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Identification of desalination 
and wind power plants sites 
using m‑polar fuzzy Aczel–Alsina 
aggregation information
Zia Ur Rahman 1,2, Ghous Ali 3, Muhammad Asif 4, Yufeng Chen 2* & 
Muhammad Zain Ul Abidin 3

Real‑world decision‑making problems often include multi‑polar uncertainties dependent on multi‑
dimensional attributes. The m‑polar fuzzy (mF) sets can efficiently handle such multi‑faceted 
complications with T‑norm based weighted aggregation techniques. The Aczel–Alsina T‑norms 
offer comparatively flexible and accurate aggregation than the other well‑known T‑norm families. 
Consequently, this work introduced novel mF Aczel–Alsina aggregation operators (AOs), including 
weighted averaging (mFAAWA, mFAAOWA, mFAAHWA) and weighted geometric (mFAAWG, 
mFAAOWG, mFAAHWG) AOs. The fundamental properties, including boundedness, idempotency, 
monotonicity, and commutativity are investigated. Based on the proposed AOs, a decision‑making 
algorithm is developed and implemented to solve two detailed multi‑polar site selection problems (for 
desalination plant and for wind‑power plant). Finally, a comparison with mF Dombi and mF Yager AOs 
reveals that different T‑norm based AOs may yeild different solutions for the same problem.

Multi-criteria decision-making (MCDM) is the process of making decisions about various alternatives affected 
by multiple decision parameters. Human beings have ever been making decisions in complicated scenarios 
by considering the trade-offs of conflicting attributes affecting the situation. However, the first appropriate 
MCDM method can be dated back to 1972 as the Benjamin Franklin’s  papers1 considering his “moral or pru-
dential algebra” in his letter to Priestley. His method considered balancing the pros and cons of two conflicting 
attributes on two sides of a piece of paper, to give them preferences and making difficult decisions accordingly. 
Later, more detailed, methodological, and complicated MCDM approaches were established and utilized in 
various disciplines. K ̈oksalan et al.2 discussed more than 50 years long MCDM developments till the 21st cen-
tury listing many foundational contributors to this field. MCDM accounts for the solutions of a huge set of ever 
expanding problems, from diverse domains, with the help of many different approaches. For instance,  Ozernoy3 
proposed a framework for selecting the most appropriate MCDM approach in decision support systems. Wang 
and  Triantaphyllou4 analyzed various real-life MCDM problems and identified irregularities in the rankings of 
alternatives when applying different MCDM methods.

Different MCDM techniques are suitable for different circumstances and often new techniques generalize the 
previous ones. The literature on MCDM approaches reveals many studies based on both crisp and fuzzy logics. 
A crisp set backed by a binary-valued classification is adequate for dealing with certain information defined with 
sharp boundaries. However, this binary classification fails in uncertain scenarios. The fuzzy sets (FSs) based 
on fuzzy logic proved helpful in such cases by declaring partial memberships from [0, 1] to objects depicting 
uncertain behavior. This FS concept was introduced independently by  Zadeh5 as an extension of the crisp set 
theory (generalization of the binary-valued logic). In 1970, Bellman and  Zadeh6 discussed decision-making in a 
fuzzy environment by taking into account the fuzzy constraints appearing in alternatives or criterion during the 
decision-making process. From the inception of FS theory to the present day, it has played a vital role in numer-
ous areas, including medicine, engineering, management science, artificial intelligence, operations research, 
computing, robotics, pattern recognition, and so on. Many extensions of the fuzzy theory have been observed, for 
example, intuitionistic FSs (IFSs)7 and Pythagorean FSs (PFSs)8 (both containing two separate fuzzy degrees for 
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membership degree (MD) and non-membership degree (NMD) with their particular summation restrictions). 
In 1994,  Zhang9 introduced another extension of FSs, namely, bipolar FS (BFS) theory. The main idea behind 
this contribution is the bipolar information existing about a particular set. This bipolar information includes the 
positive and negative sides of an aspect (property and its counter-property) like good and bad, young and dull, 
fair and unfair, etc. To depict the notion of bipolarity, BFSs consider memberships from closed interval [ −1 , 1], 
such that 0 indicates irrelevance to the criteria, MD from [ −1 , 0) indicates satisfaction of object with the corre-
sponding counter-criteria, and MD from (0, 1] depicts satisfaction with the considered criteria. Till date, several 
significant researches have been conducted on this theory to make more enhanced decision-making methods 
(see Refs.10–13). Apart from the research on decision models, fuzzy theory has spread its roots in many technical 
fields and has been applied to many future-oriented applications. Recently, Talpur et al.14 discussed the deep 
neuro-fuzzy systems, their applications, challenges, and possibilities. Deveci et al.15 utilized an interval type-2 
fuzzy set based method for saving the environment by improvising the sustainable vehicle shredding facilities.

Various daily-life scenarios are governed by multi-polar attributes affecting multi-faceted characteristics of the 
alternatives which leads to the emergence of multi-polar information unsolvable by conventional mathematical 
tools such as crisp set theory, FS theory, intuitionistic FS theory, and bipolar FS theory. Contemporary research-
ers are increasingly recognizing the substantial role of multi-polarity in a vast range of domains, spanning from 
medical sciences to engineering, management to neural fuzzy developments. For instance, consider the realm 
of information technology, where multi-polar technology can be employed to analyze complex information sys-
tems with varying attributes like latency, bandwidth, radio frequency, and network range. In neurobiology, the 
interconnectedness of neurons in the brain gather data from different other neurons, considering a multi-polar 
information gathering procedure. Likewise, within a social network, individuals may exhibit varying levels of 
effectiveness in their trading relationships, proactiveness, and sociability, all of which involve multi-polar data. 
To address these multi-polar scenarios, Chen et al.16 initiated the theory of m-polar fuzzy (mF) sets, specifi-
cally formulated to tackle multi-polarity in datasets across diverse domains of modern sciences. These mF sets 
( m ≥ 2 generalizing bipolar fuzzy sets) consider separate fuzzy memberships for m distinct dimensions of a 
particular criteria/characteristic/attribute. Some recent applications include mF algorithm applied to selection 
of non-tradional machining  process17, mF networks utilized for product manufacturing  problems18, and more.

These days, MCDM methods based on aggregation operators (AOs) are playing an increasingly significant role 
in various fields, including engineering, medicine, economics, environmental sciences, and more. Consequently, 
several decision-making techniques based on AOs have been introduced for MCDM to enhance the precision of 
optimal decisions, and they continue to evolve for further advancements. For example,  Xu19 explored some AOs 
based on intuitionistic FSs, including weighted, ordered weighted, and hybrid weighted averaging AOs (for more 
details on intuitionistic FS-based AOs, see Refs.20,21). Garg et al.22 presented Schweizer-Sklar prioritized AOs for 
IFSs with their decision-making applications. Peng and  Yang23 presented certain basic notions of Pythagorean 
FS-based AOs within an interval-valued context. Over the last decade, there have been several noteworthy 
studies focused on the aggregation of bipolar data using leveraging established operations. For instance, Wei 
et al.24 introduced Hamacher aggregation operators tailored to bipolar data and investigated their applications in 
MCDM. Jana et al.25 devised AOs based on bipolar information utilizing Dombi’s operations, effectively address-
ing practical problems in daily-life. Moreover, Jana et al.26 pioneered the advancement of bipolar fuzzy Dombi 
prioritized AOs with their innovative contributions. Subsequently, experts have investigated the aggregation of 
mF datasets using different established AOs. For instance, Waseem et al.27 proposed mF Hamacher AOs and 
implemented them to solve MCDM problems. Khameneh and  Kilicman28 developed mF soft weighted AOs, 
which were effectively used to address MCDM problems. Akram et al.29 presented mF Dombi AOs and explored 
their applications in MCDM. Later, Naz et al.30 introduced innovative 2-tuple linguistic bipolar fuzzy Heronian 
mean AOs for group decision-making. Recently, Ali et al.31 proposed specific arithmetic and geometric AOs 
for the aggregation of mF datasets with Yager’s operations. For more MCDM applications of AOs, the readers 
may  visit32–35.

In early 1980s, Aczel and  Alsina36 introduced the Aczel–Alsina t-norm (TN) and t-conorm (TCoN) as modi-
fied forms of the algebraic norms. Among the other TNs (and TCoNs), Aczel–Alsina TN (and TCoN) provide 
more accurate decisions. To demonstrate this, Farahbod and  Eftekhari37 classified nine different TN-based AOs 
on the basis of their aggregating accuracy in analyzing 12 different datasets. The Aczel–Alsina operators domi-
nated in the analysis showing minimum error as compared to other operators. Consequently, recent researches 
have focused on Aczel–Alsina TNs and TCoNs based AOs for all the above discussed theories. Mahmood et al.38 
presented Aczel–Alsina TN and TCoN based AOs in bipolar complex fuzzy environment and explored their 
application in selecting the best operating system (see also, Mahmood and  Ali39). Akram et al.40 used generalized 
orthopair fuzzy Azcel-Alsina AOs for energy resource selection. Ali et al.41 introduced intuitionistic fuzzy soft 
Aczel–Alsina AOs. Wang et al.42 utilized Aczel–Alsina based Hamy-Mean AOs for T-spherical fuzzy MCDM. 
Some other contributions  include43–45. Considering this efficiency and applicability of Aczel–Alsina TN and 
TCoN, and the need for multi-polar fuzzy aggregation, this work focuses on the development of mF set-based 
Aczel–Alsina AOs. The motivations for the proposed work are listed below: 

1. Aczel–Alsina TN/TCoN are more flexible and accurate as compared to other TNs/TCoNs in their aggregation 
capabilities. Existing  literature37 clearly demonstrates this dominating accuracy of the Aczel Alsina AOs.

2. Real-world decision-making problems like site selection for a massive project are often based on multi-
faceted information in the form of multi-agent, multi-attribute, multi-polar uncertainties. Crisp, fuzzy, and 
bipolar fuzzy models fail to solve such multi-faceted decision-making problems effectively.
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3. Multi-polar fuzzy sets offer solutions to multi-polar uncertainties by considering multiple distinct aspects of 
an alternative. This provides much suited, accurate, and flexible decision-making for multi-faceted scenarios, 
as compared to other decision models.

