconvenience of conducting multiple 
manual steps can contribute to poor  compliance4. Additionally, there are high risks for inaccuracy caused by the 
lack of standard measuring cups and human mistakes occurred during manual reading and  recording5.

In the past, several investigators attempted to demonstrate the performance of sound-based estimations that 
might solve those  challenges6–13. Among those sound-based estimation algorithms, the proudP by Soundable 
Health, Inc (San Jose, CA, USA) is the only commercialized and the most active in clinical research.

However, it was found challenging to choose an appropriate standard measure because a commercial uroflow-
meter usually requires subjects to urinate in a designated device while acoustic estimation analyzes the sound 
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that the urine hits the water surface in a toilet bowl. Conventional ultrasound bladder volume scanner  results14 
or bodyweight changes before and after  voiding15 were exploited as a standard reference. In fact, in clinical prac-
tice, urine weight has been commonly used to estimate VV. For example, gravimetric uroflowmeters, one of the 
commercially available  types16, converts urine weight into volume. As a patient urinates into a specific beaker, 
a weight transducer in the uroflowmeter detects the change in receptacle weight and converts it into the  VV17.

Therefore, in this study, we validate the algorithm for the VV estimation by comparing with the VV converted 
from bodyweight changes due to urination. The conversion was based on the assumption that urine specific 
gravity is 1. The error from the conversion would have little effect on the clinical  practice15.

Materials and methods
Ethics statement
This study was approved by the local Institutional Review Board of Seoul National University Bundang Hospital 
(IRB No. B-2012-654-305) and Western Institutional Review Board Copernicus Group (IRB No. 20215311). All 
data used for analysis were anonymized. We obtained informed consent from all patients enrolled in the study. 
Personal identifiers were completely removed and the data were analyzed anonymously. All methods were per-
formed in accordance with relevant guidelines and regulations.

Study population and definitions
Subjects who were healthy volunteers or patients, aged over 18 years old, and able to provide informed consent to 
participate were eligible. Data collection occurred from September 27, 2021 to October 27, 2022 (Study 1), and 
from October 27, 2021 to July 14, 2022 (Study 2). Data were collected in the bathrooms at the hospital or clinic. 
Participants were allowed to provide multiple voiding sounds, and one void was registered as an independent 
event regardless of who provided it.

Exclusion criteria were retracted consents, the lack of matching data for either voiding sound or bodyweight 
change data, bodyweight change over the capacity of the sound-based algorithm (either under 10 g or over 
1 kg). Additionally, recordings that failed to follow study instructions were excluded such as poor, incomplete, 
interrupted recording of voiding sound, voiding into another object that is not water in a toilet bowl, changes 
in conditions that can affect bodyweight such as consumption or excretion of food, or addition or removal of 
items carried by the subject.

Procedure
Written informed consent was obtained from all enrolled subjects prior to data collection. Subjects were asked 
to complete a questionnaire with basic demographic questions including medical history. Right after measuring 
pre-void bodyweight, subjects recorded voiding sound using the iOS mobile application solely developed for 
data collection, which was immediately followed by post-void bodyweight measurement.

Data collection
Urination recording was conducted using an iOS mobile application solely developed for data collection (Fig. 1). 
The application was installed in iPhone XR and iPhone 12 from Apple Inc., Cupertino, CA, USA.

The subject was weighed by CAS HB-150, a high resolution weight scale with a readability of 10 g and a 
minimum and maximum capacity of 500 g and 150 kg, respectively.

Since we did not control the amount of water intake or the time or interval of urination, which can affect 
the voided volume, it varied greatly even within each voiding individual, so each urination was regarded as 
independent.

Voided volume prediction model and evaluation
Fivefold cross validation was performed in order to evaluate the model on all data in the dataset. An urine sound 
waveform is transformed into a mel-spectrogram, which is then fed as input to the 2D-CNN model for training. 
Also, a frequency masking method allowing masking of mel-spectrogram in the frequency domain up to 25% is 
applied in pre-processing to overcome overfitting due to small training set size. The output of the model is the 
voided volume. The mimetic diagram of voided volume estimation is demonstrated in supplementary Fig. S1.