4. The combination of aggregation capabilities of Aczel–Alsina TN/TCoN and multi-polar uncertainty mod-
eling of m-polar fuzzy sets can provide accurate decision-making for multi-polar uncertain situations. The 
existing literature lacks work on this powerful combination.

On the basis of these motivations, the proposed work focuses on the development of multi-polar fuzzy (mF) 
Aczel–Alsina AOs and demonstration of their decision-making capabilities. The following list accounts for this 
work’s key contributions. 

1. Development of novel Aczel–Alsina AOs for mF information including weighted averaging AOs (mFAAWA, 
mFAAOWA, mFAAHWA) and weighted geometric AOs (mFAAWG, mFAAOWG, mFAAHWG).

2. Detailed analysis of the fundamental properties of proposed AOs including idempotency, monotonicity, 
boundedness, and commutativity.

3. Development of a working decision-making algorithm for multi-polar information based on mFAAWA and 
mFAAWG AOs.

4. Deep investigation of two model multi-polar site selection problems (for desalination plant and for wind-
power plant) with proposed techniques, and ranking of available sites against multi-polar attributes under 
the novel decision-making algorithm.

5. Discussion on the advantageous and limiting features of proposed techniques in addition to a comparative 
analysis with mF Yager  AOs31 and mF Dombi  AOs29.

The upcoming work is structured as follows: 

1. Section “Preliminaries” revisits some mF concepts and recalls the Aczel–Alsina TN and T-CoN.
2. Section “mF Aczel–Alsina AOs” proposes novel mF Aczel–Alsina averaging and geometric AOs (weighted, 

ordered weighted, hybrid weighted). This section further analyses fundamental properties of proposed AOs.
3. Section “Applications to MCDM with mF information” introduces a unique MCDM algorithm based on mF 

Aczel–Alsina AOs. Under the offered methodologies, detailed modeling and solutions to two multi-polar 
site selection problems (for a desalination facility and a wind-power plant) are presented.

4. Section “Discussion” compares the proposed AOs with mF Yager  AOs31 and mF Dombi  AOs29. The advan-
tages and limitations of the proposed work are shortly discussed.

5. Section “Conclusions and future plans” gives the conclusive remarks and future directions.

Preliminaries
The following definition recalls multi-polar fuzzy (mF) sets:

Definition 2.1 16A mF set on a universal set U is a mapping η : U → [0, 1]m . The belongingness of each alterna-
tive is given by

such that Pi ◦ η : [0, 1] → [0, 1] is the ith projection mapping.

Following define the notions of score and accuracy functions of a mF number η.

Definition 2.2 27The score function of a mF number η = {P1 ◦ η, P2 ◦ η, . . . Pm ◦ η} is defined as:

Definition 2.3 27The accuracy function of a mF number η = {P1 ◦ η, P2 ◦ η, . . . Pm ◦ η} is defined as:

 here, S(η) ∈ [0, 1] and H(η) ∈ [−1, 1].

Definition 2.4 27For η1 = {P1 ◦ η1, P2 ◦ η1, . . . Pm ◦ η1} and η2 = {P1 ◦ η2, P2 ◦ η, . . . Pm ◦ η2} representing two 
mFNs with score function S(·) and accuracy function H(·) , the following are satisfied: 

1. η1 < η2 , if S(η1) < S(η2),
2. η1 > η2 if S(η1) > S(η2),
3. η1 = η2 if S(η1) = S(η2) and H(η1) = H(η2),
4. η1 < η2 if S(η1) = S(η2) but H(η1) < H(η2),
5. η1 > η2 if S(η1) = S(η2) but H(η1) > H(η2).

η(µ) = {P1 ◦ η(µ),P2 ◦ η(µ), . . . Pm ◦ η(µ)},

S(η) =
1

m

(

m
∑

i=1

Pi ◦ η

)

, S(η ∈ [0, 1]).

H(η) =
1

m

m
∑

i=1

(−1)i+1(Pi ◦ η − 1),H(η) ∈ [−1, 1].
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Next, some basic operation for mFNs are defined and their properties are discussed.

D e f i n i t i o n  2 . 5  L e t  η = {P1 ◦ η, P2 ◦ η, . . . Pm ◦ η}  ,  η1 = {P1 ◦ η1, P2 ◦ η1, . . . Pm ◦ η1}  ,  a n d 
η2 = {P1 ◦ η2, P2 ◦ η, . . . Pm ◦ η2} be the mFNs and α be a scalar. Then 

1. η1
⊕

η2 = (P1 ◦ η1 + P1 ◦ η2 − P1 ◦ η1.P2 ◦ η2, . . . ,Pm ◦ η1 + Pm ◦ η2 − Pm ◦ η1.Pm ◦ η2).
2. η1

⊗

η2 = (P1 ◦ η1.P1 ◦ η2, . . . , Pm ◦ η1.Pm ◦ η2).
3. αη = ((1− (1− P1 ◦ η)

α), . . . , 1− (1− Pm ◦ η)α),α > 0.
4. (η)α = ((P1 ◦ η)

α , . . . , (Pm ◦ η)α),α > 0.
5. (η)c = (1− P1 ◦ η, . . . ,Pm ◦ η)
6. η1 ⊆ η2 , if and only if P1 ◦ η1 ≤ P1 ◦ η2, . . . ,Pm ◦ η1 ≤ Pm ◦ η2.
7. η1 ∪ η2 = (max(P1 ◦ η1, P1 ◦ η2), . . . , max(Pm ◦ η1, Pm ◦ η2)).
8. η1 ∩ η2 = (min(P1 ◦ η1, P1 ◦ η2), . . . , min(Pm ◦ η1, Pm ◦ η2)).

Theorem 2.1 Consider two mFNs η1 = {P1 ◦ η1, P2 ◦ η1, . . . Pm ◦ η1} and η2 = {P1 ◦ η2, P2 ◦ η2, . . . Pm ◦ η2} with 
α , α1 , α2 > 0 , then 

1. η1
⊕

η2 = η2
⊕

η1,
2. η1

⊗

η2 = η2
⊗

η1,
3. α(η1

⊕

η2) = α(η1)
⊕

(η2),
4. (η1

⊗

η2)
α = (η1)

α
⊗

(η2)
α,

5. α1η1
⊕

α2η1 = (α1 + α2)η1,
6. (η1)

α1
⊗

(η1)
α2 = (η1)

α1+α2,
7. ((η1)

α1)α2 = (η1)
α1α2 .

Coming definition recalls the Aczel–Alsina TN and TCoN introduced by Aczel and  Alsina36 in 1980.

Definition 2.6 The Aczel–Alsina TN � and TCoN �∗ are defined as:

where 1 < p < ∞ and x, y ∈ [0, 1].

mF Aczel–Alsina AOs
This section firstly gives Aczel–Alsina operations for mF numbers via Aczel–Alsina TN and TCoN, and then pro-
ceeds to development of mF Aczel–Alsina averaging and geometric AOs while discussing their basic properties.

mF Aczel–Alsina operations
Let there be three mF numbers η1 = {P1 ◦ η1, P2 ◦ η1, . . . Pm ◦ η1}, η2 = {P1 ◦ η2, P2 ◦ η2, . . . Pm ◦ η2} and 
η = {P1 ◦ η, P2 ◦ η, . . . Pm ◦ η} . Then for 1 < p < ∞,

mF Aczel–Alsina weighted averaging AOs
This subsection establishes mFAAWA, mFAAOWA and mFAAHWA AOs and investigates some of their 
basic properties. In the coming developments, γ=(γ1, γ2, γ3, . . . , γn) acts as the weight vector with γk > 0 and 
∑n

k=1 γk = 1.

�(x, y) = x
⊗

y =

(

1

e{(−ln(x))p+(−ln(y))p}1/p

)

,

�∗(x, y) = x
⊕

y =

(

1−
1

e{(−ln(1−x))p+(−ln(1−y))p}1/p

)

,

η1
⊕

η2 =
(

1−
1

e{(−ln(1−P1η1))p+(−ln(1−P1η2))p}1/p
, . . . ,

1−
1

e{(− ln(1−Pmη1))p+(−ln(1−Pmη2))p}1/p

)

,

η1
⊗

η2 =

(

1

e{(−lnP1η1)p+(−lnP1η2)p}1/p
, . . . ,

1

e{(−lnPmη1)p+(−lnPmη2)p}1/p

)

,

αη =

(

1−
1

e{α(−ln(1−P1η)p)}1/p
, . . . , 1−

1

e{α(−ln(1−Pmη)p)}1/p

)

,

ηα =

(

1

e{α(−lnP1η)p}1/p
, . . . ,

1

e{α(−lnPmη)p}1/p

)

.
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Definition 3.1 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the collection of ‘n’ mF numbers where k = 1, 2, . . . , n . 
Then a mapping from ηn to η defines the mFAAWA AO as:

Theorem 3.1 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the collection of ‘n’ mF numbers where k = 1, 2, . . . , n . 
The aggregation of these mF numbers by mFAAWA AO is given as:

Proof By using induction method, for n = 1 and γ1 = 1,

Hence, the result obtained by mFAAWA operator satisfies Equation (1) for n = 1 . Now, suppose that Eq. (1) 
is true for n = t , then

Next it needs to be shown that the theorem holds for n = t + 1 . By putting n = t + 1 in Eq. (1),

Hence, Eq. (1) verifies for n = t + 1 , which proves the theorem by induction method.   �

Example 3.1 Let η1=(0.52, 0.16, 0.37) , η2=(0.31, 0.80, 0.25) and η3 = (0.73, 0.91, 0.16) be 3F numbers and 
γ = (0.25, 0.45, 0.30) be the corresponding weight vector. Then

For p = 5,

mFAAWAγ (η1, η2, . . . , ηn) =

n
∑

k=1

(γkηk).

(1)

mFAAWAγ (η1, η2, . . . , ηn) =

n
∑

k=1

(γkηk)

=
(

1−
1

e{
∑n

k=1 γk(−ln(1−P1ηk))
p}1/p

, . . . ,

1−
1

e{
∑n

k=1 γk(−ln(1−Pmηk))
p}1/p

)

.

mFAAWAγ (η1, η2, . . . , ηn) = (γ1η1) = η1,

=

(

1−
1

e{(−ln(1−P1η1))p}1/p
, . . . , 1−

1

e{(−ln(1−Pmη1))p}1/p

)

.

mFAAWAγ (η1, η2, . . . , ηn) =

t
∑

k=1

(γkηk),

=

(

1−
1

e{
∑t

k=1 γk(−ln(1−P1ηk))
p}1/p

, . . . , 1−
1

e{
∑t

k=1 γk(−ln(1−Pmηk))
p}1/p

)

,

mFAAWAγ (η1, η2, . . . , ηn) =

t+1
∑

k=1

(γkηk),

=

t
∑

k=1

(γkηk)
⊕

(γt+1 ◦ ηt+1),

=

(

1−
1

e{
∑t

k=1 γk(−ln(1−P1ηk))
p}1/p

, . . . , 1−
1

e{
∑t

k=1 γk(−ln(1−Pmηk))
p}1/p

)

,

⊕

(

1−
1

e{γt+1(−ln(1−P1ηt+1))
p}1/p

, . . . , 1−
1

e{γt+1(−ln(1−Pmηt+1))
p}1/p

)

,

=

(

1−
1

e{
∑t+1

k=1 γk(−ln(1−P1ηk))
p}1/p

, . . . , 1−
1

e{
∑t+1

k=1 γk(−ln(1−Pmηk))
p}1/p

)

.

(2)

mFAAWAγ (η1, η2, η3) =

3
∑

k=1

(γkηk),

=

(

1−
1

e{
∑n

k=1 γk(−ln(1−P1ηk))
p}1/p

, . . . , 1−
1

e{
∑n

k=1 γk(−ln(1−Pmηk))
p}1/p

)

,

=
(

1−
1

e{γ1(−ln(1−P1η1))p+γ2(−ln(1−P1η2))p+γ3(−ln(1−P1η3))p}1/p
,

1−
1

e{γ1(−ln(1−P2η1))p+γ2(−ln(1−P2η2))p+γ3(−ln(1−P2η3))p}1/p
,

1−
1

e{γ1(−ln(1−P3η1))p+γ2(−ln(1−P3η2))p+γ3(−ln(1−P3η3))p}1/p

)

,
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Theorem 3.2 (Idempotent law). Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be a collection of ‘n’ mF numbers with 
ηk = η and let γ be the weight vector. Then

.

Proof Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) with ηk = η for k = 1, 2, 3, . . . , n , then by Equation (1),

Thus, mFAAWAγ (η1, η2, . . . , ηn) = η when ηk = η with k = 1, 2, . . . , n .   �

Proofs of the following two theorems are similar to the proof of Theorem 3.2, and therefore omitted.

Theorem 3.3 (Monotonic Law) Let there be two sets of mF numbers ηk and η̂k where k = 1, 2, . . . , n with ηk ≤ η̂k , 
then

Theorem 3.4 (Bounded Law) Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the collection of mF numbers for 
k = 1, 2, . . . , n and γ represents the weight vector, then

where η−=min{ηk} and η+=max{ηk}.

The following defines the mFAAOWA AOs.

Definition 3.2 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) (1 ≤ k ≤ n) be a collection of mF numbers. The 
mFAAOWA AO given by mFAAOWA:ηn → η is defined as:

Here γ = (γ1, γ2, . . . , γn) represents the weight vector and τ(k) denotes the permutation with γτ(k−1) ≥ γτ(k).

Theorem 3.5 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the collection of ‘n’ mF numbers where k = 1, 2, . . . , n . 
The aggregation of these mF numbers by mFAAOWA AO is given as:

mFAAWAγ (η1, η2, η3) =
(

1−
1

e{0.25(−ln(1−0.52))5+0.45(−ln(1−0.31))5+0.30(−ln(1−0.73))5}1/5
,

1−
1

e{0.25(−ln(1−0.16))5+0.45(−ln(1−0.80))5+0.30(−ln(1−0.91))5}1/5
,

1−
1

e{0.25(−ln(1−0.37))5+0.45(−ln(1−0.25))5+0.30(−ln(1−0.16))5}1/5

)

,

=(0.6090, 0.8596, 0.3036).

mFAAWAγ (η1, η2, . . . , ηn) = η

mFAAWAγ (η1, η2, . . . , ηn) =

n
∑

k=1

(γkηk),

=
(

1−
1

e{
∑n

k=1 γk(−ln(1−P1ηk))
p}1/p

, . . . ,

1−
1

e{
∑n

k=1 γk(−ln(1−Pmηk))
p}1/p

)

,

=

(

1−
1

e{(−ln(1−P1η))p}1/p
, . . . , 1−

1

e{(−ln(1−Pmη))p}1/p

)

,

=(P1 ◦ η, P2 ◦ η, . . . ,Pm ◦ η),

=η

(3)mFAAWAγ (η1, η2, . . . , ηn) ≤ mFAAWAγ

(

η̂1, η̂2, . . . , η̂n
)

.

η− ≤ mFAAWAγ (η1, η2, . . . , ηn) ≤ η+

mFAAOWAγ (η1, η2, . . . , ηn) =

n
∑

k=1

(

γkητ(k)
)

.
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Proof It follows directly from the proof of Theorem 3.1.   �

Example 3.2 Let η1 = (0.53, 0.17, 0.71) , η2 = (0.36, 0.25, 0.41) and η3 = (0.80, 0.18, 0.79) be 3F numbers with 
weights γ = (0.4, 0.5, 0.1) . For p = 3 , the score values are computed as follows:

Clearly S(η3) > S(η1) > S(η2) . Thus,

By using Eq. (4),

Remark 3.1 The mFAAOWA AOs satisfy all the basic properties including idempotency, monotonicity, and 
boundedness as discussed in Theorems 3.2, 3.3, and 3.4, respectively.

Theorem 3.6 (Commutative Law) Let ηk and η̂k be any two families of mF numbers where k = 1, 2, 3, . . . , n . Then

where η̂k is a random permutation of ηk.

Proof It is immediately shown by Definition 3.2.   �

Coming definition gives the concept of mFAAHWA AOs as hybridization of the previous two AOs.

Definition 3.3 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the collection of mF numbers with k = 1, 2, . . . , n . 
Then a mapping mFAAHWA:ηn → η defines the mFAAHWA AO as:

(4)

mFAAOWAγ (η1, η2, . . . , ηn) =

n
∑

k=1

(

γkητ(k)
)

,

=
(

1−
1

e{
∑n

k=1 γk(−ln(1−P1ητ(k)))
p}1/p

, . . . ,

1−
1

e{
∑n

k=1 γk(−ln(1−Pmητ(k)))
p}1/p

)

.

S(η1) =
0.53+ 0.17+ 0.71

3
= 0.4700,

S(η2) =
0.36+ 0.25+ 0.41

3
= 0.3400,

S(η3) =
0.80+ 0.18+ 0.79

3
= 0.5900.

ητ(1) =η3 = (0.80, 0.18, 0.79),

ητ(2) =η1 = (0.53, 0.17, 0.71),

ητ(3) =η2 = (0.36, 0.25, 0.41).

mFAAOWAγ (η1, η2, η3) =
(

1−
1

e{
∑n

k=1 γk(−ln(1−P1ητ(k)))
p}1/p

, . . . , 1−
1

e{
∑n

k=1 γk(−ln(1−Pmητ(k)))
p}1/p

)

,

=
(

1−
1

e{γ1(−ln(1−P1η1))p+γ2(−ln(1−P1η2))p+γ3(−ln(1−P1η3))p}1/p
,

1−
1

e{γ1(−ln(1−P2η1))p+γ2(−ln(1−P2η2))p+γ3(−ln(1−P2η3))p}1/p
,

1−
1

e{γ1(−ln(1−P3η1))p+γ2(−ln(1−P3η2))p+γ3(−ln(1−P3η3))p}1/p

)

,

=
(

1−
1

e{0.25(−ln(1−0.80))3+0.30(−ln(1−0.53))3+0.45(−ln(1−0.36))3}1/3
,

1−
1

e{0.25(−ln(1−0.18))3+0.30(−ln(1−0.17))3+0.45(−ln(1−0.25))3}1/3
,

1−
1

e{0.25(−ln(1−0.79))3+0.30(−ln(1−0.71))3+0.45(−ln(1−0.41))3}1/3

)

,

= (0.6556, 0.2169, 0.6884).

mFAAOWAγ (η1, η2, . . . , ηn) = mFAAOWAγ

(

η̂1, η̂2, . . . , η̂n
)

mFAAHWAγ ,ω (η1, η2, . . . , ηn) =

n
∑

k=1

(

γkη̂τ (k)
)
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Here γ=(γ1, γ2, . . . , γn) represents the ordered weights with γk ∈ (0, 1] and 
∑n

k=1 γk = 1 . Moreover, η̂τ (k) is 
the k− th biggest weighted mF number defined as η̂τ (k) = nωk(ηk), where ω = (ω1,ω2, . . . ,ωn) represents an 
unordered weight vector with 

∑n
k=1 ωk = 1 and ωk ∈ (0, 1].

Theorem 3.7 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the collection of ‘n’ mF numbers where k = 1, 2, . . . , n . 
The aggregation of these mF numbers by mFAAHWA AO is given as:

Example 3.3 Let η1=(0.84, 0.33, 0.51) , η2=(0.27, 0.63, 0.16) , and η3 = (0.62, 0.14, 0.70) be three 3F numbers with 
weight vectors γ = (0.25, 0.30, 0.45) and ω = (0.35, 0.50, 0.15) . Then by Definition 3.3, for p = 3,

Similarly,

The score values for these computed mF numbers are calculated as:

Since S(η̂1) > S(η̂3) > S(η̂2), therefore

Finally, by applying Definition 3.3 for p = 3,

mFAAHWAγ ,ω (η1, η2, . . . , ηn) =

n
∑

k=1

(

γkη̂τ (k)
)

,

=
(

1−
1

e{
∑n

k=1 γk(−ln(1−P1η̂τ (k)))
p}1/p

, . . . ,

1−
1

e{
∑n

k=1 γk(−ln(1−Pmη̂τ (k)))
p}1/p

)

.