Statistical analysis
Paired samples t-test for equivalence was used to evaluate the statistical significance of any differences between 
the VV calculated based on bodyweight change after urination and the VV estimated using the iOS collection 
application. The equivalence of two different measurements is statistically proven if the 95% confidence interval 
of the mean difference is within the pre-defined equivalence margin.

To show equivalence, H0 and H1 are set as below.

• H0: |VV_pred − VV_bodyweight change|≥ δ
• H1: |VV_pred − VV_bodyweight change|< δ

As the null hypothesis (H0) has two one-sided tests (difference <  + δ or difference > − δ), ’two one-sided-
tests (TOST) method’ is used in equivalence testing. The p-value for this hypothesis testing as a whole is defined 
as the maximum p-value of two one-sided tests. If 95% CI of the difference is within the equivalence margin 
range (− δ, + δ), the two measurements are considered  equivalent18. The statistical analysis and calculations were 
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performed using the Python™ v3.6.9 programming language and its scientific computing package SciPy v1.5.4 
(Python Software Foundation, Beaverton, OR, USA) and R version 4.3.1.

Results
Total 527 subjects volunteered for this study including 300 subjects from Study 1 and 227 subjects from Study 2. 
After excluding 19 participants who voluntarily decided to discontinue their participation, a total of 508 subjects 
were enrolled in the study.

A total of 663 data points were collected from 508 enrolled subjects. After excluding 79 data points that did 
not meet the inclusion criteria, a total of 584 data points were included in the final analysis. Detailed description 
of excluded data points is summarized in Table 1.

The mean age of the obtained data points was 60.61 (SD: ± 15.24). The mean age across the model of phone 
is demonstrated in Table 2. The mean VV obtained using the iOS collection application 202.6 mL (SD: ± 114.8) 
while the mean bodyweight change after urination was 208.0 g (SD: ± 121.5) (Table 3; Fig. 2). The statistical 
analysis shows strong linear correlation between the two measurements. (Pearson’s correlation coefficient = 0.92, 
p-value < 0.001) (Fig. 3).

Figure 1.  Typical bathroom settings for sound recording and the mobile application.

Table 1.  Summary of data collection.

Study 1 Study 2 Sum

Number of bodyweight change data points collected 393 270 663

Number of data points excluded due to the lack of matching voiding sound 13 13 26

Number of data points excluded due to bodyweight change being over the capacity of the sound-based algorithm 
(10–1000 mL) 6 5 11

Number of data points excluded due to failure to follow instructions 17 25 42

The total number of data points included in training and test 357 227 584

Table 2.  Summary of distribution of ages of data set.

Clinical factor Mean age (± SD)

All (n = 584) 60.61 (± 15.24)

iPhone XR in study 1 (n = 357) 61.89 (± 12.98)

iPhone 12 in study 2 (n = 227) 58.60 (± 18.09)
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Because the scale used in this study to measure bodyweight change has a resolution of 10 g, 10 mL was set 
as the equivalence margin in following analyses. As shown in Fig. 4 and Table 4, the 95% CI of mean difference 
(− 8.8 mL, − 2.2 mL) is within the equivalence margin (− 10 mL, + 10 mL) and the maximum p-value for the 
TOST results (0.0103002) is smaller than 0.05. Therefore, the results demonstrate statistical equivalence between 
the two measurements. Additionally, we analyzed the data with a Bland–Altman plot which shows the distribu-
tion of differences between the two measurements within the Limit of Agreement (LoA). The mean difference 
was − 5.5 mL with LoA (− 98.0, 87.1) (Fig. 5).

Discussion
The results of this study supports the use of sound-based voided volume estimation algorithm for accurately and 
conveniently collecting VV as a mobile voiding diary.

In this study, a Bland–Altman plot shows a mean difference of 5.5 mL with limit of agreement (− 98.0, 
87.1), highly acceptable when compared to reference data. Analyses of previous studies support that this level 
of differences between the two measurements is highly acceptable in clinical practices. For example, C. Palnaes 
and P. Klarskov assessed the distribution of differences between data in a voiding diary manually recorded by 
patients and the actual volume of urine collected for 24 h and recorded by the  nurse19. The Bland-Atlman plot for 
average urine volume during 24 h shows a limit of agreement of about 70 mL, which is similar with the results 
for a voided volume of each void in this study. In another study, D. R. Small et al. evaluated the measurement 
error of a portable bladder scanner of which use in the clinic has been well established to estimate the post-void 
residual. The average difference was 16.7 mL (SD: 50.2 mL), much greater than the average difference − 5.5 mL 
(SD: 47.2 mL) in this  study20. The proudP’s VV estimation algorithm is based on the same AI architecture as 
used in this paper, but is trained on larger scale with more diverse data. Therefore, it is expected that the proudP 
application provides an accurate VV estimation, while significantly enhancing convenience of users by enabling 
mobile app-based, at-home measurements.

This study has a few limitations. First, because the sound of urination into a commercial uroflowmeter is dif-
ferent from the sound that the urine hits the water surface in a toilet bowl, we chose the bodyweight change before 
and after urination as a reference value using a high resolution weight scale instead of measuring the volume of 
urine directly. Accordingly, it was important to limit not to do any other actions that could affect bodyweight 

Table 3.  Summary of set. VV_pred voided volume estimated by the algorithm, VV_bodyweight change voided 
volume estimated based on bodyweight change after urination.

N Mean (mL) Median (mL) Standard deviation (mL) Standard error (mL)

VV_pred 584 202.6 184.8 114.8 4.8

VV_bodyweight change 584 208.0 190.0 121.5 5.0

Figure 2.  Distributions of predicted voided volume and change in weight post voiding.
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Figure 3.  Scatter plot showing the linear correlation between estimated volume (mL) based on bodyweight 
changes and that by the algorithm (mL).

Figure 4.  Equivalence plot from TOST results.

Table 4.  Summary of two one-sided-tests (TOST) results. Df degree of freedom.

t df p-value

t-test − 2.79 583 0.0054

TOST lower 2.32 583 0.0103

TOST upper − 7.91 583  < .0000001
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between before and after urination, and it needed more effort to control it and check the compliance. Second, if 
the assumptions made when converting urine weight to volume are different from the actual values, additional 
errors may occur in individual results. However, load cell and spinning disk uroflowmeters calculate VV by 
assuming the density of urine is approximately 1 g/ml and are already widely used in clinical  practice21. Third, 
the training and performance evaluation of the AI model is based on data collected from this limited number 
of clinic toilets in this clinical trial. Therefore, we cannot guarantee the same performance when the measuring 
environments change. In terms of measurement device, although it is difficult to generalize as there are only 
two combinations of environment and model, there was no significant difference in mean difference and a slight 
difference in the LoA as shown in Supplementary Table S1 and Fig. S1. But it is difficult to distinguish the exact 
cause with the current data, and we want to verify it later. Finally, when the urine falls on the toilet walls or in a 
urinal without water, totally different sounds will be produced, and this model cannot guarantee the high accu-
racy for these sounds. Therefore, we limit this DL model to be used only on urination on water, and this can be 
easily checked by male users as they are standing in front of a toilet.

Conclusions
The validation from this study demonstrates that the sound-based voided volume estimation algorithm provides 
highly accurate estimates of voided volumes when compared to the body weight change before and after urination 
across large population data from multi-site clinical trials. Additionally, it will enhance patient’s convenience as 
it eliminates the need for manual recording of voiding activities, associated potential errors, and inconvenience 
of carrying and using a voiding beaker. The ability to track daily voiding activities simply using a sound-based 
mobile app will likely improve patient compliance as well.

Data availability
The datasets analysed during the current study are available from the corresponding author on reasonable request.

Received: 27 February 2023; Accepted: 20 December 2023
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