η̂1 =
(

1−
1

e{nω1(−ln(1−P1η1))p}1/p
, 1−

1

e{nω1(−ln(1−P2η1))p}1/p
, 1−

1

e{nω1(−ln(1−P3η1))p}1/p

)

=
(

1−
1

e{3×0.25(−ln(1−0.84))3}1/3
, 1−

1

e{3×0.25(−ln(1−0.33))3}1/3
, 1−

1

e{3×0.25(−ln(1−0.51))3}1/3

)

=
(

0.8108, 0.3050, 0.4770
)

η̂2 =
(

1−
1

e{3×0.30(−ln(1−0.27))3}1/3
, 1−

1

e{3×0.30(−ln(1−0.63))3}1/3
, 1−

1

e{3×0.30(−ln(1−0.16))3}1/3

)

=
(

0.2620, 0.6171, 0.1549
)

η̂3 =
(

1−
1

e{3×0.45(−ln(1−0.62))3}1/3
, 1−

1

e{3×0.45(−ln(1−0.14))3}1/3
, 1−

1

e{3×0.45(−ln(1−0.70))3}1/3

)

=
(

0.6568, 0.1535, 0.7357
)

S(η̂1) =
0.8108+ 0.3050+ 0.4770

3
= 0.5309,

S(η̂2) =
0.2620+ 0.6171+ 0.1549

3
= 0.3447,

S(η̂3) =
0.6568+ 0.1535+ 0.7357

3
= 0.5153.

η̂τ (1) =η̂1 = (0.8108, 0.3050, 0.4770),

η̂τ (2) =η̂3 = (0.6568, 0.1535, 0.7357),

η̂τ (3) =η̂2 = (0.2620, 0.6171, 0.1549).
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mF Aczel–Alsina weighted geometric AOs
This subsection presents mF Aczel–Alsina weighted geometric AOs and their properties.

Definition 3.4 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the set of mF numbers where k = 1, 2, . . . , n , then a 
mapping mFAAWG:ηn → η defines the mFAAWG AO given as:

where γ=(γ1, γ2, . . . , γn) is the weight vector satisfying 
∑n

k=1 = 1 for γk ∈ (0, 1].

Theorem 3.8 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the collection of mF numbers. then the output obtained 
by aggregating these mFNs using mFAAWG AO is again an mF number. Mathematically,

Proof Its proof is same as of Theorem 3.1.   �

Example 3.4 Let η1 = (0.64, 0.13, 0.46), η2 = (0.78, 0.32, 0.98) and η3 = (0.82, 0.51, 0.32) be 3F numbers with 
weights γ = (0.25, 0.45, 0.30) . Then for p = 3,

Theorem 3.9 (Idempotent Law) Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the family of mF numbers where 
k = 1, 2, 3, . . . , n such that ηk = η and γ contains the corresponding weights, then

mFAAHWAγ ,ω (η1, η2, . . . , ηn) =

n
∑

k=1

(

γkη̂τ (k)
)

=
(

1−
1

e{
∑3

k=1 γk(−ln(1−P1η̂τ (k)))
p}1/p

, . . . ,

1−
1

e{
∑3

k=1 γk(−ln(1−P3η̂τ (k)))
p}1/p

)

=
(

1−
1

e{0.35(−ln(1−0.8108))3+0.50(−ln(1−0.6568))3+0.15(−ln(1−0.2620))3}1/3
,

1−
1

e{0.35(−ln(1−0.3050))3+0.50(−ln(1−0.1535))3+0.15(−ln(1−0.6171))3}1/3
,

1−
1

e{0.35(−ln(1−0.4770))3+0.50(−ln(1−0.7357))3+15(−ln(1−0.1549))3}1/3

)

=
(

0.7293, 0.4135, 0.6618
)

mFAAWGγ (η1, η2, . . . , ηn) =

n
⊗

k=1

(ηk)
γk

mFAAWGγ (η1, η2, . . . , ηn) =

n
⊗

k=1

(ηk)
γk ,

=
( 1

e{
∑n

k=1 γk(−lnP1ηk)
p}1/p

, . . . ,
1

e{
∑n

k=1 γk(−lnP1ηk)
p}1/p

)

.

mFAAWGγ (η1, η2, . . . , ηn) =

n
⊗

k=1

(ηk)
γk ,

=
( 1

e{
∑n

k=1 γk(−lnP1ηk)
p}1/p

, . . . ,
1

e{
∑n

k=1 γk(−lnP1ηk)
p}1/p

)

,

=
( 1

e{γ1(−lnP1η1)p+γ2(−lnP1η2)p+γ3(−lnP1η3)p}1/p
,

1

e{γ1(−lnP2η1)p+γ2(−lnP2η2)p+γ3(−lnP2η3)p}1/p
,

1

e{γ1(−lnP3η1)p+γ2(−lnP3η2)p+γ3(−lnP3η3)p}1/p

)

,

=
( 1

e{0.25(−ln0.64)3+0.45(−ln0.78)3+0.30(−ln0.82)3}1/3
,

1

e{0.25(−ln(0.13))3+0.45(−ln(0.32))3+0.30(−ln(0.51))3}1/3
,

1

e{0.25(−ln(0.46))3+0.45(−ln(0.98))3+0.30(−ln(0.32))3}1/3

)

,

= (0.7293, 0.2410, 0.4384).

mFAAWGγ (η1, η2, . . . , ηn) = η.
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Theorem 3.10 (Monotonic Law) Let ηk = (P1 ◦ ηk , . . . ,Pm ◦ ηk) and η̂k =
(

P1 ◦ η̂k , . . . ,Pm ◦ η̂k
)

 be two sets of 
mF numbers and γ consists of the corresponding weights, if ηk ≤ η̂k where k varies from 1 to n, then

Theorem 3.11 (Bounded Law) Let ηk = (P1 ◦ ηk , . . . ,Pm ◦ ηk) and η̂k =
(

P1 ◦ η̂k , . . . , Pm ◦ η̂k
)

 be two sets of mF 
numbers, and γ contains the respective weights. Then

where η− = min ηk and η+ = max ηk.

Next definition gives the notion of mFAAOWG AOs.

Definition 3.5 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) (1 ≤ k ≤ n) be a collection of mF numbers. The 
mFAAOWG AO given by mFAAOWG:ηn → η is defined as:

Here γ = (γ1, γ2, . . . , γn) represents the weight vector and τ(k) denotes the permutation with γτ(k−1) ≥ γτ(k).

Theorem 3.12 Let ηk = (P1 ◦ ηk , . . . ,Pm ◦ ηk) be the set of mF numbers with k = 1, 2, . . . , n . Then, an output 
value obtained after aggregation of these numbers using the mFAAOWG is also an mFNs given by

Example 3.5 Let η1 = (0.43, 0.71, 0.28), η2 = (0.32, 0.63, 0.19) , and η3 = (0.25, 0.90, 0.53) be three 3F numbers 
with weight vector γ = (0.25, 0.30, 0.45) . The score values of these mF numbers are calculated as below:

This implies S(η̂3) > S(η̂1) > S(η̂2) . Therefore,

Now for p = 3 , by applying Definition 3.5,

Remark 3.2 The mFAAOWG operators satisfy the fundamental properties including idempotency, monotonocity 
and boundedness as studied in Theorems 3.2, 3.3, and 3.4.

Theorem 3.13 (Commutative Law) Let ηk and η̂k be any two collections of mF numbers where k = 1, 2, . . . , n , then

mFAAWGγ (η1, η2, . . . , ηn) ≤ mFAAWGγ

(

η̂1, η̂2, . . . , η̂n
)

.

η− ≤ mFAAWGγ (η1, η2, . . . , ηn) ≤ η+

mFAAOWGγ (η1, η2, . . . , ηn) =

n
⊗

k=1

(

ητ(k)
)γk .

mFAAOWGγ (η1, η2, . . . , ηn) =

n
⊗

k=1

(

ητ(k)
)γk ,

=
( 1

e{
∑n

k=1 γk(−lnP1ητ(k))
p}1/p

, . . . ,
1

e{
∑n

k=1 γk(−lnPmητ(k))
p}1/p

)

.

S(η̂1) =
0.43+ 0.71+ 0.28

3
= 0.4733,

S(η̂2) =
0.32+ 0.63+ 0.19

3
= 0.3800,

S(η̂3) =
0.25+ 0.90+ 0.53

3
= 0.5600.

ητ(1) =η̂3 = (0.25, 0.90, 0.53),

ητ(2) =η̂1 = (0.43, 0.71, 0.28),

ητ(3) =η̂2 = (0.32, 0.63, 0.19).

mFAAOWGγ (η1, η2, η3) =

3
⊗

k=1

(

ητ(k)
)γk ,

=
( 1

e{
∑n

k=1 γk(−lnP1ητ(k))
p}1/p

, . . . ,
1

e{
∑n

k=1 γk(−lnP3ητ(k))
p}1/p

)

,

=
( 1

e{0.25(−ln0.25)3+0.30(−ln0.43)3+0.45(−ln0.32)3}1/3
,

1

e{0.25(−ln(0.90))3+0.30(−ln(0.71))3+0.45(−ln(0.63))3}1/3
,

1

e{0.25(−ln(0.53))3+0.30(−ln(0.28))3+0.45(−ln(0.19))3}1/3

)

,

= (0.3173, 0.6810, 0.2466).
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Here η̂k is any permutation of ηk.

Proof It is immediately followed by Definition 3.5   �

Next definition combines the features of mFAAWG and mFAAOWG AOs to form mFAAHWG AOs.

Definition 3.6 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the collection of mF numbers with k = 1, 2, . . . , n . 
Then a mapping mFAAHWG:ηn → η defines the mFAAHWG AO as:

Here γ = (γ1, γ2, . . . , γn)  represents the ordered weights with γk ∈ (0, 1] and 
∑n

k=1 γk = 1 . Moreover, η̂τ (k) 
is the k-th biggest weighted mF number defined as η̂τ (k) = (ηk)

nωk , where ω = (ω1,ω2, . . . ,ωn) represents an 
unordered weight vector with 

∑n
k=1 ωk = 1 and ωk ∈ (0, 1].

Theorem 3.14 Let ηk = (P1 ◦ ηk , P2 ◦ ηk , . . . , Pm ◦ ηk) be the family of mF numbers with k = 1, 2, . . . , n , then 
the aggregated value obtained after aggregation of these numbers using the mFAAHWG operator is also an mF 
number given by

Example 3.6 Let η1 = (0.35, 0.13, 0.55), η2 = (0.17, 0.63, 0.28) and η3 = (0.54, 0.21, 0.48) be three 3F numbers, 
and γ = (0.30, 0.25, 0.45) be an associated weight-vector, then

Corresponding score values are calculated as:

Since S(η̂2) > S(η̂3) > S(η̂1) , therefore

By using Definition 3.6 and fixing p = 3,

mFAAOWGγ (η1, η2, . . . , ηn) = mFAAOWGγ

(

η̂1, η̂2, . . . , η̂n
)

mFAAHWGγ ,ω(η1, η2, . . . , ηn) =

n
⊗

k=1

(

η̂τ (k)
)γk

mFAAHWGγ ,ω(η1, η2, . . . , ηn) =

n
⊗

k=1

(

η̂τ (k)
)γk .

η̂1 =
( 1

e{nω1(−lnP1η1)p}1/p
,

1

e{nω1(−lnP2η1)p}1/p
,

1

e{nω1(−lnP3η1)p}1/p

)

=
( 1

e{3×0.30(−ln0.35)3}1/3
,

1

e{3×0.30(−ln0.13)3}1/3
,

1

e{3×0.30(−ln0.55)3}1/3

)

= (0.3127, 0.1395, 0.5615)

Similarly,

η̂2 =
( 1

e{3×0.25(−ln0.17)3}1/3
,

1

e{3×0.25(−ln0.63)3}1/3
,

1

e{3×0.25(−ln0.28)3}1/3

)

= (0.1999, 0.6572, 0.3146)

η̂3 =
( 1

e{3×0.45(−ln0.54)3}1/3
,

1

e{3×0.45(−ln0.21)3}1/3
,

1

e{3×0.45(−ln0.48)3}1/3

)

= (0.5061, 0.1782, 0.4443)

S(η̂1) =
0.3127+ 0.1395+ 0.5615

3
= 0.3379,

S(η̂2) =
0.1999+ 0.6572+ 0.3146

3
= 0.3906,

S(η̂3) =
0.5061+ 0.1782+ 0.4443

3
= 0.3762.

ητ(1) =η̂2 = (0.1999, 0.6572, 0.3146),

ητ(2) =η̂3 = (0.5061, 0.1782, 0.4443),

ητ(3) =η̂1 = (0.3127, 0.1395, 0.5615).
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Applications to MCDM with mF information
This section aims to illustrate the practical implementation of newly proposed AOs. Two multi-polar site selec-
tion problems are intricately discussed and solved using newly developed algorithm based on mFAAWA and 
mFAAWG AOs.

Definition 4.1 Consider {X1,X2, . . . ,Xn} is the universal set and {T1,T2, . . . ,Tk} is the universe of attributes. 
Suppose γ = (γ1, γ2, . . . , γk) is the weight vector corresponding to attributes Ti (1 ≤ i ≤ k) . Then the mF deci-
sion-matrix representing the estimations of experts in mF environment is formulated as

Algorithm 1 represents the proposed method of decision-making with mFAAWA and mFAAWG AOs. Fig-
ure 1 gives a pictorial explanation of the proposed algorithm.

Algorithm 1: Selection of best option using mFAAWA or mFAAWG operators.

mFAAHWGγ ,ω(η1, η2, η3) =

3
⊗

k=1

(

η̂τ (k)
)γk ,

=
( 1

e{
∑3

k=1 γk(−lnP1ητ(k))
p}1/p

, . . . ,
1

e{
∑3

k=1 γk(−lnP3ητ(k))
p}1/p

)

,

=
( 1

e{0.25(−ln0.1999)3+0.15(−ln0.5061)3+0.60(−ln0.3127)3}1/3
,

1

e{0.25(−ln(0.6572))3+0.15(−ln(0.1782))3+0.60(−ln(0.1395))3}1/3
,

1

e{0.25(−ln(0.3146))3+0.15(−ln(0.4443))3+0.60(−ln(0.5615))3}1/3

)

,

= (0.2817, 0.1735, 0.4339).

Ñ = (q̃it)n×k =
(

P1 ◦ ηit , P2 ◦ ηit , . . . ,Pm ◦ ηit
)

n×k

Input Universal Set Xi
Set of 

Parameters Tj

Weight Vector �j Decision Matrix �ij

Aggregation of Decision Matrix

Compute the aggregated mFNs xi corresponding to

Xi s using mFAAWA or mFAAWG AOs 

Score Values

Calculate the score S of each mFN xi

Rank the alternatives in descending order

by using score values 

Ranking

Decision

The alternative having max score value is the best
choice. For more alternatives bearing same max value, 

any of these can be choosen as optimal.

Output

Figure 1.  Flowchart of Algorithm 1.
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1. Input:
a universal set X containing ‘n’ alternatives,
a set of attributes Tj with j varies from 1 to k,
a weight vector γj where

∑k
j=1 γj = 1, and

the mF decision matrix Ñ = (q̂it)n×k = P1 ◦ ηit, P2 ◦ ηit, . . . , Pm ◦ ηit
)
n×k

corresponding
to the available attributes.

2. Compute the aggregated value q̂s corresponding to each object of the universal set using
mFAAWA as follows:

q̂s = mFAAWAγ (ηs1, ηs2, . . . , ηsk) =
k⊕

t=1

(γkηst) ,

=
(
1− 1

e{
∑k

t=1 γk(−ln(1−P1ηk))p}1/p
, . . . ,

1− 1

e{
∑k

t=1 γk(−ln(1−Pmηk))p}1/p

)
. (5)

If mFAAWG operator is used for aggregation, then

q̂s = mFAAWGγ (η1, η2, . . . , ηn) =
n⊗

k=1

(ηk)
γk ,

=
( 1

e{
∑n

k=1 γk(−lnP1ηk)p}1/p
, . . . ,

1

e{
∑n

k=1 γk(−lnP1ηk)p}1/p

)
.

(6)

3. Calculate the scores for each alternative Xs where s varies from 1 to n.

4. Finally, rank the alternatives in descending order with respect to score values.

5. Output:
The alternative having the maximum score value is the best one. If more than one
alternatives have the same maximum score value, then any of them could be chosen as
optimal choice.

 

Selection of suitable site for desalination plant
The planet earth inhabiting around eight billion people has only 2.5% of its water categorized as fresh water. And 
unfortunately, only a fraction of this part is usable by the people on earth. The remaining water is sea water (salt 
water) unuseable in its current state, specifically for drinking. Many parts of the world have no or limited access 
to the fresh water. Such places make use of the process of desalination (removal of salts from water leaving desali-
nated water) in desalination plants to turn sea water into drinking and useable water. Globally around 1% of the 
total drinking water is provided by desalination. This seemingly low percentage accounts to more than 300 mil-
lion people from around 150 countries of the world, depending partially or completely on this desalinated water 
for their daily requirements. The island countries and the middle east region heavily depend on desalination. 
Countries like Maldives, Kuwait, Bahrain, UAE, Saudi Arabia, etc., heavily contribute to the global desalinated 
water production. Middle east generates around 60% desalinated water of the whole world with only Saudi Arabia 
producing 117 million cubic feet per day. This heavy contribution accounts for 50% of the fresh water needs of the 
Saudi Arabian inhabitants. Desalination is an effective solution for the drinking water requirements. However, 
it is a complicated process with many possible concerns including high power consumption (which may lead to 
more fossil fuel pollution in case of independent power sources) for pressurization, intake, and reverse osmosis; 
environmental concerns including possible damage to the marine life, pollution of sea water, non-uniform salin-
ity, heavy brine (brine refers to solution of water containing a lot more salt than the sea water, returned to sea after 
desalination) disposal, water pre-treatment chemicals disposal, and increased erosion; social and legal concerns 
including the use of public water, effects to the surrounding inhabitants, effects to legal rights of correspondents, 
water distribution, possible pollution, employment opportunities, and finally, the financial constraints. Taking 
these concerns into consideration, the site for a desalination plant must be choosen wisely, as it has long-lasting 
impacts on the overall production, maintenance, and surrounding areas. Consider a country dependent on sea 
water is concerned about its increasing need of drinking water. Despite its many coastal areas, the selection of the 
best site for construction of a desalination plant is crucial and worthy of critical decision-making. A committee 
including engineers, marine biologists, desalination experts, public representatives, government representatives, 
approval committee members, geography and topography scientists, local non-governmental organizations, and 
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the consulted environmental standards testing members is constructed. This committee discusses the sites with 
initial surveys and tests, and comes up with 15 most suitable sites for the desalination plant. For the next phase 
of detailed evaluation of these sites, four parameters including location, sea-water quality, technical feasibility, 
and environment friendliness, are choosen by the committee. These four parameters are further categorized into 
four sub-parameters as described below: 

1. Location 

 (i) Near a suitable brine discharge area: For minimizing the structure and energy needed to discharge 
brine back into the sea safely.

 (ii) Near a power supply source or transmission: For eliminating the need of an independent power 
source and minimizing the power transmission costs.

 (iii) Close to a water supply main conveyor: Minimal distance from the main conveyor ensures safe 
and cheap transport and administration of the treated water, which can be further distributed by 
the conveyor easily.

 (iv) Near a well-structured road network: Desalination plant connected to or near a structured road 
network allows easy transport of machinery and resources during its construction and increases 
accessibility for further operations.

2. Seawater quality 

 (i) Low annual silt density: Low annual silt density range represents lower fouling capacity of sea water 
in the RO process ensuring longer and reliable operation of the membrane surfaces.

 (ii) Steady and suitable temperature: Steady and suitable temperature of the water ensures health of 
the reverse osmosis plant.

 (iii) Least contamination risk: Intake away from ports or industries ensuring least contamination risk 
from the hazardous pollutants.

 (iv) Low turbidity: Low turbidity ensures lower pre-treatment processing power and costs.

3. Technical feasibility 

 (i) Intake structures invulnerability against waves and storms: Intake structures should be located and 
designed so that they have minimal negative affects from the possible sea-waves and storms.

 (ii) Open intake suitability: Suitability for open intake ensures more water production as compared to 
walled intake.

 (iii) Safe brine discharge and quick dilution: Safe discharge of brine back into the sea water with possible 
post-processing ensuring quick dilution of the brine is necessary and is dependant on the distance 
from brine disposal site, height of the plant, post-processing, and dispersal.

 (iv) Ease of water transportation: Topography and behaviour of the site should be helpful in structuring 
plant for easily transporting the water throughout the process with minimum power.

4. Environment freindliness 

 (i) Safe distance from protected areas: Conserved and protected areas like marine ecosystems, wet-
lands, etc., must be at a safe distance from the desalination plant to protect them from possible 
intake and brine discharge effects.

 (ii) Distant from inhabited areas: Safe distance from communities and inhabitants must be maintained 
to reduce the effect of possible noise and smoke pollution.

 (iii) Safety of marine life: The intake, structure, power-source, and byproduct discharge should pose 
minimum to no harm to any marine life nearby.

 (iv) Safety mitigation against possible erosion: The site selection ensures limitation of possible erosion 
in order to maintain the seabed topography, and reduce the possible adverse effects.

After analyzing the sites Xi : 1 ≤ i ≤ 15 with respect to the parameters Tj : 1 ≤ j ≤ 4 , the committee generates 
a collective report in the form of a 4F decision matrix as shown in Table 1. The committee considers Algorithm 1 
(flowchart in Fig. 1) to select the best site from the available most suitable sites. Consequently, committee assigns 
weights to the parameters as follows:

Firstly, the optimistic approach is carried out using mFAAWA aggregation to choose the best site.

Step 1 Let p = 3 . Then using the mFAAWA operator, the values q̂s for the desalination plant sites 
Xs : 1 ≤ s ≤ 15 are calculated as:

γ1 = 0.25, γ2 = 0.30, γ3 = 0.35, γ4 = 0.10.
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Step 2 The score values S(q̂s) of all the above computed 4F numbers q̂s are provided as:

Step 3 Finally according to the above scores, the objects are ranked as follows:

Hence, X8 is the best site for desalination plant with mFAAWA approach.Again for a pessimistic perspective, 
the process is repeated with mFAAWG operator.

Step 1 Let p = 3 . Then using the mFAAWG operator, the values q̂s for the desalination plant sites 
Xs : 1 ≤ s ≤ 15 are determined as:

Step 2 The score values S (q̂s) (where 1 ≤ s ≤ 15) of all 4F numbers computed in previous step are calculated 
as:

q̂1 = (0.6874, 0.2456, 0.5588, 0.7376), q̂2 = (0.7220, 0.3560, 0.6932, 0.8194),

q̂3 = (0.6342, 0.3608, 0.7923, 0.5990), q̂4 = (0.6892, 0.2914, 0.5587, 0.6537),

q̂5 = (0.5567, 0.8400, 0.4570, 0.6635), q̂6 = (0.8425, 0.5726, 0.5395, 0.7954),

q̂7 = (0.6949, 0.5488, 0.6107, 0.8110), q̂8 = (0.8244, 0.6828, 0.5024, 0.8456),

q̂9 = (0.8470, 0.4298, 0.6960, 0.5827), q̂10 = (0.7362, 0.5336, 0.7894, 0.4622),

q̂11 = (0.7023, 0.6634, 0.2808, 0.9631), q̂12 = (0.8483, 0.4134, 0.6184, 0.7237),

q̂13 = (0.7854, 0.5817, 0.8321, 0.4801), q̂14 = (0.7327, 0.4839, 0.6716, 0.9248),

q̂15 = (0.6668, 0.7264, 0.9552, 0.5003).

S(q̂1) = 0.5574, S(q̂2) = 0.6476, S(q̂3) = 0.5966, S(q̂4) = 0.5482,

S(q̂5) = 0.6293, S(q̂6) = 0.6875, S(q̂7) = 0.6663, S(q̂8) = 0.7138,

S(q̂9) = 0.6389, S(q̂10) = 0.6304, S(q̂11) = 0.6524, S(q̂12) = 0.6510,

S(q̂13) = 0.6698, S(q̂14) = 0.7033, S(q̂15) = 0.7122.

X8 > X15 > X14 > X6 > X13 > X7 > X11 > X12 > X2 > X9 > X10 > X5 > X3 > X4 > X1.

q̂1 = (0.5630, 0.2098, 0.2873, 0.5377), q̂2 = (0.3653, 0.2698, 0.2359, 0.4216),

q̂3 = (0.4317, 0.2402, 0.2915, 0.3848), q̂4 = (0.5077, 0.2325, 0.4172, 0.3897),

q̂5 = (0.3925, 0.4113, 0.1679, 0.4987), q̂6 = (0.5208, 0.2828, 0.2515, 0.4490),

q̂7 = (0.2529, 0.2371, 0.2947, 0.3192), q̂8 = (0.4732, 0.2142, 0.3764, 0.4841),

q̂9 = (0.4282, 0.2505, 0.2358, 0.3675), q̂10 = (0.2622, 0.3541, 0.2349, 0.1690),

q̂11 = (0.2142, 0.5808, 0.1568, 0.6003), q̂12 = (0.5135, 0.2077, 0.3879, 0.4345),

q̂13 = (0.3297, 0.3717, 0.3001, 0.3104), q̂14 = (0.4220, 0.2471, 0.4771, 0.4970),

q̂15 = (0.3320, 0.4802, 0.5898, 0.2473).

Table 1.  4F decision matrix for desalination plant sites.

T1 T2 T3 T4

M1 (0.47, 0.19, 0.31, 0.72) (0.76, 0.29, 0.32, 0.41) (0.55, 0.17, 0.68, 0.82) (0.81, 0.32, 0.11, 0.59)

M2 (0.37, 0.18, 0.60, 0.51) (0.57, 0.41, 0.77, 0.39) (0.28, 0.38, 0.13, 0.91) (0.93, 0.19, 0.82, 0.23)

M3 (0.28, 0.43, 0.15, 0.73) (0.73, 0.38, 0.50, 0.26) (0.61, 0.15, 0.89, 0.50) (0.53, 0.38, 0.42, 0.60)

M4 (0.43, 0.17, 0.29, 0.80) (0.80, 0.28, 0.67, 0.41) (0.61, 0.35, 0.48, 0.30) (0.35, 0.17, 0.49, 0.62)

M5 (0.55, 0.27, 0.60, 0.42) (0.41, 0.80, 0.11, 0.53) (0.32, 0.91, 0.15, 0.77) (0.78, 0.33, 0.50, 0.38)

M6 (0.44, 0.17, 0.66, 0.89) (0.81, 0.63, 0.41, 0.42) (0.91, 0.62, 0.15, 0.38) (0.33, 0.17, 0.64, 0.90)

M7 (0.13, 0.21, 0.47, 0.67) (0.61, 0.52, 0.17, 0.19) (0.34, 0.17, 0.60, 0.90) (0.91, 0.79, 0.82, 0.37)

M8 (0.72, 0.18, 0.59, 0.32) (0.33, 0.81, 0.26, 0.74) (0.90, 0.15, 0.52, 0.80) (0.81, 0.67, 0.42, 0.97)

M9 (0.33, 0.18, 0.83, 0.25) (0.92, 0.22, 0.63, 0.40) (0.82, 0.37, 0.18, 0.70) (0.25, 0.67, 0.10, 0.38)

M10 (0.61, 0.33, 0.91, 0.19) (0.15, 0.27, 0.34, 0.60) (0.84, 0.65, 0.14, 0.10) (0.23, 0.40, 0.75, 0.31)

M11 (0.85, 0.46, 0.37, 0.68) (0.11, 0.67, 0.28, 0.81) (0.35, 0.67, 0.10, 0.99) (0.53, 0.78, 0.10, 0.35)

M12 (0.64, 0.47, 0.25, 0.83) (0.75, 0.19, 0.47, 0.50) (0.92, 0.15, 0.73, 0.33) (0.25, 0.61, 0.47, 0.84)

M13 (0.18, 0.41, 0.34, 0.63) (0.89, 0.43, 0.19, 0.33) (0.65, 0.30, 0.92, 0.29) (0.40, 0.83, 0.44, 0.18)

M14 (0.57, 0.28, 0.80, 0.33) (0.85, 0.57, 0.37, 0.97) (0.48, 0.16, 0.61, 0.87) (0.19, 0.63, 0.42, 0.91)

M15 (0.30, 0.83, 0.67, 0.53) (0.48, 0.58, 0.99, 0.13) (0.27, 0.37, 0.49, 0.51) (0.90, 0.83, 0.71, 0.63)
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Step 3 Finally, the sites are ranked as follows:

Hence, X15 is the best site for desalination plant with mFAAWG approach. As observed, different rankings 
are obtained with different AOs used. It must be noted that the tabular data utilized for both the applications is 
synthetic, intentionally crafted to emulate the challenges of considered site selection problems. These artificial 
datasets ensure a controlled evaluation environment, showcasing the algorithm’s applicability to real-world 
scenarios.

Selection of a suitable site for wind power plant
Renewable energy sources have become increasingly important in recent years due to the growing need for sus-
tainable and environment-friendly power. These green energy sources, including solar, wind, hydro, geothermal, 
and biomass energy, account for a clean and efficient alternative to traditional fossil fuels, which cause significant 
pollution and contribute to climate change. Globally, renewable energy sources now account for approximately 
30% of all power generation, with China being the largest contributor to this trend. This is a significant develop-
ment, as it demonstrates the growing recognition of the importance of renewable energy sources in meeting the 
world’s power needs.

Among these sources, wind power stands out as particularly advantageous due to its ability to generate power 
in an economic and environment-friendly manner. Wind turbines require minimal look-after, can work without 
any fossil fuels or power generators, are 100% emission-free, have no negative impact on global warming, and can 
be installed in various settings, making them a versatile option for power generation. Additionally, wind power 
is a reliable and consistent energy source even in areas with low wind speeds. Thus, wind power can help reduce 
pollution and combat climate change while meeting the power needs sustainably and responsibly.

Although wind power has a lot of advantages over other sources, it has some limitations, particularly regard-
ing the appropriate siting for maximum efficiency and minimum concerns. Wind power farms need wind to 
operate, generate noise, and often are installable only in remote regions, increasing the transmission losses and 
costs. Choosing the appropriate site for a wind power plant is crucial for maximum efficiency. The efficiency of 
the turbines depends heavily on the wind speed and consistency in the installation area. An inappropriate loca-
tion can lead to low power generation, higher maintenance costs, and reduced turbine lifespan.

Several essential factors must be considered when selecting a site for a wind power plant. Accurate measure-
ment of wind speed and direction over an extended period is necessary to determine the site’s potential energy 
output. Accessibility, terrain, land use, and weather conditions should be analyzed to ensure that the site can 
accommodate the installation and operation of wind turbines. Another critical factor in selecting the best site 
is assessing potential hazards. For example, wind turbines can be threatful to birds and bats, so it is crucial to 
determine the local wildlife population and migration patterns. Additionally, evaluating the potential for noise 
pollution and visual impacts on the surrounding environment is necessary.

Suppose the government of a country is interested in the green energy plan and moving towards wind power 
to increase its power production while posing no harm to the environment. The geography and weather of 
the country support wind-power generation by its strong winds and high grounds. However, the government 
faces financial problems, and the project-siting must ensure minimum economic and environmental costs. For 
instance, keeping the project sites in remote and distant areas increases the transmission costs. Similarly, relatively 
adverse weather locations with stormy winds and snow can damage the turbine blades and reduce production 
efficiency. The site must be at a safe distance from airports and forests. In addition, placing the turbines nearer 
to populated areas (to minimize transmission costs) can affect the health of inhabitants (by noise and visual 
disturbances). Also, the site must ensure maximum efficiency with the most economic installations.

A site-selection committee, constituting meteorologists, geologists, engineers, power and finance ministry 
representatives, local administrations, environmental standard regulators, and the resources and approval man-
agement committee members, is assigned the task of selecting the best site while considering the challenges. 
The committee does an initial survey and shortlists the eight most suitable project sites ( Xi : 1 ≤ i ≤ 8 ). Next, 
the committee critically studies these shortlisted sites with the help of annual bird migration patterns, detailed 
weather patterns, wind directions, temperature patterns, and wind speeds. Based on these studies, the commit-
tee considers wind quality, location, power generation, environment-friendliness, and cost as the five governing 
parameters ( Tj : 1 ≤ j ≤ 5 ) for the next phase of assessments. These five parameters Tj are further categorized 
into three sub-parameters as follows: 

1. Wind quality 

 (i) Good average wind speed: High annual wind speed average ensuring high power generation.
 (ii) Low speed variations: Low speed variations in different weather conditions ensure sustainability 

and steady output.

S(q̂1) = 0.3994, S(q̂2) = 0.3231, S(q̂3) = 0.3370, S(q̂4) = 0.3868,

S(q̂5) = 0.3676, S(q̂6) = 0.3760, S(q̂7) = 0.2760, S(q̂8) = 0.3870,

S(q̂9) = 0.3205, S(q̂10) = 0.2550, S(q̂11) = 0.3880, S(q̂12) = 0.3859,

S(q̂13) = 0.3280, S(q̂14) = 0.4108, S(q̂15) = 0.4123.

X15 > X14 > X1 > X11 > X8 > X4 > X12 > X5 > X6 > X3 > X13 > X2 > X9 > X7 > X10.
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 (iii) High wind speed distribution: High possible wind speed distribution with the combination of wind 
quality and affordable infrastructure.

2. Location 

 (i) Higher grounds: High plains, grounds, round tops of hills, etc., where wind is available at high 
speeds without interruption.

 (ii) Flat terrain: Wind turbines with giant and tall structures require smooth and flat terrains to base 
their structures.

 (iii) Unrestricted land availability: Site should not be a restricted zone (like near an airport) and should 
not have future land uses declared in the close radius.

3. Power generation 

 (i) Near to the grid: Less distance from the electricity grid ensures low transmission costs and ease of 
installation.

 (ii) Suitability with the power flow: The newly generated power should not disturb the existing power 
flow and impose minimum penetration to the electrical network.

 (iii) Suitability for big turbines: Big turbines imply more power generation, but need bigger towers and 
hence the suitable site.

4. Environment-friendliness 

 (i) Safe distance from forests: Wind turbines can be dangerous to wild life and birds, therefore a safe 
distance is necessary to ensure safety of these animals.

 (ii) Minimum noise pollution: Wind turbines cutting air cause noise which can affect the human health, 
therefore ideally site is distant from inhabited areas.

 (iii) Minimum visual impact: Site should ensure minimum shadow flickers and visual pollution.

5. Cost 

 (i) Low installation cost: Different turbines work best in different conditions. Similarly near grid sites 
require less transmission and transformation installations. The site should ensure best working 
conditions with minimum installation costs.

 (ii) Affordable land cost: A site away from residential and commercial areas with suitable conditions 
in low cost is optimal for wind power installation.

 (iii) Low transportation cost: Connection to structured road network and accessibility minimizing the 
transportation costs particularly during construction, installation, and management.

Deep analysis of the sites with respect to above parameters results in a 3F decision matrix as presented in 
Table 2. The following weights are assigned to the parameters Tj by the committee:

Using Algorithm 1, the calculations to find the best site are firstly done with mFAAWA operator.

Step 1 Let p = 3 . Then using the mFAAWA operator, the values q̂s for the wind power plant sites Xs : 1 ≤ s ≤ 8 
are calculated as:

γ1 = 0.20, γ2 = 0.15, γ3 = 0.25, γ4 = 0.10, γ5 = 0.30.

Table 2.  3F decision matrix for wind power plant sites.

T1 T2 T3 T4 T5

X1 (0.34, 0.76, 0.02) (0.39, 0.71, 0.90) (0.74, 0.68, 0.23) (0.75, 0.81, 0.99) (0.34, 0.97, 0.53)

X2 (0.45, 0.83, 0.87) (0.37, 0.91, 0.66) (0.63, 0.69, 0.12) (0.41, 0.37, 0.33) (0.73, 0.53, 0.22)

X3 (0.74, 0.19, 0.83) (0.15, 0.09, 0.38) (0.72, 0.62, 0.61) (0.54, 0.13, 0.27) (0.12, 0.34, 0.07)

X4 (0.32, 0.99, 0.71) (0.12, 0.90, 0.19) (0.43, 0.86, 0.03) (0.77, 0.59, 0.11) (0.17, 0.25, 0.89)

X5 (0.16, 0.56, 0.67) (0.18, 0.42, 0.09) (0.25, 0.91, 0.43) (0.34, 0.66, 0.37) (0.38, 0.11, 0.13)

X6 (0.14, 0.62, 0.01) (0.96, 0.15, 0.48) (0.77, 0.64, 0.29) (0.56, 0.07, 0.14) (0.80, 0.92, 0.21)

X7 (0.37, 0.12, 0.81) (0.83, 0.21, 0.38) (0.05, 0.13, 0.28) (0.80, 0.52, 0.91) (0.11, 0.42, 0.15)

X8 (0.33, 0.72, 0.88) (0.15, 0.35, 0.62) (0.24, 0.78, 0.61) (0.36, 0.12, 0.18) (0.11, 0.34, 0.48)
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Step 2 The score values S (q̂s) of all 3F numbers q̂s are computed as:

Step 3 Finally, the sites are ranked as follows:

Hence, X1 comes to be the best site for wind power plant.
Again, the process is repeated with mFAAWG aggregation.

Step 1 Let p = 3 . Then using the mFAAWG operator, the values q̂s for the desalination plant sites Xs : 1 ≤ s ≤ 8 
are determined as:

Step 2 The score values S (q̂s) of all 3F numbers q̂s are calculated as:

Step 3 Finally, the sites are ranked as below:

This time, X2 comes out to be the best site for the wind power plant.

Discussion
Aggregation operators allow to accumulate and interpret a huge data set by combining the impact of multiple 
related information bits into a single easily understandable entity. For decision-making with uncertain infor-
mation based on a number of attributes, aggregation operators offer unique approximate solutions based on 
their foundational structures. This reason urges decision scientists and researchers to develop varying AOs for 
uncertain information systems, in order to consider multiple possible solutions effected by the trade-offs due to 
the varying structures of these AOs. For uncertain decision-making, these AOs are often based on T-Ns/T-CoNs 
customized to handle specific information. In the existing literature, multiple AOs have already been defined for 
mF information to accumulate, interpret, and appraise complicated multi-polar uncertainties. However, despite 
the dominating accuracy and efficient polarity demonstrated by Aczel–Alsina TN/TCoN based AOs, no work 
has yet established or discussed the impact of Aczel–Alsina AOs for mF information. Consequently, this work 
established mF Aczel–Alsina weighted AOs and demonstrated their decision-making capability with two detailed 
model site-selection problems. The following subsections discuss the advantages and limitations of the proposed 
methods shortly. In addition, comparison with some existing AOs is presented.

Comparison
Different AOs based on different TNs and TCoNs may generate different results with the same information. In 
order to demonstrate this variation of outcomes, previously developed mF weighted averaging and geometric 
AOs based on Yager and Dombi TNs/TCoNs have been considered. Application “Selection of suitable site for 
desalination plant” (Site selection for desalination plant) is taken as a test case to demonstrate this comparison. 
Consequently, the outcomes of proposed mFAAWA and mFAAWG AOs are compared with the outcomes of 
pre-existing mF Yager weighted averaging (mFYWA), mF Yager weighted geometric (mFYWG), mF Dombi 
weighted averaging (mFDWA), and mF Dombi weighted geometric (mFDWG) AOs. Tables 3 and 4 represent 
the conflicting scores and corresponding rankings with the considered AOs. This comparison is graphically 
represented in Fig. 2. Here, the results obtained with proposed Aczel–Alsina AOs are more inclined towards 
those with Yager AOs. The results with mFAAWA AOs are almost consistent with those obtained with mFYWA 
AOs (for instance, both declare X8 as the optimal choice), however the scores with proposed averaging aggrega-
tion sandwich in between the scores with Dombi(from above) and Yager(from below) methodologies. In case 
of weighted geometric aggregation, mFAAWG AOs show significant variation (or comparative accuracy) from 
mFYWG and mFDWG AOs. Figure 2 shows that the aggregation scores obtained with proposed geometric 
aggregation demonstrate minimum variations from the weakest conjunction (every T-norm is bounded above by 

q̂1 = (0.6234, 0.9133, 0.8969), q̂2 = (0.6311, 0.7884, 0.7101),

q̂3 = (0.6384, 0.4675, 0.6680), q̂4 = (0.5140, 0.9426, 0.7872),

q̂5 = (0.3049, 0.7886, 0.4982), q̂6 = (0.8537, 0.8248, 0.3183),

q̂7 = (0.6616, 0.3223, 0.7348), q̂8 = (0.2619, 0.6656, 0.7347).

S(q̂1) = 0.8112, S(q̂2) = 0.7099, S(q̂3) = 0.5913, S(q̂4) = 0.7469,

S(q̂5) = 0.5306, S(q̂6) = 0.6656, S(q̂7) = 0.5862, S(q̂8) = 0.5541.

X1 > X4 > X2 > X6 > X3 > X7 > X8 > X5.

q̂1 = (0.4011, 0.7452, 0.0961), q̂2 = (0.4929, 0.5632, 0.2168),

q̂3 = (0.2066, 0.1976, 0.1619), q̂4 = (0.2176, 0.3929, 0.0979),

q̂5 = (0.2345, 0.2233, 0.1829), q̂6 = (0.3145, 0.2383, 0.0608),

q̂7 = (0.1148, 0.1846, 0.2484), q̂8 = (0.1738, 0.3172, 0.4169).

S(q̂1) = 0.4141, S(q̂2) = 0.4243, S(q̂3) = 0.1887, S(q̂4) = 0.2361,

S(q̂5) = 0.2136, S(q̂6) = 0.2045, S(q̂7) = 0.1826, S(q̂8) = 0.3026.

X2 > X1 > X8 > X4 > X5 > X6 > X3 > X7.
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the minimum T-norm). The compared AOs represent significantly higher scores as compared to the minimum 
threshold. Another version of this observation is the considerable polarity depicted by mFAAWA and mFAAWG 
AOs on the basis of duality of their conjunctive and disjunctive logical bases. This polarity is least observed with 
Dombi AOs. Summing up, different TNs/TCoNs may generate different results with the same information. 
Proposed mFAAWA AOs show results with slight variations from the two other AOs, whereas the analyzation 
by mFAAWG AOs (TN bases AOs) is much more accurate in terms of geometric aggregation.

Table 3.  Comparison of mF AOs for desalination plant site selection.

Scores\AOs mFYWA mFYWG mFDWA mFDWG mFAAWA mFAAWG 

S(q̂1) 0.5595 0.4673 0.5863 0.6360 0.5574 0.3994

S(q̂2) 0.6181 0.4497 0.7091 0.7205 0.6476 0.3231

S(q̂3) 0.5911 0.4649 0.6304 0.7162 0.5966 0.3370

S(q̂4) 0.5556 0.4507 0.5839 0.6406 0.5482 0.3868

S(q̂5) 0.6283 0.4749 0.6778 0.6610 0.6293 0.3676

S(q̂6) 0.6746 0.5102 0.7251 0.6676 0.6875 0.3760

S(q̂7) 0.6451 0.4424 0.7547 0.7774 0.6663 0.2760

S(q̂8) 0.6898 0.5236 0.7660 0.6570 0.7138 0.3870

S(q̂9) 0.6376 0.4576 0.6905 0.7235 0.6389 0.3205

S(q̂10) 0.6235 0.4181 0.6812 0.7865 0.6304 0.2550

S(q̂11) 0.6288 0.4971 0.6854 0.6564 0.6524 0.3880

S(q̂12) 0.6453 0.5008 0.6952 0.6642 0.6510 0.3859

S(q̂13) 0.6499 0.4470 0.7379 0.7132 0.6698 0.3280

S(q̂14) 0.6886 0.5333 0.7465 0.6433 0.7033 0.4108

S(q̂15) 0.6673 0.5054 0.7716 0.6213 0.7122 0.4123

Table 4.  Rankings with different mF AOs in desalination plant site selection.

AOs Ranking order Choice

mFYWA X8 > X14 > X6 > X15 > X13 > X12 > X7 > X9 > X11 > X5 > X10 > X2 > X3 > X1 > X4 X8

mFYWG X14 > X8 > X6 > X15 > X12 > X11 > X5 > X1 > X3 > X9 > X4 > X2 > X13 > X7 > X10 X14

mFDWA X15 > X8 > X7 > X14 > X13 > X6 > X2 > X12 > X9 > X11 > X10 > X5 > X3 > X1 > X4 X15

mFDWG X10 > X7 > X9 > X2 > X3 > X13 > X6 > X12 > X5 > X8 > X11 > X14 > X4 > X1 > X15 X10

mFAAWA X8 > X15 > X14 > X6 > X13 > X7 > X11 > X12 > X2 > X9 > X10 > X5 > X3 > X4 > X1 X8

mFAAWG X15 > X14 > X1 > X11 > X8 > X4 > X12 > X5 > X6 > X3 > X13 > X2 > X9 > X7 > X10 X15

Figure 2.  Comparison of mF AOs outputs in the selection of desalination plant.
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Advantages
Weighted aggregation plays an important part in decision-making algorithms by integrating the effect of different 
parameters with their partial preference into a single entity. In addition, the mF sets allow accurate depiction of 
multi-dimensional paramterized information. This work proposed mF Aczel–Alsina weighted AOs and utilized 
these for decision-making. Some advantages and features of these AOs are listed below: 

1. Proposed AOs enhance the decision-making process concerning multi-polar uncertainties by combining 
multi-polar efficiency of mF sets and accuracy of Aczel–Alsina TN.

2. Six distinct AOs offer aggregation with six different considerations. For instance, weighted averaging and 
weighted geometric AOs consider aggregation based on information’s existing order, whereas ordered 
weighted AOs make sure that preference weights are assigned based on the individual weights of the infor-
mation cells.

3. Efficient polarity demonstrated by the proposed averaging and geometric AOs make them more suitable for 
conflicting analyses of the same information (for instance, optimistic versus pessimistic approaches).

4. The proposed AOs generate more accurate results as compared to the existing AOs. This is demonstrated in 
the comparative analysis.

Limitations
Despite the advantages, proposed techniques have some limitations. One major limitation is the lengthy cal-
culation, which increases with increasing information. This makes the procedure very difficult in case of huge 
information sets. In such cases, softwares like MATLAB may be used to automate the calculations. Another 
limitation is that different AOs may generate different results (as observed in comparison). Therefore, the results 
may variate from the expected outcomes.

Conclusions and future plans
The decision-making problems are often governed by multi-polar decision parameters. mF sets are adequate 
to model such problems efficiently. Further, in order to aggregate the preferential effect of these multi-polar 
parameters on decision-making, many aggregation operators (AOs) have been presented in previous works. 
Aczel–Alsina TNs offer accurate aggregation however the literature misses any work on Aczel–Alsina AOs for 
mF information. Consequently, this work introduced novel Aczel–Alsina TN (and T-CoN) based AOs for the 
aggregation of mF information, including mFAAWA, mFAAWG, mFAAOWA, mFAAOWG, mFAAHWA, and 
mFAAHWG operators. Moreover, corresponding numerical examples are presented for demonstrating the devel-
oped operations and properties. For showing the MCDM capability of proposed mFAAWA and mFAAWG AOs, 
an algorithm is presented. Two site selection problems, including desalination plant and wind power plant are 
modeled and solved with the proposed algorithm for the aggregation of mF information. It can be observed that 
averaging and geometric aggregations yield different results with the same information. Finally, a comparative 
analysis is provided that discusses the comparison of presented mF Aczel–Alsina AOs with outcomes obtained 
by applying mF Yager and Dombi AOs (i.e., mFYWA, mFYWG, mFDWA, mFDWG) on the Application “Selec-
tion of suitable site for desalination plant” that considers the site selection problem of a suitable desalination 
plant. Similarities and variations among the compared outputs are briefly discussed in comparison section. It is 
observed, that despite the aggregation benefits of the proposed AOs, different results may be obtained with dif-
ferent AOs. Moreover, it is suggested to use powerful programs like MATLAB for implementing the algorithm on 
uncertain problems with huge multi-polar datasets (to ease and automate the calculations) to aid the decision-
making process. The proposed work can be extended to the following directions in the coming research works: 

1. m-polar fuzzy Aczel–Alsina prioritized aggregation operators,
2. m-polar fuzzy soft Aczel–Alsina aggregation operators,
3. Possibility m-polar fuzzy Aczel–Alsina aggregation operators,
4. Rough m-polar fuzzy Aczel–Alsina aggregation operators.
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